
1

Forward Error Correction
using Erasure Codes

Reference:
L. Rizzo, “Effective Erasure Codes for Reliable ,
Computer Communication Protocols,” ACM
SIGCOMM Computer Communication Review, April
1997

Erasure Codes

 Erasures are missing packets in a stream
 Uncorrectable errors at the link layer Uncorrectable errors at the link layer
 Losses at congested routers

 (n, k) code
 k blocks of source data are encoded to n

blocks of encoded data, such that the source
data can be reconstructed from any subset of k

Erasure codes (Simon Lam) 2

data can be reconstructed from any subset of k
encoded blocks

 each block is a data item which can be operated
on with arithmetic operations

2

Encoding/decoding process

Erasure codes (Simon Lam) 3

• k fixed-length packets; each packet is partitioned into data
items.

•The encoding/decoding process is applied to k data items from
the k packets, one data item per packet

Applications of FEC

Used to reduce the number of packets
that require ARQ recoverythat require ARQ recovery

 Particularly good for large-scale multicast
of long files or packet flows
 Different packets are missing at different

receivers – the same redundant packet(s) can receivers – the same redundant packet(s) can
be used by (almost) all receivers with missing
packets

Erasure codes (Simon Lam) 4

3

Linear codes

 Can be analyzed using the properties of
linear algebralinear algebra

 Let x = x0 … xk-1 be the source data items,
G an n x k matrix, then an (n, k) linear code
can be represented by

Y = G x
f l d fi d G h th t

Erasure codes (Simon Lam) 5

for a properly defined G such that any
subset of k equations are linearly
independent, i.e., any k x k matrix
extracted from G is invertible.

Encoding/decoding in matrix form

 F t ti d th t k f G

Erasure codes (Simon Lam) 6

 For a systematic code, the top k rows of G
constitute the identity matrix.

With a systematic code, the number of equations to
be solved is small (< k) when few losses are expected.

4

Encoding/decoding in matrix form
(cont.)
 G is called the generator matrix of the code.
A b t f k d d bl k h ld Any subset of k encoded blocks should

convey information on all k source blocks
 G has rank k
 each column of G has at most k-1 zero elements

 For a systematic code, G contains the
identity matrix => the remaining rows of the

Erasure codes (Simon Lam) 7

identity matrix => the remaining rows of the
matrix must all contain nonzero elements

Problem with using ordinary
arithmetic
 Suppose each xi is represented using b

bits each coefficient of G is represented bits, each coefficient of G is represented
using b’ bits

 Then yi needs b+b’+ bits to avoid
loss of precision
 Expansion of source data!

 Extra bits to represent y constitute a

2log k  

Erasure codes (Simon Lam) 8

 Extra bits to represent yi constitute a
sizable communication overhead

5

Computations in finite fields

A field is a set in which we can add, subtract,
multiply and dividemultiply, and divide

A finite field has a finite number of elements.
It is closed under additions and
multiplications.
 sums and products are field elements
 exact computation without requiring more bits

Erasure codes (Simon Lam) 9

 exact computation without requiring more bits
Map data items into field elements, operate

on them according to field rules, then apply
inverse mapping

Prime fields
 GF(p), with p prime, is the set of integers

from 0 to p-1
 GF stands for Galois field

 Field elements require
bits each (except for p=2)

2 2log logp p  

Erasure codes (Simon Lam) 10

Addition and multiplication require modulo p
operations which are costly

6

Extension fields
 GF(pr), with p prime and r > 1
there are q=pr elements

 Each field element can be considered as a
polynomial of degree r-1 with coefficients
in GF(p)

Addition of two elements (polynomials)

Erasure codes (Simon Lam) 11

Addition of two elements (polynomials)
 For each coefficient, sum modulo p

Extension fields (cont.)
 Multiplication

 The product of two polynomials (elements) is
computed modulo an irreducible polynomial (one computed modulo an irreducible polynomial (one
without divisors in GF(pr)) of degree r, and with
coefficients reduced modulo p

The case of p=2, GF(2r)
 each element requires exactly r bits to

represent

Erasure codes (Simon Lam) 12

represent
 addition and substraction are the same,

implemented by bit-wise exclusive OR

7

Special element

 For both prime and extension fields, there
exists at least one special element exists at least one special element,
denoted by , whose powers generate all
non-zero elements of the field

 Powers of repeat with a period of length
q-1, hence q-1 = 0 = 1

 Example: generator for GF(5) is 2

Erasure codes (Simon Lam) 13

 Example: generator for GF(5) is 2
whose powers are 1, 2, 4, 3, 1
where 23 mod 5 = 3 and 24 mod 5 = 1

Special element for GF(23)

Let u be the root of 1 + x + x3 (u is special element 
Thus 1+u+u3 = 0 Thus 1 u u 0
 u0 = 1 001 1
 u1 = u 010 2
 u2 = u2 100 4
 u3 = u+1 011 3
 u4 = u2+u 110 6
 u5 = u2+u+1 111 7

Erasure codes (Simon Lam) 14

 u5 = u2+u+1 111 7
 u6 = u2+1 101 5
 u7 = 1 001 1
There are 7 nonzero elements

8

Special element for GF(28)
u is root of the irreducible polynomial 1 + x2 + x3 + x4 + x8

Thus, 1 + u2 + u3 + u4 + u8 = 0
u generates a cyclic group of nonzero elements (q-1 = 255)
 u0 = 1 00000001  u0 = 1 00000001
 u1 = u 00000010
 u2 = u2 00000100
 u3 = u3 00001000
 u4 = u4 00010000 uq-1 = u0 =1
 u5 = u5 00100000

Erasure codes (Simon Lam) 15

 u6 = u6 01000000
 u7 = u7 10000000
 u8 = 1 + u2 + u3 + u4 00011101
 u9 = u(1 + u2 + u3 + u4)

= u + u3 + u4 + u5 00111010
…

Multiplication and division
Any nonzero element x can be expressed as

x = where kx is logarithm of x
M lti li ti d di isi b t d

xk
Multiplication and division can be computed

using logarithms, as follows:
• The logarithm,

exponential, and
multiplicative inverse
of a non-zero element

 b k t i t bl s

1x y q
k k

xy  



can be kept in tables

• Division performed as
multiplication by
inverse element

Erasure codes (Simon Lam) 16

11
xq k

x
  

9

Multiplication example for GF(23)

 u5 x u6 = (u2+u+1)x(u2+1) = u4+u3+u2 + u2+u+1
 4 3 1= u4 + u3 +u +1

= u4 (1+u+u3=0)

Alternatively,
u5 x u6 = u5+6-(q-1) = u5+6 -7 = u4

Erasure codes (Simon Lam) 17

Data recovery

 Let x denote source data items, y’ denote
data items at receiver and matrix G’ the data items at receiver, and matrix G the
subset of rows from G

y’ = G’ x  x = G’-1 y

Erasure codes (Simon Lam) 18

 The cost of inverting G’ is amortized over
all data items contained in a packet

10

Data recovery (cont.)

 Cost of inverting G’ is O(kL2),
h L i {k k} i th b f where L ≤ min{k, n-k} is the number of

packets to be recovered
 This cost is negligible because it is amortized

over a large number of data items in a packet
(e.g., number of bytes)

 Cost in no. of multiplications

Erasure codes (Simon Lam) 19

p
 Reconstructing the L missing packets has a

total cost of O(kL)

Vandermonde matrix
A kxk matrix with

coefficients 1 1

2 1 2 1

1 () ...

1 () ()

k

k

  



 
 1 1() ()j i jv x  

where the xi’s are
elements of GF(pr)
for q = pr > k

 Such a matrix has the

2 1 2 1

3 1 3 1

1 1

1 () ... ()

V 1 () ... ()

...

1 () ... ()

k

k

k k k

 
 

 







 
 
 
 
 
  

() ()j j
ij iv x  

determinant

which is nonzero
Erasure codes (Simon Lam) 20

, 1... ,

()j i
i j k i j

x x
 



11

Matrix G for a systematic code

Use the top h=n-k
rows of V as the

1 1

2 1 2 1

3 1 3 1

1 () ...

1 () ... ()

V 1 () ()

k

k

k

 
 
 







 
 
 
 rows of V as the

bottom h rows of G
under the identity
matrix, for

h k

1 1

V 1 () ... ()

...

1 () ... ()h h k

 

 





 
 
 
  

1 h k 

Erasure codes (Simon Lam) 21

RSE coder [Rizzo’s implementation]

 Data items are elements of Galois field GF(2r),
 n s f m 2 t 16r ranges from 2 to 16
o encoding time increases with r

 number of data items in each packet may be
arbitrary (but same for all packets)

 1-byte data items are most efficient in Rizzo’s
i l t ti

Erasure codes (Simon Lam) 22

implementation
o use table lookups

 (n, k) codes for k =< 2r-1 and n =< 2k

12

Performance
 Encoding speed = ce/(n-k) , where ce is a

constant
Decoding speed = c /L where c is a Decoding speed = cd/L , where cd is a

constant, L is the number of missing data
items
 cd is slightly smaller than ce due to matrix

inversion at receiver
matrix inversion has a cost of O(kL2), which is (),

amortized over all data items in a packet and is
negligible for packet size larger than 256 bytes

Erasure codes (Simon Lam) 23

The end

Erasure codes (Simon Lam) 24

