Forward Error Correction using Erasure Codes

Reference:

Erasure Codes

- **Erasures** are missing packets in a stream
 - Uncorrectable errors at the link layer
 - Losses at congested routers

- **(n, k) code**
 - k blocks of source data are encoded to n blocks of encoded data, such that the source data can be reconstructed from any subset of k encoded blocks
 - Each block is a data item which can be operated on with arithmetic operations
Encoding/decoding process

- k fixed-length packets; each packet is partitioned into data items.
- The encoding/decoding process is applied to k data items from the k packets, one data item per packet.

Applications of FEC

- Used to reduce the number of packets that require ARQ recovery
- Particularly good for large-scale multicast of long files or packet flows
 - Different packets are missing at different receivers - the same redundant packet(s) can be used by (almost) all receivers with missing packets
Linear codes

- Can be analyzed using the properties of linear algebra
- Let $\mathbf{x} = x_0 \ldots x_{k-1}$ be the source data items, G an $n \times k$ matrix, then an (n, k) linear code can be represented by
 \[\mathbf{y} = G \mathbf{x} \]
 for a properly defined G such that any subset of k equations are linearly independent, i.e., any $k \times k$ matrix extracted from G is invertible.

Encoding/decoding in matrix form

- For a systematic code, the top k rows of G constitute the identity matrix.
- With a systematic code, the number of equations to be solved is small ($< k$) when few losses are expected.
Encoding/decoding in matrix form (cont.)

- G is called the generator matrix of the code.
- Any subset of k encoded blocks should convey information on all k source blocks
 - G has rank k
 - Each column of G has at most $k-1$ zero elements
- For a systematic code, G contains the identity matrix => the remaining rows of the matrix must all contain nonzero elements

Problem with using ordinary arithmetic

- Suppose each x_i is represented using b bits, each coefficient of G is represented using b' bits
- Then y_i needs $b + b' + \lceil \log_2 k \rceil$ bits to avoid loss of precision
 - Expansion of source data!
- Extra bits to represent y_i constitute a sizable communication overhead
Computations in finite fields

- A field is a set in which we can add, subtract, multiply, and divide.
- A finite field has a finite number of elements. It is closed under additions and multiplications.
 - Sums and products are field elements.
 - Exact computation without requiring more bits.
- Map data items into field elements, operate on them according to field rules, then apply inverse mapping.

Prime fields

- $GF(p)$, with p prime, is the set of integers from 0 to $p-1$.
 - GF stands for Galois field.
- Field elements require $\lceil \log_2 p \rceil > \log_2 p$ bits each (except for $p=2$).
- Addition and multiplication require modulo p operations which are costly.
Extension fields

- $GF(p^r)$, with p prime and $r > 1$
 - there are $q=p^r$ elements

- Each field element can be considered as a polynomial of degree $r-1$ with coefficients in $GF(p)$

- Addition of two elements (polynomials)
 - For each coefficient, sum modulo p

Extension fields (cont.)

- Multiplication
 - The product of two polynomials (elements) is computed modulo an irreducible polynomial (one without divisors in $GF(p^r)$) of degree r, and with coefficients reduced modulo p

- The case of $p=2$, $GF(2^r)$
 - each element requires exactly r bits to represent
 - addition and substraction are the same, implemented by bit-wise exclusive OR
Special element

- For both prime and extension fields, there exists at least one special element, denoted by \(\alpha \), whose powers generate all non-zero elements of the field.
- Powers of \(\alpha \) repeat with a period of length \(q-1 \), hence \(\alpha^{q-1} = \alpha^0 = 1 \).
- Example: generator for GF(5) is 2, whose powers are 1, 2, 4, 3, 1, where \(2^3 \mod 5 = 3 \) and \(2^4 \mod 5 = 1 \).

Special element for GF(2^3)

Let \(u \) be the root of \(1 + x + x^3 \) (\(u \) is special element \(\alpha \)).
Thus \(1+u+u^3 = 0 \).
- \(u^0 = 1 \) 001 1
- \(u^1 = u \) 010 2
- \(u^2 = u^2 \) 100 4
- \(u^3 = u+1 \) 011 3
- \(u^4 = u^2+u \) 110 6
- \(u^5 = u^2+u+1 \) 111 7
- \(u^6 = u^2+1 \) 101 5
- \(u^7 = 1 \) 001 1

There are 7 nonzero elements.
Special element for GF(2^8)

u is root of the irreducible polynomial $1 + x^2 + x^3 + x^4 + x^8$.

Thus, $1 + u^2 + u^3 + u^4 + u^8 = 0$.

u generates a cyclic group of nonzero elements ($q-1 = 255$).

- $u^0 = 1$
- $u^1 = u$
- $u^2 = u^2$
- $u^3 = u^3$
- $u^4 = u^4$
- $u^5 = u^5$
- $u^6 = u^6$
- $u^7 = u^7$
- $u^8 = 1 + u^2 + u^3 + u^4$
- $u^9 = u(1 + u^2 + u^3 + u^4)$
 $= u + u^3 + u^4 + u^5$

... $u^{q-1} = u^0 = 1$

Multiplication and division

- Any nonzero element x can be expressed as $x = \alpha^{k_x}$ where k_x is the logarithm of x.
- Multiplication and division can be computed using logarithms, as follows:
 \[
 xy = \alpha^{k_x + k_y} \\
 \frac{1}{x} = \alpha^{q-1-k_x}
 \]

- The logarithm, exponential, and multiplicative inverse of a non-zero element can be kept in tables.
- Division performed as multiplication by inverse element.
Multiplication example for GF(2^3)

- \(u^5 \times u^6 = (u^2+u+1)\times(u^2+1) = u^4+u^3+u^2 + u^2+u+1 \)
 - \(= u^4 + u^3 + u + 1 \)
 - \(= u^4 \) \((1+u+u^3=0)\)

- Alternatively,
 \(u^5 \times u^6 = u^5+6-(q-1) = u^5+6 -7 = u^4 \)

Data recovery

- Let \(x \) denote source data items, \(y' \) denote data items at receiver, and matrix \(G' \) the subset of rows from \(G \)

\[y' = G' \times \rightarrow x = G'^{-1}y \]

- The cost of inverting \(G' \) is amortized over all data items contained in a packet
Data recovery (cont.)

- Cost of inverting G' is $O(kL^2)$,
 where $L \leq \min\{k, n-k\}$ is the number of packets to be recovered
 - This cost is negligible because it is amortized over a large number of data items in a packet (e.g., number of bytes)
 - Cost in no. of multiplications
- Reconstructing the L missing packets has a total cost of $O(kL)$

Vandermonde matrix

- A $k \times k$ matrix with coefficients

$$V = \begin{bmatrix}
1 & (\alpha)^1 & \cdots & (\alpha)^{k-1} \\
1 & (\alpha^2)^1 & \cdots & (\alpha^2)^{k-1} \\
1 & (\alpha^3)^1 & \cdots & (\alpha^3)^{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & (\alpha^k)^1 & \cdots & (\alpha^k)^{k-1}
\end{bmatrix}$$

where the x_i's are elements of $GF(p^r)$ for $q = p^r > k$
- Such a matrix has the determinant

$$\prod_{i,j=1\ldots k, i<j} (x_j - x_i)$$

which is nonzero
Matrix G for a systematic code

- Use the top $h=n-k$ rows of V as the bottom h rows of G under the identity matrix, for $1 \leq h \leq k$

$$V_{h \times k} = \begin{bmatrix}
1 & (\alpha)^1 & \cdots & \alpha^{k-1} \\
1 & (\alpha^2)^1 & \cdots & (\alpha^2)^{k-1} \\
1 & (\alpha^3)^1 & \cdots & (\alpha^3)^{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & (\alpha^h)^1 & \cdots & (\alpha^h)^{k-1}
\end{bmatrix}$$

RSE coder [Rizzo’s implementation]

- Data items are elements of Galois field $GF(2^r)$, r ranges from 2 to 16
 - encoding time increases with r
- number of data items in each packet may be arbitrary (but same for all packets)
- 1-byte data items are most efficient in Rizzo’s implementation
 - use table lookups
- (n, k) codes for $k \leq 2^r-1$ and $n \ll 2k$
Performance

- Encoding speed = \(\frac{c_e}{(n-k)} \), where \(c_e \) is a constant
- Decoding speed = \(\frac{c_d}{L} \), where \(c_d \) is a constant, \(L \) is the number of missing data items
 - \(c_d \) is slightly smaller than \(c_e \) due to matrix inversion at receiver
 - Matrix inversion has a cost of \(O(kL^2) \), which is amortized over all data items in a packet and is negligible for packet size larger than 256 bytes

The end