Forward Error Correction using Erasure Codes

Reference:

L. Rizzo, "Effective Erasure Codes for Reliable Computer Communication Protocols," ACM SIGCOMM Computer Communication Review, April 1997

- \square Powers of α repeat with a period of length q-1, hence α^{q-1} = α^0 = 1
- Example: generator for GF(5) is 2 whose powers are 1, 2, 4, 3, 1 where 2³ mod 5 = 3 and 2⁴ mod 5 = 1

Erasure codes (Simon Lam) 13

<u>Special el</u>	emer	IT TO	<u>r gr(2°)</u>
Let u be the roo	ot of 1 + :	x + x ³	(u is special element α)
Thus $1+u+u^3 = 0$			
🗖 u ^o = 1	001	1	
🗖 u ¹ = u	010	2	
🗖 u² = u²	100	4	
🗖 u ³ = u+1	011	3	
🗖 u ⁴ = u ² +u	110	6	
□ u ⁵ = u ² +u+1	111	7	
□ u ⁶ = u ² +1	101	5	
🗖 u ⁷ = 1	001	1	
There are 7 non	zero ele	ments	

Erasure codes (Simon Lam) 17

- \square Encoding speed = $c_e/(n-k)$, where c_e is a constant
- \square Decoding speed = c_d/L , where c_d is a constant, L is the number of missing data items
 - \odot $c_{\rm d}$ is slightly smaller than $c_{\rm e}$ due to matrix inversion at receiver
 - matrix inversion has a cost of O(kL²), which is amortized over all data items in a packet and is negligible for packet size larger than 256 bytes

Erasure codes (Simon Lam) 23

