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Erasure Codes

0 Erasures are missing packets in a stream
o Uncorrectable errors at the link layer
O Losses at congested routers

3 (n, k) code

0O k blocks of source data are encoded to 7
blocks of encoded data, such that the source
data can be reconstructed from any subset of A
encoded blocks

O each block is a data item which can be operated
on with arithmetic operations

Erasure codes (Simon Lam)




Encoding/decoding process
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* k fixed-length packets; each packet is partitioned into data
items.

*The encoding/decoding process is applied to k data items from

the k packets, one data item per packet _
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Applications of FEC

0 Used to reduce the number of packets
that require ARQ recovery

O Particularly good for large-scale multicast
of long files or packet flows
o Different packets are missing at different

receivers - the same redundant packet(s) can

be used by (almost) all receivers with missing
packets
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Linear codes

0 Can be analyzed using the properties of
linear algebra

OLlet X = Xp ... X,y be the source data items,
G an n x k matrix, then an (n, k) linear code
can be represented by

Y=6x
for a properly defined G such that any
subset of k equations are linearly
independent, i.e., any k x k matrix
extracted from G is invertible.
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Encoding/decoding in matrix form
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Q For a systematic code, the top k rows of G
constitute the identity matrix.

QO With a systematic code, the number of equations to
be solved is small (< k) when few losses are expected.
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Encoding/decoding in matrix form

(cont.)

0 G is called the generator matrix of the code.
0 Any subset of k encoded blocks should
convey information on all k source blocks
O G has rank k
O each column of G has at most k-1 zero elements
0 For a systematic code, G contains the
identity matrix => the remaining rows of the
matrix must all contain nonzero elements
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Problem with using ordinary
arithmetic

0 Suppose each x; is represented using b
bits, each coefficient of G is represented
using b’ bits

0 Then y; needs b+b'+[log,k| bits to avoid
loss of precision
o Expansion of source datal

0 Extra bits to represent y; constitute a
sizable communication overhead
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Computations in finite fields

0 A field is a set in which we can add, subtract,
multiply, and divide

0 A finite field has a finite number of elements.
It is closed under additions and
multiplications.
o sums and products are field elements
O exact computation without requiring more bits

0 Map data items into field elements, operate
on them according to field rules, then apply
inverse mapping
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Prime fields

0 GF(p), with p prime, is the set of integers
from O to p-1
O GF stands for Galois field

7 Field elements require [log, p|>log, p
bits each (except for p=2)

0 Addition and multiplication require modulo p
operations which are costly
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Extension fields

0 GF(p"), with p prime and r > 1
Othere are q=p" elements

A Each field element can be considered as a
polynomial of degree r-1 with coefficients
in GF(p)

0 Addition of two elements (polynomials)
o For each coefficient, sum modulo p
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Extension fields (cont.)

O Multiplication

O The product of two polynomials (elements) is
computed modulo an irreducible polynomial (one
without divisors in GF(p")) of degree r, and with
coefficients reduced modulo p

0 The case of p=2, GF(2")

O each element requires exactly r bits to
represent

0 addition and substraction are the same,
implemented by bit-wise exclusive OR
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Special element

0 For both prime and extension fields, there
exists at least one special element,
denoted by a, whose powers generate all
non-zero elements of the field

O Powers of o repeat with a period of length
q-1, hence 091= af=1

0 Example: generator for GF(B) is 2

whose powersare 1,2, 4, 3,1
where 23mod5=3 and 2*mod 5 =1
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Special element for GF(23)

Let u be the root of 1+ x+x3  (uis special element a)
Thus 1+u+u3 = 0

ouw-=1 001 1
Oul=u 010 2
O u?=u? 100 4
0 ud=u+l o11 3
0 u* = u+u 110 6
0w’ = ud+u+l 11 7
0 ub = ud+l 101 5
Ou' =1 001 1

There are 7 nonzero elements
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Special element for GF(28)

u is root of the irreducible polynomial 1+ x? + x3 + x* + x8
Thus, 1+u2+ud+u*+ud=0
u generates a cyclic group of nonzero elements (q-1 = 255)

ouw-=1
Oul=u
0 u?

aOu =u’

Oud=1+u2+ud+ut
O uw =u(l+u?+ud+u?)
—u+uwS+ud+d

00000001
00000010
00000100
00001000

00010000 udt=uo =1

00100000
01000000
10000000
00011101

00111010
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Multiplication and division

0 Any honzero element x can be expressed as
where 4, is logarithm of x

O Multiplication and division can be computed
using logarithms, as follows:

k
XxX=

Xy =

\kx+ky\ 1

« The logarithm,
exponential, and
multiplicative inverse
of a non-zero element
can be kept in tables

- Division performed as
multiplication by
inverse element
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Multiplication example for GF(23)

O u x ub = (U2+u+1)x(u?+1) = ut+ud+u? + u2+u+l
sut+ud+u+l
= ut (1+u+u3=0)

0 Alternatively,
u5 X u6 = u5+6-(q—1) = u5+6 -7 = u4
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Data recovery

O Let x denote source data items, y' denote
data items at receiver, and matrix G’ the
subset of rows from G

y=6'x > x=6"y

0 The cost of inverting G' is amortized over
all data items contained in a packet
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Data recovery (cont.)

0 Cost of inverting G' is O(kL?),
where L < min{k, n-k} is the number of
packets to be recovered

O This cost is negligible because it is amortized
over a large number of data items in a packet
(e.g., number of bytes)

0 Cost in no. of multiplications

0 Reconstructing the L missing packets has a
total cost of O(KL)
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Vandermonde matrix

3 A kxk matrix with

coefficients 1 () .. &
v = ()" = ()" 1 (@) .. (%)t
where the x/'s are V=1 (&" .. (@)
elements of GF(p")
for q=p"> k 1 (ak)l (ak)k—l

3 Such a matrix has the
determinant

H (Xj_Xi)

i,j=1..k,i<j

which is nonzero
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Matrix G for a systematic code

1 () .. o]
0 Use the top h=n-k 1 (&) .. (@)
rows of V as the Vo, =1 (@) .. (@)
bottom h rows of G
under the identity 1 @) .. (a")*

matrix, for 1<h<k

Encoder LDecoder

o x ¥y G
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RSE coder [Rizzo's implementation]

0 Data items are elements of Galois field GF(2"),
r ranges from 2 to 16
o encoding time increases with r
0 number of data items in each packet may be
ar‘bi‘rrar‘y (but same for all packets)
0 1-byte data items are most efficient in Rizzo's
implementation
o use table lookups

Q (n, k) codes for k=<2r-1 and n =<2k
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Performance

0 Encoding speed = ¢,/(n-k) , where c, is a
constant

0 Decoding speed = c4/L , where ¢4 is a
constant, L is the number of missing data
items

O ¢y is slightly smaller than c, due to matrix
inversion at receiver

O matrix inversion has a cost of O(kL?), which is
amortized over all data items in a packet and is
negligible for packet size larger than 256 bytes
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The end
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