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Forward Error Correction 
using Erasure Codes

Reference:
L. Rizzo, “Effective Erasure Codes for Reliable ,
Computer Communication Protocols,” ACM 
SIGCOMM Computer Communication Review, April 
1997

Erasure Codes

 Erasures are missing packets in a stream
 Uncorrectable errors at the link layer Uncorrectable errors at the link layer
 Losses at congested routers

 (n, k) code
 k blocks of source data are encoded to n

blocks of encoded data, such that the source 
data can be reconstructed from any subset of k
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data can be reconstructed from any subset of k
encoded blocks

 each block is a data item which can be operated 
on with arithmetic operations
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Encoding/decoding process
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• k fixed-length packets; each packet is partitioned into data 
items.  

•The encoding/decoding process is applied to k data items from 
the k packets, one data item per packet

Applications of FEC

Used to reduce the number of packets 
that require ARQ recoverythat require ARQ recovery

 Particularly good for large-scale multicast 
of long files or packet flows
 Different packets are missing at different 

receivers – the same redundant packet(s) can receivers – the same redundant packet(s) can 
be used by (almost) all receivers with missing 
packets
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Linear codes

 Can be analyzed using the properties of 
linear algebralinear algebra

 Let x = x0 … xk-1 be the source data items, 
G an n x k matrix, then an (n, k) linear code 
can be represented by

Y = G x
f   l  d fi d G h th t  
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for a properly defined G such that any 
subset of k equations are linearly 
independent, i.e.,  any k x k matrix 
extracted from G is invertible.  

Encoding/decoding in matrix form

 F   t ti d  th  t  k  f G 
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 For a systematic code, the top k rows of G 
constitute the identity matrix.  

With a systematic code, the number of equations to 
be solved is small (< k) when few losses are expected.
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Encoding/decoding in matrix form 
(cont.)
 G is called the generator matrix of the code.  
A  b t f k d d bl k  h ld Any subset of k encoded blocks should 

convey information on all k source blocks 
 G has rank k 
 each column of G has at most k-1 zero  elements

 For a systematic code, G contains the 
identity matrix => the remaining rows of the 
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identity matrix => the remaining rows of the 
matrix must all contain nonzero elements

Problem with using ordinary 
arithmetic
 Suppose each xi is  represented using b 

bits  each coefficient of G is represented bits, each coefficient of G is represented 
using b’ bits

 Then yi needs  b+b’+              bits to avoid 
loss of precision
 Expansion of source data!

 Extra bits to represent y constitute a 

2log k  
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 Extra bits to represent yi constitute a 
sizable communication overhead
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Computations in finite fields

A field is a set in which we can add, subtract, 
multiply  and dividemultiply, and divide

A finite field has a finite number of elements.  
It is closed under additions and 
multiplications.  
 sums and products are field elements
 exact computation without requiring more bits
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 exact computation without requiring more bits
Map data items into field elements, operate 

on them according to field rules, then apply 
inverse mapping

Prime fields
 GF(p), with p prime, is the set of integers 

from 0 to p-1
 GF stands for Galois field

 Field elements require                                  
bits  each (except for p=2)

2 2log logp p  
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Addition and multiplication require modulo p 
operations which are costly
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Extension fields
 GF(pr), with p prime and r > 1
there are q=pr elements

 Each field element can be considered as a 
polynomial of degree r-1 with coefficients 
in GF(p)

Addition of two elements (polynomials)
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Addition of two elements (polynomials)
 For each coefficient, sum modulo p

Extension fields (cont.)
 Multiplication

 The product of two polynomials (elements) is  
computed modulo an irreducible polynomial (one computed modulo an irreducible polynomial (one 
without divisors in GF(pr)) of degree r, and with 
coefficients reduced modulo p

The case of p=2, GF(2r)
 each element requires exactly r bits to 

represent
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represent
 addition and substraction are the same, 

implemented by bit-wise exclusive OR
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Special element

 For both prime and extension fields, there 
exists at least one special element  exists at least one special element, 
denoted by , whose powers generate all 
non-zero elements of the field

 Powers of repeat with a period of length 
q-1, hence q-1 = 0 = 1

 Example: generator for GF(5) is 2 
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 Example: generator for GF(5) is 2 
whose powers are 1, 2, 4, 3, 1
where 23 mod 5 = 3  and 24 mod 5 = 1

Special element for GF(23)

Let u be the root of 1 + x + x3        (u is special element 
Thus 1+u+u3 = 0  Thus 1 u u  0  
 u0 = 1 001    1           
 u1 = u                 010    2
 u2 = u2 100    4
 u3 = u+1 011    3
 u4 = u2+u           110     6
 u5 = u2+u+1        111     7
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 u5 = u2+u+1        111     7
 u6 = u2+1            101    5
 u7 = 1                 001     1
There are 7 nonzero elements
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Special element for GF(28)
u is root of the irreducible polynomial  1 + x2 + x3 + x4 + x8

Thus,  1 + u2 + u3 + u4 + u8 = 0
u generates a cyclic group of nonzero elements (q-1 = 255)
 u0 = 1 00000001                  u0 = 1 00000001                 
 u1 = u                 00000010      
 u2 = u2 00000100      
 u3 = u3 00001000
 u4 = u4 00010000 uq-1 = u0 =1
 u5 = u5 00100000
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 u6 = u6 01000000
 u7 = u7 10000000
 u8 = 1 + u2 + u3 + u4 00011101
 u9 = u(1 + u2 + u3 + u4)

= u + u3 + u4 + u5 00111010
…

Multiplication and division
Any nonzero element x can be expressed as 

x = where kx is logarithm of x
M lti li ti  d di isi   b  t d 

xk
Multiplication and division can be computed 

using logarithms, as follows:
• The logarithm, 

exponential, and 
multiplicative inverse 
of a non-zero element 

 b  k t i  t bl s

1x y q
k k

xy  



can be kept in tables

• Division performed as 
multiplication by 
inverse element
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11
xq k

x
  
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Multiplication example for GF(23)

 u5 x u6 = (u2+u+1)x(u2+1) = u4+u3+u2 + u2+u+1 
 4  3  1= u4 + u3 +u +1

=  u4 (1+u+u3=0)   

Alternatively,
u5 x u6 = u5+6-(q-1) = u5+6 -7 = u4
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Data recovery

 Let x denote source data items,  y’ denote 
data items at receiver  and matrix G’ the data items at receiver, and matrix G  the 
subset of rows from G

y’ = G’ x  x = G’-1 y
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 The cost of inverting G’ is amortized over 
all data items contained in a packet
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Data recovery (cont.)

 Cost of inverting G’ is O(kL2), 
h  L  i {k  k} i  th  b  f where L ≤ min{k, n-k} is the number of 

packets to be recovered
 This cost is negligible because it is amortized 

over a large number of data items in a packet 
(e.g., number of bytes)

 Cost in no. of multiplications 

Erasure codes (Simon Lam) 19

p
 Reconstructing the L missing packets has a 

total cost of O(kL)

Vandermonde matrix
A kxk matrix with 

coefficients 1 1

2 1 2 1

1 ( ) ...

1 ( ) ( )

k

k

  



 
 1 1( ) ( )j i jv x  

where the xi’s are 
elements of GF(pr) 
for q = pr > k

 Such a matrix has the 

2 1 2 1

3 1 3 1

1 1

1 ( ) ... ( )

V 1 ( ) ... ( )

... ... ... ...

1 ( ) ... ( )

k

k

k k k

 
 

 







 
 
 
 
 
  

( ) ( )j j
ij iv x  

determinant

which is nonzero
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, 1... ,

( )j i
i j k i j

x x
 


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Matrix G for a systematic code

Use the top h=n-k 
rows of V as the 

1 1

2 1 2 1

3 1 3 1

1 ( ) ...

1 ( ) ... ( )

V 1 ( ) ( )

k

k

k

 
 
 







 
 
 
 rows of V as the 

bottom h rows of G 
under the identity 
matrix, for

h  k

1 1

V  1 ( ) ... ( )

... ... ... ...

1 ( ) ... ( )h h k

 

 





 
 
 
  

1 h k 

Erasure codes (Simon Lam) 21

RSE coder [Rizzo’s implementation]

 Data items are elements of Galois field GF(2r), 
 n s f m 2 t  16r ranges from 2 to 16
o encoding time increases with  r

 number of data items in each packet may be 
arbitrary (but same for all packets)

 1-byte data items are most efficient in Rizzo’s   
i l t ti  
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implementation 
o use table lookups

 (n, k) codes for  k =< 2r-1  and  n =< 2k
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Performance
 Encoding speed = ce/(n-k) , where ce is a 

constant
Decoding speed = c /L  where c is a Decoding speed = cd/L , where cd is a 

constant, L is the number of missing data 
items
 cd is slightly smaller than ce due to matrix 

inversion at receiver
matrix inversion has a cost of O(kL2), which is ( ),

amortized over all data items in a packet and is 
negligible for packet size larger than 256 bytes 
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The end
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