General AIMD Congestion Control

Y. Richard Yang and Simon S. Lam

Motivation for new congestion control protocols

- Many new apps (e.g., multimedia) use UDP instead of TCP because they do not require reliable delivery

- Reducing $cwnd$ to half of its value after a loss indication is too severe a reduction for some real-time apps (e.g., interactive multimedia)

- Increasing use of UDP without congestion control would threaten stability of Internet

 \Rightarrow Need new CC protocols for apps that prefer an alternative to TCP
TCP-friendly protocols

- Alternatives to TCP congestion control with smaller send rate fluctuations
 - Equation-based rate control [9, 21]
 - Datagram Congestion Control Protocol (DCCP)
 - GAIMD in this paper

- TCP-friendliness to better co-exist with TCP traffic
 - The send rate of a non-TCP flow should be approximately the same as that of a TCP flow under the same conditions of round-trip time and loss rate

GAIMD

- Consider a more general version of AIMD; let $\alpha > 0$ and $1 > \beta > 0$, b denote number of packets acknowledged by each ack
 - For each new ack received, $W \leftarrow W + \frac{\alpha}{bW}$
 - For a TD ack, $W \leftarrow \beta W$
 - For a timeout, $W \leftarrow 1$

- Other mechanisms (Slow Start, congestion indications, and round-trip time estimation) are the same as those of TCP Reno
GAIMD send rate

send rate = $T_{\alpha, \beta}(p, RTT, T_0, b)$

$$= \frac{1}{RTT \left(\sqrt{\frac{2b(1-\beta)p}{\alpha(1+\beta)}} \right) + \min \left(1, 3, \sqrt{\frac{(1-\beta^2)bp}{2\alpha}} \right) p(1 + 32p^2)T_0}$$

- Same model and assumptions as Padhye et al.
 - p: loss rate
 - RTT: mean round-trip time
 - T_0: mean timeout value
- Reduces to previous formula with $\alpha = 1$ and $\beta = \frac{1}{2}$
- Send rate decreases with a larger RTT, larger T_0, or larger b
- Send rate increases as β increases to 1 or as α increases from 0

Interpreting the send rate formula

- Denominator is sum of the following 2 terms

 $$TD_{\alpha, \beta}(p, RTT, b) = RTT \left(\sqrt{\frac{2b(1-\beta)p}{\alpha(1+\beta)}} \right)$$

 $$TO_{\alpha, \beta}(p, T_0, b) = Qp(1 + 32p^2)T_0$$

 where $Q = \min \left(1, 3, \sqrt{\frac{(1-\beta^2)bp}{2\alpha}} \right)$

- Q, probability of a loss being a TO, increases toward 1 as p increases
- For a small p, $TD = O(p^{0.5})$ dominates $TO = O(p^{1.5})$
Formula validation

- Is the formula accurate? Over what range of loss rate p is it accurate?
- When do sending rate variations become significant?
- What is the general trend when the formula loses accuracy?

Simulation setup

16 TCP Reno flows, 16 GAIMD flows, and flows with ON/OFF times to model web-like traffic (UDP flows and short TCP flows)

- Mean ON time = 1 s, mean OFF time = 2 s, Pareto distribution
- During ON time, each source sends 500 Kbps
Prediction accuracy

- **Measure of accuracy:**
 - predicted sending rate/actual (ave.) sending rate

- **Validity range of the formula**
 - For each β, vary α from 0.1 to 1.0
 - For each (α, β), vary the number of ON/OFF flows from 10 to 70 to create a loss rate about 1% to 30%

- **Impact of loss pattern on the accuracy of the formula**
 - Used different kinds of routers: drop-tail and RED

Accuracy (1)

![Graph](image)

Figure 2: Accuracy for $\beta = 0.5$ and drop-tail
Accuracy (2)
prediction/measurement

Figure 4: Accuracy for $\beta = 0.875$ and drop-tail

- Formula good for loss rate less than 20%

Accuracy (3)
prediction/measurement

Figure 5: Accuracy for $\beta = 0.875$ and RED

RED router may not satisfy correlated loss assumption
Sending Rate Variation (1)

accuracy for individual GAIMD flows and TCP flows

\[\alpha = 0.5, \ \beta = 0.5, \ \text{drop-tail router} \]

Sending Rate Variation (2)

accuracy for individual GAIMD flows and TCP flows

\[\alpha = 0.4, \ \beta = 0.75, \ \text{drop-tail router} \]
Sending Rate Variation (3)

accuracy for individual GAIMD flows and TCP flows

\[\alpha = 0.4, \ \beta = 0.75, \RED \text{ router} \]

Summary of Validation Tests

- Accurate for loss rate \(p < 20\% \)
- Loss patterns (RED vs. drop-tail) do not have a large impact on accuracy
- Sending rate variance is small for a loss rate of up to 10%
- Trend: rate formulas tend to overestimate when loss rate is high or when \(\alpha, \beta \) are aggressive
 - Overestimates are similar for both TCP and GAIMD (most experiments)
TCP-friendly GAIMD

- Choose α and β values such that

 send rate $= T_{\alpha,\beta}(p, RTT, T_0, b)$

 $$= \frac{1}{RTT \left(\sqrt{\frac{2b(1-\beta)p}{\alpha(1+\beta)}} \right) + \min \left(1, 3\sqrt{\frac{(1-\beta^2)bp}{2\alpha}} \right) p(1 + 32p^2)T_0}$$

 $$= T_{\frac{1}{\sqrt{2}}}(p, RTT, T_0, b)$$

- For all p, only solution is $\alpha = 1$ and $\beta = 1/2$

TD TCP-friendly curve

$$TD_{\alpha,\beta}(p, RTT, b) = TD_{\frac{1}{\sqrt{2}}}(p, RTT, b)$$

$$RTT \left(\sqrt{\frac{2b(1-\beta)p}{\alpha(1+\beta)}} \right) = RTT \left(\sqrt{\frac{2b(1-1/2)p}{(1+1/2)}} \right)$$

$$\alpha = \frac{3(1-\beta)}{(1+\beta)}$$
TO TCP-friendly curve

\[TO_{\alpha,\beta}(p, T_0, b) = \text{TO}_{\frac{1}{\sqrt{2}}}(p, T_0, b) \]

\[
\min \left(1, \frac{\sqrt{(1-\beta^2)bp}}{2\alpha} \right) p(1+32p^2)T_0 = \min \left(1, \frac{\sqrt{(1-1/4)bp}}{2} \right) p(1+32p^2)T_0
\]

\[
\frac{(1-\beta^2)}{2\alpha} = \frac{3}{8}
\]

\[
\alpha = \frac{4(1-\beta^2)}{3}
\]

Minimizing error over a range of \(p \) values

- Error function

\[
E_\beta(\alpha) = \int_0^1 w(p) \left| \frac{T_{\alpha,\beta}(p)}{T_{\frac{1}{\sqrt{2}}}(p)} - 1 \right| dp
\]

where \(w(p) \) allocates weight over \(p \) between 0 and 1

- For a given \(\beta \), minimize error to get the best \(\alpha \)
Error as a function of α

- $\beta = 0.875 \quad T_0 = 4(\text{RTT})$
- Optimal value of α increases as threshold increases

(a, β) curves for the three approaches
Comparing the three approaches

As to be shown, TCP is more aggressive at higher loss rates than the model's prediction. Therefore, it is okay to choose the TO approach.

β = 0.875

Chiu and Jain model

Two competing TCP Reno flows:

- Additive increase gives slope of 1, as window size increases
- Multiplicative decrease reduces window size proportionally
Evolution of Window Sizes

- Apply Chiu and Jain [5] model to a TCP flow and a GAIMD flow (no timeout, same RTT)
- GAIMD with $\alpha=0.31$ and $\beta=0.875$
- Windows of the two flows do not converge to equal window size curve, but zigzag across it
- GAIMD has smaller window size oscillations

Experiments on TCP friendliness

- TCP Reno/SACK flows compete with GAIMD(0.31, 0.875) flows, n flows each, same simulation topology
- Drop-tail or RED bottleneck link
- Each run for 120 seconds of simulated time
- Vary n from 1 to 64
- Loss rate controlled by n value and link bandwidth
GAIMD competing with Reno
1.5 Mbps droptail link

GAIMD competing with Reno
15 Mbps droptail link (→ smaller loss rate)
GAIMD competing with Reno
1.5 Mbps RED link

GAIMD competing with Reno
15 Mbps RED link (→ smaller loss rate)
GAIMD competing with SACK
1.5 Mbps droptail link

GAIMD (Simon Lam)

GAIMD competing with SACK
15 Mbps droptail link (→ smaller loss rate)

GAIMD (Simon Lam)
GAIMD competing with SACK
1.5 Mbps RED link

1.5M link (RED), TCP/Sack, GAIMD(0.31, 0.875)

GAIMD competing with SACK
15 Mbps RED link (→ smaller loss rate)

15M link (RED), TCP/Sack, GAIMD(0.31, 0.875)
Rate Fluctuations
4 GAIMD(0.31, 0.875) flows & 4 TCP Reno flows share

- 15 Mbps RED link
- Each point in a trace obtained by averaging over 150 ms, about 2-3 times RTT, of 1 flow
- From [33] we know that the CoV of GAIMD(0.31, 0.875) send rate is about half the CoV of TCP send rate

Conclusions
- A general version of AIMD with α and β parameter values
 - A formula for the (mean) send rate of a GAIMD flow as a functions of α, β, p, b, RTT, and T_D and it is accurate for p up to 20%

- Relationship between α and β for GAIMD to be TCP-friendly
 - Simulation results from experiments show that GAIMD(0.31, 0.875) flows compete with TCP Reno or SACK flows, at a drop-tail or RED bottleneck link, in a friendly manner
 - GAIMD(0.31, 0.875) has reduced rate fluctuations