
1

Neighbor Table Construction and
Upd t i D mi P t P Update in a Dynamic Peer-to-Peer
Network

Huaiyu Liu and Simon S. Lamy

P2P systems peer

peer

peer

peer

peer

peer
peer

 User machines (peers) cooperate to share resources
 Unstructured systems: scoped flooding (e.g., original Gnutella)
 Hierarchical systems: infrastructure nodes (e.g., BitTorrent)
 Many copies of each object (file) in network

peerpeer peer

ICDCS 2003 (Simon Lam) 2

 Overlay networks that provide services
 Structured p2p systems: PRR, Chord, Pastry, Tapestry, etc.
 Routing tables provide more efficient routing
 DHT applications
 Performance impacted by churn

2

Hypercube routing scheme
 Routing infrastructure proposed in PRR [Plaxton et al

1997],
 used in Pastry [2001], Tapestry [2001]

 In basic scheme, each node maintains a neighbor
table, pointing to O(log n) nodes
 O(log n) routing hops on the average

 PRR assumes static neighbor tables that are
consistent and optimal

ICDCS 2003 (Simon Lam) 3

p
 PRR guarantees locating a copy of a replicated object, if it

exists, with asymptotically optimal cost

Talk Outline

Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis
 Conclusion

ICDCS 2003 (Simon Lam) 4

 Conclusion

3

Overview of Hypercube Routing Scheme
 Each node has an ID, a random fixed-

length binary string, e.g., 128-bit MD5 hash
of a name
 concept of circular ID space

 Each node ID is represented by d digits of
base b , for example,

0100111011  10323 (d = 5, b = 4)

ICDCS 2003 (Simon Lam) 5

We use suffix matching, as in PRR, with the
rightmost digit being the 0th digit

Routing Scheme
 Routing to a destination node is resolved

digit by digit, trying to match at least one
extra digit per hop

21233

Example: source 21233, destination 03231

33121
10231

ICDCS 2003 (Simon Lam) 6

21233
13331 03231

4

Neighbor Table at each node
 d levels, b entries at each level
 required suffix of (i, j)-entry in table of node x :

j followed by the rightmost i digits in the node’s j y g g
ID
Example: neighbor table of node 21233 (d=5, b=4)

11233
21233

10233
21233

31033
03133
21233

22303
13113
00123

01100
33121
12232

j

ICDCS 2003 (Simon Lam) 7

i
03233 21233 21233

Level 0Level 1Level 2Level 3Level 4

Neighbor Table at each node
 d levels, b entries at each level
 required suffix of (i, j)-entry in table of node x :

j followed by the rightmost i digits in the node’s j y g g
ID
Example: neighbor table of node 21233 (d=5, b=4)

11233
21233

10233
21233

31033
03133
21233

22303
13113
00123

01100
33121
12232

j

ICDCS 2003 (Simon Lam) 8

Node x fills itself into (i, x[i]) entries

i
03233 21233 21233

Level 0Level 1Level 2Level 3Level 4

5

Routing Scheme Revisited

33121
10231

 source 21233, destination 03231

21233
13331

10231
03231

01100
33121
12232
21233

21101
30111
33121
13331

Level 1

11031
01131
10231

03231
10231

L l 3

ICDCS 2003 (Simon Lam) 9

21233

Level 0

Level 1 10231

Level 2

Level 3

Talk Outline

Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis
 Conclusion

ICDCS 2003 (Simon Lam) 10

 Conclusion

6

Motivation—Protocols needed for
Dynamic Networks

 To handle joins, leaves and failures
N t k i iti li tiNetwork initialization
Neighbor table optimization

Our objective:
Protocols to construct consistent neighbor

ICDCS 2003 (Simon Lam) 11

tables and maintain consistency under node
dynamics

Related Work—Chord [2001]
 Not hypercube routing, but

similar in spirit
 Each node keeps

 successor and
predecessor pointers
form a ring

 “finger pointers” provide
short cuts

 Stabilization protocol to
keep successor pointers up

ICDCS 2003 (Simon Lam) 12

keep successor pointers up
to date to guarantee
“correctness”
maintaining consistency

of finger pointers
considered hard

7

Related Work—Pastry [2001]

 Each node also maintains a Leaf set of L nearest
neighbors on the ID ring, e.g., L=32

 If the destination of a packet is within range of
Leaf set, it is forwarded to its closest node in Leaf
set; else, it is forwarding by hypercube routing
 Rare case – forward packet to another node with the same prefix

match as current node, but numerically closer to destination

P i f h b i i d “l il ”

ICDCS 2003 (Simon Lam) 13

 Pointers for hypercube routing are repaired “lazily”;
emphasis on maintaining Leaf set for resilience

Related Work—Tapestry [2001]
Object location—need a method to determine

a single “root” node that matches with the
longest prefix (or suffix) of an object g p () j

 In a Tapestry node, when there is no match for the
next digit of a packet, it is forwarded to the next
filled entry at the same level in the routing table
(d d if ss) It is d th t

ICDCS 2003 (Simon Lam) 14

(wrapped around if necessary). It is proved that
the node is unique.

8

Related Work—Tapestry [2002]
A correctness proof for its join protocol based

on
 a lower-layer protocol for a joining node to send y p f j g

acknowledged multicast to all existing nodes with a
given prefix

 concurrent joins—pointer to a new node is locked
after its multicast is received, and unlocked when
all acks return from multicasts triggered by the new

ICDCS 2003 (Simon Lam) 15

all acks return from multicasts triggered by the new
node

Finding hay versus finding needles

 For object location applications

When an object has many replicas in a
network, the probability of finding one of
them is high even when routing tables are
far from being consistent

ICDCS 2003 (Simon Lam) 16

9

Contributions of this Paper

A foundation, C-set trees, for protocol
design and reasoning about consistency

New join protocol for hypercube routing

 Proof by induction that the join protocol
maintains consistency for an arbitrary number
of concurrent joins

 Join protocol can also be used for network

ICDCS 2003 (Simon Lam) 17

 Join protocol can also be used for network
initialization

 Each joining node handles its own join process—
no need for other nodes to maintain state
information for joining nodes (no multicast, no
locking)

Talk Outline

Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis
 Conclusion

ICDCS 2003 (Simon Lam) 18

 Conclusion

10

Definition

A consistent network:
For each table entry, if there For each table entry, f there
exist nodes whose IDs have
the required suffix of the
entry, then the entry is filled
with such a node; otherwise,
the entry is empty.

31033
03133
21233

033

233
133

333
Level 2, node 21233

ICDCS 2003 (Simon Lam) 19

Lemma. In a consistent network, every
node is reachable from every other node.

Assumptions and Goal
Assumptions: When node x joins a network

V, N(V)
V   and N(V) is consistentV   and N(V) is consistent
x knows a node in V
messages are delivered reliably
no node failure or leave

 Goal: Construct tables of new nodes and

ICDCS 2003 (Simon Lam) 20

 Goal: Construct tables of new nodes and
update tables of existing nodes so that
eventually, the new network is consistent
again.

11

Definitions

Joining period of a node.

Sequential joins

Concurrent joins

starts joining becomes an S-node

ICDCS 2003 (Simon Lam) 21

Notification set of x regarding V

Example: initial network
V {33121 12100 23133 10033 03213}V={33121, 12100, 23133, 10033, 03213},
then 21233 and 02101 join

 The noti set of 21233 is {23133, 10033}

ICDCS 2003 (Simon Lam) 22

 The noti set of 02101 is {33121}

12

Definitions (cont.)
 Independent joins: for every pair of nodes in set W

of joining nodes, their noti-sets are disjoint
 Example: initial network V={33121, 12100, 23133,

10033, 03213}, then 21233 and 02101 join.

 Dependent joins (definition in paper):
Example: 21233 and 00233 join the above network

l h j i f d d d if h i

21233 02101
Notify NotifyV V 

ICDCS 2003 (Simon Lam) 23

 Also the joins of x and y are dependent if there exists a
joining node u such that x’s and y’s noti sets are subsets of
u’s noti set

 Handling concurrent and dependent joins is the most
difficult part.

Goals of join protocol
Starting with a consistent network,
<V, N(V)>, and a set W of joining nodes,
the protocol goals are:

1. For , eventually x and y can
reach each other

,x W y V 

ICDCS 2003 (Simon Lam) 24

2. For , eventually, x1 and x2 can
reach each other

1 2,x W x W 

13

C-set Tree

V3

A conceptual structure that guides our
protocol design and proofs (not in implementation)

V = {33121, 12100,

C33

C233

C1233

C21233 C01233

C13

C313

C3313

C13313

3
33

233

{ , ,
23121,

10003, 03223}

ICDCS 2003 (Simon Lam) 25

C-set tree Template

W = {21233, 01233, 13313}

1233

21233

C-set Tree (cont.)

 By filling new nodes
into neighbor tables, the
C-set tree is conceptually

li d 10003 03223

V={33121, 12100, 23121,
10003, 03223}

W = {21233, 01233, 13313}

realized.

 Different sequences of
message exchanges
between nodes result in
different realizations.

10003, 03223

21233

21233

21233
21233

C33

C233

C1233

01233

13313

13313

13313
13313

C13

C313

C3313

C13313

V3

ICDCS 2003 (Simon Lam) 26

C21233 C01233
C13313

C-set tree realization

14

C-set tree realization: Correctness Conditions
 Template and tree have

same structure; no C-set
is empty

 F h d i t
33121, 12100, 23121,

10003 03223

W = {21233, 01233, 13313}

 For each node y in root,
for each child C-set of
root, y stores a node with
the required suffix of
each child C-set

 For each leaf node x in
 if C l i

21233

21233

21233

C33

C233

C1233

10003, 03223

10003, 03223

V3

13313

13313

13313

C13

C313

C3313

ICDCS 2003 (Simon Lam) 27

tree, if a C-set along its
path to root has a sibling,
x stores a node with the
suffix of the sibling

21233
21233

C1233

C21233
01233
C01233

C-set tree Realization

13313
C13313

More details …
 For independent joins, their noti-sets in V

are disjoint – therefore, no need to know
b t h thabout each other

 For concurrent joins in general, the noti-sets
may be different for different subsets of
nodes in W, there are two cases (Proposition
5 5)

ICDCS 2003 (Simon Lam) 28

5.5):
 the noti-sets are disjoint
 one noti-set is a proper subset of the other

15

Talk Outline

Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis
 Conclusion

ICDCS 2003 (Simon Lam) 29

 Conclusion

Join Protocol: Intuition

T-node

 T-nodes and S-nodes
 T: nodes joining a

network T node

S-node

network
 S: nodes that finished

joining

 T-node needs to:
 copy neighbors from S-nodes

ICDCS 2003 (Simon Lam) 30

py g
 find a position for itself in the C-set tree

(find a S-node to store it as a neighbor)
 find and notify others in the same tree

16

Join Protocol
Status of a joining node: copying, waiting,

notifying, in_system
copying : Copies and constructs neighbor table copying : Copies and constructs neighbor table
level by level
waiting : Attaches itself to the network, i.e.,
finds an S-node to store it as a neighbor
notifying : Searches and notifies nodes with a
certain suffix

ICDCS 2003 (Simon Lam) 31

in_system: Becomes an S-node

Join Protocol
Status of a joining node: copying, waiting,

notifying, in_system
copying : Copies and constructs neighbor table copying : Copies and constructs neighbor table
level by level
waiting : Attaches itself to the network, i.e.,
finds an S-node to store it as a neighbor (common
suffix is its noti-level)
notifying : Searches and notifies nodes with a

ICDCS 2003 (Simon Lam) 32

y g
certain suffix
in_system: Becomes an S-node

17

Join Protocol
Status of a joining node: copying, waiting,

notifying, in_system
copying : Copies and constructs neighbor table copying : Copies and constructs neighbor table
level by level
waiting : Attaches itself to the network, i.e.,
finds an S-node to store it as a neighbor
notifying : Searches and notifies nodes with a
common suffix of length its noti-level

ICDCS 2003 (Simon Lam) 33

g
in_system: Becomes an S-node

Join Protocol
Status of a joining node: copying, waiting,

notifying, in_system
copying : Copies and constructs neighbor table copying : Copies and constructs neighbor table
level by level
waiting : Attaches itself to the network (i.e.,
finds an S-node to store it as a neighbor)
notifying : Searches and notifies nodes with a
certain suffix

ICDCS 2003 (Simon Lam) 34

in_system: Becomes an S-node, replies to pending
JoinWait requests, informs all of its reverse
neighbors

18

Join Protocol: An Example

V3 10003 03223

33121, 12100, 23121,
10003, 03223

W = {21233, 01233, 13313}

V3 10003, 03223

xxxx0
xxxx1

xxx03
xxx13
xxx2321233

21233
01233

21233

After the joins, from global info, neighbor table of 21233
should look like

ICDCS 2003 (Simon Lam) 35

21233

Level 0

xxx23
21233

Level 1

21233

Level 2Level 3

21233

Level 4

Join Protocol: An Example
 21233 knows 12100
 copying : 21233 copies

and constructs
i hb t bl l l b

33121, 12100, 23121,
10003, 03223

W = {21233, 01233, 13313}

neighbor table level by
level V3 10003, 03223

10003, 03223

1210021233
CPRstMsg

CPRlyMsg

12100
23121

10003

ICDCS 2003 (Simon Lam) 36

 It next sends copy
request to 10003 which
shares last digit with it

Level 0

19

Join Protocol: An Example (cont.)

33121, 12100, 23121,
10003, 03223

W = {21233, 01233, 13313} copying : 21233 copies
and constructs neighbor
table level by level

V3 10003, 03223

T bl h h

1000321233
CPRstMsg

CPRlyMsg

10003

03223

1000321233
CPRstMsg

CPRlyMsg

10003

03223

ICDCS 2003 (Simon Lam) 37

 Table entry that shares
last two digits with it is
empty => change status
to waiting and ask 10003
to store it as a neighbor

Level 1Level 1

Join Protocol: An Example (cont.)

 waiting : 21233 tries to
attach itself to the

W = {21233, 01233, 13313}

network (i.e., to find an S-
node to store it as a
neighbor)

21233

21233

C33

C233

V3 10003, 03223

33121, 12100, 23121,
10003, 03223

1000321233
JoinWaitMsg

ICDCS 2003 (Simon Lam) 38

 noti-level = 1

21233
21233

C1233

C21233

1000321233
JoinWaitRlyMsg 10003

03223
21233

Level 1

20

Join Protocol: An Example (cont.)

 notifying : 21233
searches and notifies
nodes with a common

33121, 12100, 23121,
10003, 03223

W = {21233, 01233, 13313}

suffix xxxx3 10003, 03223

21233

21233

21233
21233

C33

C233

C1233

13313

13313

13313
13313

C13

C313

C3313

V3

0322321233
JoinNotiMsg

JoinNotiRlyMsg



ICDCS 2003 (Simon Lam) 39

21233
C21233

33 3
C13313

Join Protocol: An Example (cont.)

 notifying : 21233
learns about 01233 W = {21233, 01233, 13313}

and 13313 through
10003 or 03223 or
vice versa

 in_system: Becomes
an S-node

10003, 03223

21233

21233

C33

C233

13313

13313
C13

C313

33121, 12100, 23121,
10003, 03223

V3

ICDCS 2003 (Simon Lam) 40

21233

21233
21233

C233

C1233

C21233
01233
C01233

13313
13313

C3313

C13313

21

Join Protocol: An Example (cont.)

V3 10003, 03223

33121, 12100, 23121,
10003, 03223

W = {21233, 01233, 13313}

12100
23121

21233

10003
13313
03223
21233

21233
21233

01233

21233

After the joins, routing table of 21233 is possibly as shown
below

ICDCS 2003 (Simon Lam) 41

Level 0Level 1Level 2Level 3Level 4

Note: on the average, only O(logd n) levels need to be
stored

State variables of a joining node x

ICDCS 2003 (Simon Lam) 42

22

Protocol messages

ICDCS 2003 (Simon Lam) 43

Talk Outline
Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis

 assuming reliable message delivery, no node
deletion

ICDCS 2003 (Simon Lam) 44

 Conclusion

23

Protocol Analysis: Correctness

Consistency

Termination

ICDCS 2003 (Simon Lam) 45

 The number of CpRstMsg and JoinWaitMsg
messages sent by a joining node during
status copying and waiting is at most d+1
(Theorem 3)

Protocol Analysis: Communication Cost

(Theorem 3).
An upper bound on the expected number of

JoinNotiMsg messages sent during the
notifying status by a joining node (Theorem
5).

ICDCS 2003 (Simon Lam) 46

 These three messages and their replies are
large because each such message/reply
may contain a neighbor table.

24

Communication Cost (cont.)
Upper bound on expected no. of notifications (from

Theorem 5)
pe

r
bo

un
d

ICDCS 2003 (Simon Lam) 47

Number of nodes

U
pp

Communication Cost (cont.)
From simulations – 1000 nodes concurrently join

3096 nodes, 1000 nodes concurrently join 7192 nodes

all joins start at the same time

at
iv

e
di

st
rib

ut
io

n

ICDCS 2003 (Simon Lam) 48

Number of notifications sent by a joining node

Cu
m

ul
a

25

Comparing theoretical and
simulation results
 For the four simulation cases, the average

number of join notification messages sentj g

simulations analytic upper bound
6.12 8.00
6.05 8.00
5.03 6.99
5 40 6 99

ICDCS 2003 (Simon Lam) 49

5.40 6.99

Network initialization

 The join protocol can be used to build
consistent neighbor tables for a set of n consistent neighbor tables for a set of n
nodes.
 put one node x in V with x.table filled in as follows:

ICDCS 2003 (Simon Lam) 50

 Given x, the other n-1 nodes join the network
concurrently.

26

Conclusions
 A new join protocol for hypercube routing scheme

 for concurrent joins
 each joining node maintains state info for its own join

process

 A conceptual structure, C-set trees, for reasoning
about consistency
 a guide for protocol design and proof construction

 Proved that join protocol constructs and maintains
consistent neighbor tables for any number of
concurrent joins (in the absence of node leave or

ICDCS 2003 (Simon Lam) 51

concurrent joins (in the absence of node leave or
failure).
 Join processes terminate under standard assumptions

 Analyzed communication costs
 Protocols for leaves and failures—next paper

End

ICDCS 2003 (Simon Lam) 52

