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Neighbor Table Construction and 
Upd t  i   D mi  P t P  Update in a Dynamic Peer-to-Peer 
Network

Huaiyu Liu and Simon S. Lamy

P2P systems peer

peer

peer

peer

peer

peer
peer

 User machines (peers) cooperate to share resources
 Unstructured systems: scoped flooding (e.g., original Gnutella)
 Hierarchical systems: infrastructure nodes (e.g., BitTorrent)
 Many copies of each object (file) in network

peerpeer peer
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 Overlay networks that provide services
 Structured p2p systems: PRR, Chord, Pastry, Tapestry, etc.
 Routing tables provide more efficient routing
 DHT applications
 Performance impacted by churn
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Hypercube routing scheme
 Routing infrastructure proposed in PRR [Plaxton et al 

1997], 
 used in Pastry [2001], Tapestry [2001]

 In basic scheme, each node maintains a neighbor 
table, pointing to O(log n) nodes
 O(log n) routing hops on the average

 PRR assumes static neighbor tables that are 
consistent and optimal
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p
 PRR guarantees locating a copy of a replicated object, if it 

exists, with asymptotically optimal cost

Talk Outline

Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis
 Conclusion
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 Conclusion
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Overview of Hypercube Routing Scheme
 Each node has an ID, a random fixed-

length binary string, e.g., 128-bit MD5 hash 
of a name
 concept of circular ID space

 Each node ID is represented by d digits  of 
base b , for example,

0100111011  10323 (d = 5, b = 4)
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We use suffix matching, as in PRR, with the 
rightmost digit being the 0th digit

Routing Scheme
 Routing to a destination node is resolved 

digit by digit, trying to match at least one
extra digit per hop

21233

Example: source 21233, destination 03231

33121
10231
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21233
13331 03231
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Neighbor Table at each node
 d levels, b entries at each level
 required suffix of (i, j)-entry in table of node x :

j followed by the rightmost i digits in the node’s j y g g
ID
Example: neighbor table of node 21233 (d=5, b=4)

11233
21233

10233
21233

31033
03133
21233

22303
13113
00123

01100
33121
12232

j
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i
03233 21233 21233

Level 0Level 1Level 2Level 3Level 4

Neighbor Table at each node
 d levels, b entries at each level
 required suffix of (i, j)-entry in table of node x :

j followed by the rightmost i digits in the node’s j y g g
ID
Example: neighbor table of node 21233 (d=5, b=4)

11233
21233

10233
21233

31033
03133
21233

22303
13113
00123

01100
33121
12232

j
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Node x fills itself into (i, x[i]) entries

i
03233 21233 21233

Level 0Level 1Level 2Level 3Level 4
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Routing Scheme Revisited

33121
10231

 source 21233, destination 03231

21233
13331

10231
03231

01100
33121
12232
21233

21101
30111
33121
13331

Level 1

11031
01131
10231

03231
10231

L l 3
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21233

Level 0

Level 1 10231

Level 2

Level 3

Talk Outline

Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis
 Conclusion

ICDCS 2003 (Simon Lam) 10

 Conclusion
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Motivation—Protocols  needed for 
Dynamic Networks

 To handle joins, leaves and failures
N t k i iti li tiNetwork initialization
Neighbor table optimization

Our objective:
Protocols to construct consistent neighbor 
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tables and maintain consistency under node 
dynamics

Related Work—Chord [2001]
 Not hypercube routing, but 

similar in spirit
 Each node keeps 

 successor and 
predecessor pointers
form a ring

 “finger pointers” provide  
short cuts

 Stabilization protocol to 
keep successor pointers up 
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keep successor pointers up 
to date to guarantee 
“correctness”
maintaining consistency 

of finger pointers 
considered hard
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Related Work—Pastry [2001]

 Each node also maintains a Leaf set of L nearest 
neighbors on the ID ring, e.g., L=32

 If the destination of a packet is within range of 
Leaf set, it is forwarded to its closest node in Leaf 
set; else, it is forwarding by hypercube routing
 Rare case – forward packet to another node with the same prefix 

match as current node, but numerically closer to destination

P i  f  h b  i   i d “l il ”  
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 Pointers for hypercube routing are repaired “lazily”; 
emphasis on maintaining Leaf set for resilience

Related Work—Tapestry [2001]
Object location—need a method to determine 

a single “root” node that matches with the 
longest prefix (or suffix) of an object g p ( ) j

 In a Tapestry node, when there is no match for the 
next digit of a packet, it is forwarded to the next 
filled entry at the same level in the routing table 
( d d if ss )   It is d th t 
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(wrapped around if necessary).  It is proved that 
the node is unique.
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Related Work—Tapestry [2002]
A correctness proof for its join protocol based 

on 
 a lower-layer protocol for a joining node to send y p f j g

acknowledged multicast to all existing nodes with a 
given prefix

 concurrent joins—pointer to a new node is locked
after its multicast is received, and unlocked when 
all acks return from multicasts triggered by the new 
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all acks return from multicasts triggered by the new 
node

Finding  hay versus finding needles

 For object location applications

When an object has many replicas in a  
network, the probability of finding one of 
them is high even when routing tables are 
far from being consistent

ICDCS 2003 (Simon Lam) 16
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Contributions of this Paper

A foundation, C-set trees, for protocol 
design and reasoning about consistency

New join protocol for hypercube routing

 Proof by induction that the join protocol 
maintains consistency for an arbitrary number 
of concurrent joins

 Join protocol can also be used for network 
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 Join protocol can also be used for network 
initialization

 Each joining node handles its own join process—
no need for other nodes to maintain state 
information for joining nodes (no multicast, no 
locking)

Talk Outline

Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis
 Conclusion
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 Conclusion
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Definition

A consistent network:
For each table entry, if there For each table entry, f there 
exist nodes whose IDs have 
the required suffix of the 
entry, then the entry is filled 
with such a node; otherwise, 
the entry is empty.

31033
03133
21233

033

233
133

333
Level 2, node 21233
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Lemma.  In a consistent network, every 
node is reachable from every other node.

Assumptions and Goal
Assumptions: When node x joins a network 

V, N(V)
V   and N(V) is consistentV   and N(V) is consistent
x knows a node in V 
messages are delivered reliably
no node failure or leave

 Goal: Construct tables of new nodes and 

ICDCS 2003 (Simon Lam) 20

 Goal: Construct tables of new nodes and 
update tables of existing nodes so that 
eventually, the new network is consistent
again. 
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Definitions

Joining period of a node.

Sequential joins

Concurrent joins

starts joining becomes an S-node
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Notification set of x regarding V

Example: initial network 
V {33121  12100  23133  10033  03213}V={33121, 12100, 23133, 10033, 03213},
then 21233 and 02101 join

 The noti set of 21233 is {23133, 10033}
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 The noti set of 02101 is {33121}
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Definitions (cont.)
 Independent joins: for every pair of nodes in set W 

of joining nodes, their noti-sets are disjoint
 Example: initial network V={33121, 12100, 23133, 

10033, 03213}, then 21233 and 02101 join.

 Dependent joins (definition in paper):
Example: 21233 and 00233 join the above network 

l  h  j i  f  d   d d  if h  i   

21233 02101
Notify NotifyV V 
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 Also the joins of x and y are dependent if there exists a 
joining node u such that x’s and y’s noti sets are subsets of 
u’s noti set

 Handling concurrent and dependent joins is the most 
difficult part.

Goals of join protocol
Starting with a consistent network, 
<V, N(V)>, and a set W of joining nodes, 
the protocol goals are:

1. For                   , eventually x and y can 
reach each other

,x W y V 
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2. For                     , eventually, x1 and x2 can 
reach each other

1 2,x W x W 
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C-set Tree

V3

A conceptual structure that guides our 
protocol design and proofs (not in implementation)

V = {33121, 12100, 

C33

C233

C1233

C21233 C01233

C13

C313

C3313

C13313

3
33

233

{ , ,
23121, 

10003, 03223}
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C-set tree Template

W = {21233, 01233, 13313}

1233

21233

C-set Tree (cont.)

 By filling new nodes 
into neighbor tables, the 
C-set tree is conceptually

li d 10003 03223

V={33121, 12100, 23121, 
10003, 03223}

W = {21233, 01233, 13313}

realized.

 Different sequences of 
message exchanges 
between nodes result in 
different realizations.

10003, 03223

21233

21233

21233
21233

C33

C233

C1233

01233

13313

13313

13313
13313

C13

C313

C3313

C13313

V3
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C21233 C01233
C13313

C-set tree realization
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C-set tree realization: Correctness Conditions
 Template and tree have 

same structure; no C-set 
is empty

 F  h d  i  t  
33121, 12100, 23121, 

10003 03223

W = {21233, 01233, 13313}

 For each node y in root, 
for each child C-set of 
root, y stores a node with 
the required suffix of 
each child C-set

 For each leaf node x in
 if  C  l  i  

21233

21233

21233

C33

C233

C1233

10003, 03223

10003, 03223

V3

13313

13313

13313

C13

C313

C3313
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tree, if a C-set along its 
path to root has a sibling, 
x stores a node with the 
suffix of the sibling 

21233
21233

C1233

C21233
01233
C01233

C-set tree Realization

13313
C13313

More details … 
 For independent joins, their noti-sets in V 

are disjoint – therefore, no need to know 
b t h thabout each other

 For concurrent joins in general, the noti-sets 
may be different for different subsets of 
nodes in W, there are two cases (Proposition 
5 5)
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5.5):
 the noti-sets are disjoint
 one noti-set is a proper subset of the other
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Talk Outline

Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis
 Conclusion
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 Conclusion

Join Protocol: Intuition

T-node

 T-nodes and S-nodes
 T: nodes joining a 

network  T node

S-node

network  
 S: nodes that finished 

joining

 T-node needs to:
 copy neighbors from S-nodes
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py g
 find a position for itself in the C-set tree 

(find a S-node to store it as a neighbor)
 find and notify others in the same tree 



16

Join Protocol
Status of a joining node: copying, waiting, 

notifying, in_system
copying : Copies and constructs neighbor table copying : Copies and constructs neighbor table 
level by level
waiting : Attaches itself to the network, i.e., 
finds an S-node to store it as a neighbor
notifying : Searches and notifies nodes with a 
certain suffix
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in_system: Becomes an S-node

Join Protocol
Status of a joining node: copying, waiting, 

notifying, in_system
copying : Copies and constructs neighbor table copying : Copies and constructs neighbor table 
level by level
waiting : Attaches itself to the network, i.e., 
finds an S-node to store it as a neighbor (common 
suffix is its noti-level)
notifying : Searches and notifies nodes with a 
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y g
certain suffix
in_system: Becomes an S-node
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Join Protocol
Status of a joining node: copying, waiting, 

notifying, in_system
copying : Copies and constructs neighbor table copying : Copies and constructs neighbor table 
level by level
waiting : Attaches itself to the network, i.e., 
finds an S-node to store it as a neighbor
notifying : Searches and notifies nodes with a 
common suffix of length    its noti-level
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g
in_system: Becomes an S-node

Join Protocol
Status of a joining node: copying, waiting, 

notifying, in_system
copying : Copies and constructs neighbor table copying : Copies and constructs neighbor table 
level by level
waiting : Attaches itself to the network (i.e., 
finds an S-node to store it as a neighbor)
notifying : Searches and notifies nodes with a 
certain suffix
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in_system: Becomes an S-node, replies to pending 
JoinWait requests, informs all of its reverse 
neighbors
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Join Protocol: An Example

V3 10003 03223

33121, 12100, 23121, 
10003, 03223

W = {21233, 01233, 13313}

V3 10003, 03223

xxxx0
xxxx1

xxx03
xxx13
xxx2321233

21233
01233

21233

After the joins, from global info, neighbor table of 21233 
should look like 
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21233

Level 0

xxx23
21233

Level 1

21233

Level 2Level 3

21233

Level 4

Join Protocol: An Example
 21233 knows 12100
 copying : 21233 copies 

and constructs 
i hb  t bl  l l b  

33121, 12100, 23121, 
10003, 03223

W = {21233, 01233, 13313}

neighbor table level by 
level V3 10003, 03223

10003, 03223

1210021233
CPRstMsg

CPRlyMsg

12100
23121

10003
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 It next sends copy 
request to 10003 which 
shares last digit with it

Level 0
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Join Protocol: An Example (cont.)

33121, 12100, 23121, 
10003, 03223

W = {21233, 01233, 13313} copying : 21233 copies 
and constructs neighbor 
table level by level

V3 10003, 03223

T bl   h  h  

1000321233
CPRstMsg

CPRlyMsg

10003

03223

1000321233
CPRstMsg

CPRlyMsg

10003

03223
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 Table entry that shares 
last two digits with it is 
empty => change status 
to waiting and ask 10003 
to store it as a neighbor

Level 1Level 1

Join Protocol: An Example (cont.)

 waiting : 21233 tries to 
attach itself to the 

W = {21233, 01233, 13313}

network (i.e., to find an S-
node to store it as a 
neighbor)

21233

21233

C33

C233

V3 10003, 03223

33121, 12100, 23121, 
10003, 03223

1000321233
JoinWaitMsg
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 noti-level = 1

21233
21233

C1233

C21233

1000321233
JoinWaitRlyMsg 10003

03223
21233

Level 1
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Join Protocol: An Example (cont.)

 notifying : 21233 
searches and notifies 
nodes with a common 

33121, 12100, 23121, 
10003, 03223

W = {21233, 01233, 13313}

suffix      xxxx3 10003, 03223

21233

21233

21233
21233

C33

C233

C1233

13313

13313

13313
13313

C13

C313

C3313

V3

0322321233
JoinNotiMsg

JoinNotiRlyMsg



ICDCS 2003 (Simon Lam) 39

21233
C21233

33 3
C13313

Join Protocol: An Example (cont.)

 notifying : 21233 
learns about 01233 W = {21233, 01233, 13313}

and 13313 through 
10003 or 03223 or 
vice versa

 in_system: Becomes 
an S-node

10003, 03223

21233

21233

C33

C233

13313

13313
C13

C313

33121, 12100, 23121, 
10003, 03223

V3
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21233

21233
21233

C233

C1233

C21233
01233
C01233

13313
13313

C3313

C13313
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Join Protocol: An Example (cont.)

V3 10003, 03223

33121, 12100, 23121, 
10003, 03223

W = {21233, 01233, 13313}

12100
23121

21233

10003
13313
03223
21233

21233
21233

01233

21233

After the joins, routing table of 21233 is possibly as shown 
below
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Level 0Level 1Level 2Level 3Level 4

Note: on the average, only O(logd n ) levels need to be 
stored

State variables of a joining node x
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Protocol messages
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Talk Outline
Overview of hypercube routing scheme
Motivation and related work
 Conceptual foundation
 Join protocol
 Protocol analysis

 assuming reliable message delivery, no node 
deletion
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 Conclusion
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Protocol Analysis: Correctness

Consistency

Termination
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 The number of CpRstMsg and JoinWaitMsg
messages sent by a joining node during 
status copying and waiting is at most d+1 
(Theorem 3)

Protocol Analysis: Communication Cost

(Theorem 3).
An upper bound on the expected number of 

JoinNotiMsg messages sent during the 
notifying status by a joining node (Theorem 
5).
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 These three messages and their replies are 
large because each such message/reply  
may contain a neighbor table.
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Communication Cost (cont.)
Upper bound on expected no. of notifications (from 

Theorem 5) 
pe

r 
bo

un
d 
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Number of nodes

U
pp

Communication Cost (cont.)
From simulations – 1000 nodes concurrently join 

3096 nodes, 1000 nodes concurrently join 7192 nodes

all joins start at the same time

at
iv

e 
di

st
rib

ut
io

n
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Number of notifications sent by a joining node

Cu
m

ul
a
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Comparing theoretical and 
simulation results
 For the four simulation cases, the average 

number of join notification messages sentj g

simulations analytic upper bound 
6.12 8.00
6.05 8.00
5.03 6.99
5 40 6 99
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5.40 6.99

Network initialization

 The join protocol can be used to build 
consistent neighbor tables for a set of n consistent neighbor tables for a set of n 
nodes.
 put one node x in V with x.table filled in as follows:
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 Given x, the other n-1 nodes join the network 
concurrently.
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Conclusions
 A new join protocol for hypercube routing scheme

 for concurrent joins
 each joining node maintains state info for its own join 

process

 A conceptual structure, C-set trees, for reasoning 
about consistency
 a guide for protocol design and proof construction

 Proved that join protocol constructs and maintains 
consistent neighbor tables for any number of 
concurrent joins (in the absence of node leave or 
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concurrent joins (in the absence of node leave or 
failure).  
 Join processes terminate under standard assumptions

 Analyzed communication costs
 Protocols for leaves and failures—next paper

End
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