Failure Recovery for Structured P2P
Networks: Protocol Design and
Performance under Churn*

Simon S. Lam and Huaiyu Liu

*includes results from version published in *Computer Networks* as well as TR-03-13

Sigmetrics 2004 (Simon Lam)

Structured P2P networks

- Of interest in this paper is the hypercube routing scheme used in PRR, Pastry and Tapestry
- Objective: Design protocols to construct and maintain consistent neighbor tables
- □ Question: How high a rate of node dynamics can be supported?

Outline

- □ The problem
- □ Overview of hypercube routing scheme
- □ Our approach
 - K-consistent network
 - Basic failure recovery
 - Join protocol for K-consistency
 - Protocol design for concurrent joins and failures
- □ Churn experiments
- Conclusions

Sigmetrics 2004 (Simon Lam)

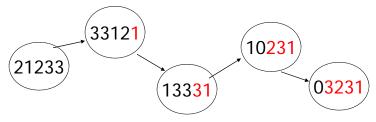
2

Overview of Hypercube Routing Scheme

- Each node has an ID, a random fixedlength binary string, e.g., 128-bit MD5 hash of a name
 - o concept of circular ID space
- Each node ID is represented by digits of base b, for example,

 $0100111011 \rightarrow 10323 (d = 5, b = 4)$

■ We use suffix matching, as in PRR, with the rightmost digit being the Oth digit

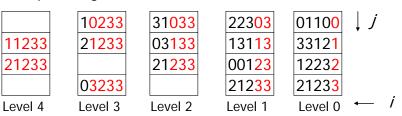

Sigmetrics 2004 (Simon Lam)

4

Routing Scheme

□ Routing to a destination node is resolved digit by digit, trying to match at least one extra digit per hop

Example: source 21233, destination 03231

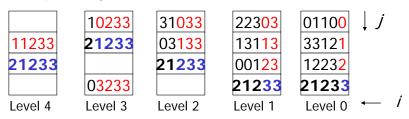

Sigmetrics 2004 (Simon Lam)

5

Neighbor Table at each node

- d levels, b entries at each level
- required suffix of (i, j)-entry in table of node x: j followed by the rightmost i digits in the node's ID

Example: neighbor table of node 21233 (**d**=5, **b**=4)


Sigmetrics 2004 (Simon Lam)

6

Neighbor Table at each node

- d levels, b entries at each level
- \square required suffix of (*i, j*)-entry in table of node x: j followed by the rightmost i digits in the node's ID

Example: neighbor table of node 21233 (d=5, b=4)

Node x fills itself into (i, x[i]) entries

Sigmetrics 2004 (Simon Lam)

Routing Scheme Revisited □ source 21233, destination 03231 33121 10231 21233 03231 211<mark>01</mark> 03231 133<mark>31</mark> 30111 01100 10231 331<mark>21</mark> 3312<mark>1</mark> 11031 13331 12232 01131 Level 1 21233 Level 3 10231 Level 0 Level 2 Sigmetrics 2004 (Simon Lam)

Outline

- □ The problem
- Overview of hypercube routing scheme
- □ Our approach
 - K-consistent network
 - Basic failure recovery
 - Join protocol for K-consistency
 - Protocol design for concurrent joins and failures
- □ Churn experiments
- Conclusions

Sigmetrics 2004 (Simon Lam)

Consistency Definition

- ☐ A network is consistent iff for each table entry
 - if there exist nodes whose IDs have the required suffix of the entry, then the entry is filled with such a node (no false negative);
 - o otherwise, the entry is empty (no false positive).

```
01233 | 10233 | 0233 | 31033 | 033 | 22303 | 03 | 01100 | 0
11233 | 11233 | 21233 | 1233 | 03133 | 13113 | 13 | 13121 | 1
21233 | 21233
                       2233 |21233 |233 |00123 |23 |12232 | 2
        31233 03233 3233
                                     333 212<mark>33</mark> 33 21233 3
```

neighbor table of node 21233 (d=5, b=4)

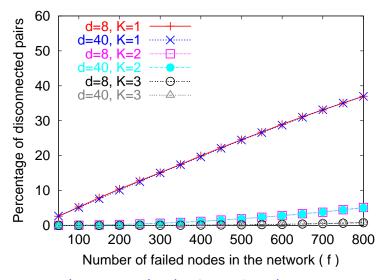
Consistency Property

□ **Lemma** In a *consistent* network, every node is *reachable* from every other node.

Consistency can be broken by a single failure!

O Note: No "false negative" is sufficient for reachability

Sigmetrics 2004 (Simon Lam) 11

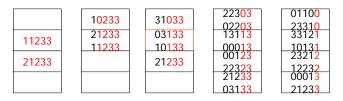

K-consistent Network: Definition

☐ A network is K-consistent iff: Every table entry stores min(K,H) neighbors, where H is the number of nodes with the required suffix of the entry

	10233	31033	223 <mark>03</mark> 022 <mark>03</mark>	0110 <mark>0</mark> 23310
11233	21233 11233	03133 10133	13113	33121
21233	11233	21233	00123	23212
	03233	03233	223 <mark>23</mark> 21233 03133	1223 <mark>2</mark> 00013 21233

Example: neighbor table of node 21233 for 2-consistency

K-consistent Network: routing redundancy

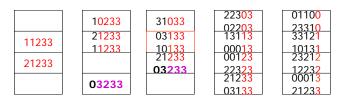

- Simulation results (n=4000, b=16)
 - Sigmetrics 2004 (Simon Lam) 13

Protocol design

- Objective: A K-consistent network under churn, for K > 1, is 1-consistent all the time
- Extend join protocol to build and maintain K-consistent neighbor tables, K > 1
 - generalize definitions of C-set tree template, C-set tree realization, and correctness conditions
 - o extend join-noti level to join-attach level
- Failure recovery actions based upon each node's local info
 - o a larger K is better (more neighbors)
 - o a larger b is also better
- □ Integrate join and failure recovery protocols—how?

Join protocol example

□ Node 21233 with neighbor table



□ A join-wait message from node 03233

Sigmetrics 2004 (Simon Lam)

Join protocol example (cont.)

□ Node 21233 with neighbor table

- □ A join-wait message from node 03233
 - o join-noti level is 3
 - o join-attach level is 2

Basic Failure Recovery

☐ Assumption:

- \circ A network of *n* nodes, initially *K*-consistent
- o fout of n nodes fail (fail-stop)
- □ Goal: when failure recovery processes terminate
 - the network is K-consistent again
 - o all "recoverable holes" are repaired (irrecoverable holes do not need repair)

□ Difficulties

- No global knowledge
- Individual nodes do not know if a hole is "recoverable"

Sigmetrics 2004 (Simon Lam) 17

Using local information

- \Box A node u is a *qualified substitute* of a failed node that has left a hole in a table entry if
 - u has the required suffix of the entry,
 - u not already in the entry
 - u has not failed
- □ In our protocol, each node maintains a *list* of failed nodes it has detected so far and uses it to determine if nodes can be used as qualified substitutes
 - o a failed node needs to stay on the list for a time duration slightly larger than the probing period

Basic Failure Recovery Protocol

□ A sequence of search steps, based on local information

Neighbor 2303 fails

- 1. Neighbors
- 2. Reverse neighbors
- 3. Failed nodes detected so far

0233	1033	2303	1100
0233	1033	2203	3310
1233	3133	3113	3121
1233	0133	0013	0131
	1233	0123	3212
	3233	2323	223 <mark>2</mark>
3233		1233	0013
		3133	123 <mark>3</mark>

Neighbor table of node 1233

STEP (a): search among neighbors and reverse-neighbors

Sigmetrics 2004 (Simon Lam)

Basic Failure Recovery Protocol

☐ A sequence of search steps, based on local information

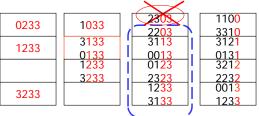
Neighbor 2303 fails

- 1. Neighbors
- 2. Reverse neighbors
- 3. Failed nodes detected so far

0233	1033	2308	1100 3310
1000	3133	3113	3121
1233	0133	0013	0131
	1233	0123	321 <mark>2</mark>
	3233	2323	223 <mark>2</mark>
3233		1233	0013
		3133	1233

Neighbor table of node 1123

STEP (b): query remaining neighbors in the same entry


(set up a timer to wait for replies)

Basic Failure Recovery Protocol

□ A sequence of search steps, based on local information

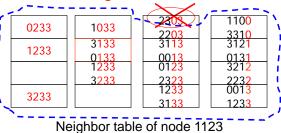
Neighbor 2303 fails

- 1. Neighbors
- 2. Reverse neighbors
- 3. Failed nodes detected so far

Neighbor table of node 1123

STEP (c): query remaining neighbors at the same level

(set up a timer to wait for replies)


Sigmetrics 2004 (Simon Lam)

Basic Failure Recovery Protocol

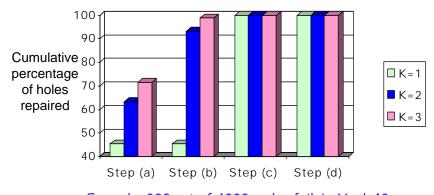
□ A sequence of search steps, based on local information

Neighbor 2303 fails

- 1. Neighbors
- Reverse neighbors
- 3. Failed nodes detected so far

STEP (d): query all remaining neighbors (set up a timer to wait for replies)

Failure Recovery is Effective


- 2,080 experiments, K=1 ~ 5, n=1000~8000
- 5% 50% nodes fail, all nodes fail at the same time in majority of experiments
- All "recoverable holes" are repaired in every experiment, for K≥2

K, n	Number of simulations	Number of perfect recoveries	K, n	Number of simulations	Number of perfect recoveries	
1,1000	100	51	1, 2000	180	96	
2,1000	100	100	2, 2000	180	180	
3,1000	100	100	3, 2000	180	180	
4,1000	100	100	4, 2000	180	180	
5,1000	100	100	5, 2000	180	180	
1,4000	116	65	1, 8000	20	14	
2,4000	116	116	2, 8000	20	20	
3,4000	116	116	3, 8000	20	20	
4,4000	116	116	4, 8000	20	20	
5,4000	116	116	5, 8000	20	20	

Sigmetrics 2004 (Simon Lam)

- Majority of rec. holes repaired in step (a), no communication cost
- For K=2, 99.8% of all rec. holes repaired by step (c) with at most 2Kb messages for repairing a hole

Example: 800 out of 4000 nodes fail, b=16, d=40

Recoverable and Irrecoverable Holes

b, d, K	Total number	Irreco- verable	Number of recoverable holes repaired at each step				
	of holes	holes	step (a)	step (b)	step (c)	step (d)	not rec- overed
4, 64, 1	13125	1484	5257	0	5464	907	13
4, 64, 2	28616	3660	16675	6737	1496	48	0
4, 64, 3	43323	5798	28527	8613	339	46	0
4, 64, 4	57462	7997	40370	8988	70	37	0
4, 64, 5	70798	10174	51626	8945	37	16	0
16, 40, 1	29803	4442	11505	0	13833	23	0
16, 40, 2	55977	8161	30305	14301	3203	7	0
16, 40, 3	81406	9945	51203	19493	764	1	0
16, 40, 4	107547	10500	75028	21804	215	0	0
16, 40, 5	132257	10696	100157	21336	68	0	0

Table 4: Total number of holes, irrecoverable holes, and recoverable holes repaired at each step, n = 4000, f = 800

Sigmetrics 2004 (Simon Lam)

Join protocol for K-consistency

- Joining node copying, waiting, notifying, and insystem as before
- □ Concept of noti-level generalized to attach-level
 - Suppose node x sends JoinWaitMsq to node y which replies positively; attach-level is the lowest level node x is stored by node y
- Proved correct for an arbitrary sequence of concurrent joins in the absence of leaves/failures

Integrating Join and Failure Recovery Protocols

- Module composition approach [LS 94]
- Extended join protocol assumes that failure recovery provides "perfect" recovery service
 - For each hole left by a failed neighbor, failure recovery returns with a qualified substitute within bounded delay; else, hole is irrecoverable
- Failure recovery actions are given higher priority than join actions to avoid circular reasoning

Extended Join Protocol


Extended Failure Recovery Protocol

Sigmetrics 2004 (Simon Lam)

27

Protocol Extensions

■ Failure recovery needs to distinguish *T-nodes* and *S-nodes*

- To fill a hole, choose a S-node before a T-node
- □ Join protocol needs to be extended with the ability to invoke failure recovery and to backtrack
 - When a node detects a hole left by a failed neighbor, it starts an error recovery process or backtracks when certain conditions hold.
 - To fill a hole, choose a S-node before a T-node
 - When in failure recovery, delay processing join messages
 - When in failure recovery, a T-node cannot change its status to become S-node
 - (several more) ...

Sigmetrics 2004 (Simon Lam)

28

Simulation Results

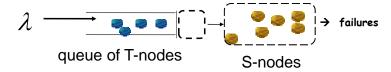
			K = 1		2, 3, 4, 5
n	No. of events	No. of	No. of sim.	No. of	No. of sim.
	(W + F)	sim.	w/ perfect	sim.	w/ perfect
			outcome		outcome
1600	200 (38+162)	16	16	64	64
1600	200 (110+90)	16	16	64	64
1600	200 (160+40)	12	12	48	48
1600	400 (85+315)	12	10	48	48
1600	400 (204+196)	12	11	48	48
1600	400 (323+77)	12	12	48	48
1600	800 (386+414)	24	22	96	96
3600	400 (81+319)	16	13	64	64
3600	400 (210+190)	16	15	64	64
3600	400 (324+76)	12	12	48	48
3600	800 (169+631)	12	9	48	48
3600	800 (387+413)	12	11	48	48
3600	548 (400+148)	12	10	48	48
3200	1600 (780+820)	12	9	48	48

Table 5: Results for concurrent joins and failures

- •980 experiments, for n=3200, 3600, all joins and failures start at once
- •Perfect outcome ~ all remaining nodes (VU W- F) satisfy K-consistency Signetrics 2004 (Simon Lam) 29

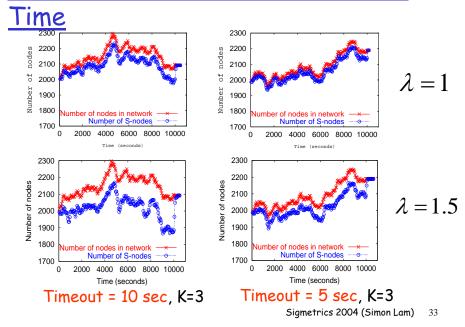
Outline

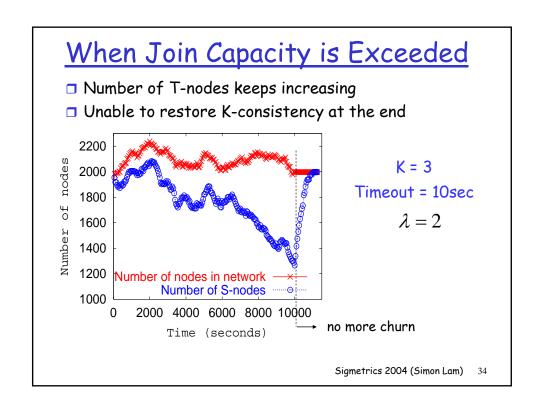
- □ The problem
- □ Overview of hypercube routing scheme
- Our approach
 - K-consistent network
 - Basic failure recovery
 - Join protocol for K-consistency
 - Protocol design for concurrent joins and failures
- □ Churn experiments
- Conclusions


Churn Experiments

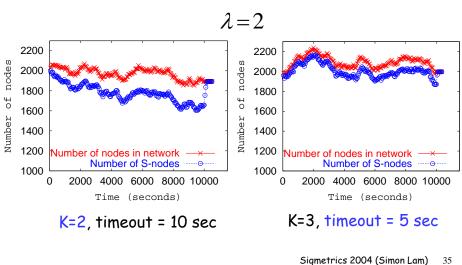
- How high a rate of node dynamics can be sustained?
- Start with a K-consistent network of 2000 nodes
- □ Generate join and failure events for 10,000 simulation seconds
 - \circ join rate = failure rate = λ (churn rate)
- □ Take a snapshot every 50 seconds
 - evaluate connectivity and consistency measures
- Convergence to K-consistency at the end?

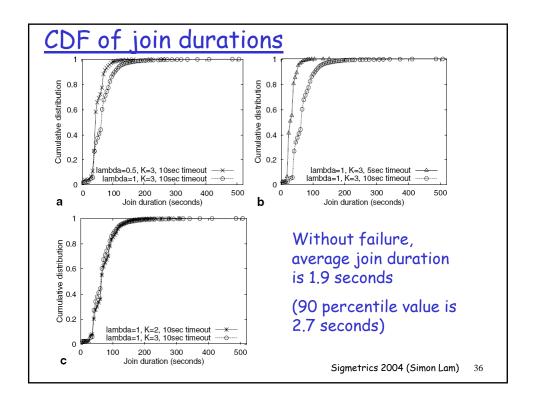
Sigmetrics 2004 (Simon Lam) 31


Observations


- □ Sustainable churn rate is upper bounded by the network's join capacity
- Join capacity: the rate at which new nodes can join the network successfully

- Limiting factors
 - o K
 - \circ failure rate λ
 - o timeout value in each failure recovery step

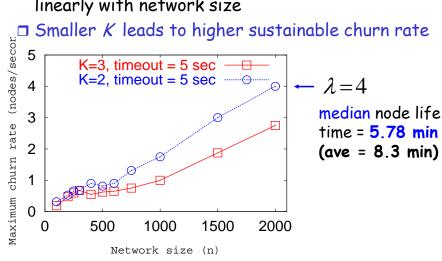

Number of Nodes and S-nodes vs.



How to Increase Join Capacity?

□ Choose a smaller K or a smaller timeout value

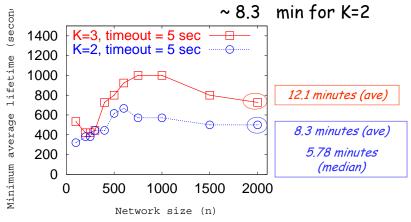
Summary of churn experiments


□ n=2000, K=3, timeout=5 sec

λ	0.75	1	1.25	1.5	1.75	2
number of joins	7621	10080	12474	15011	17563	19957
number of failures	7423	9890	12468	14919	17563	19960
% snapshots, 3-conSAT	100	100	100	100	100	100
convergence to 3-con.	yes	yes	yes	yes	yes	yes
convergence time (sec.)	150	150	150	400	250	350
% snapshots, 1-con.	99.5	100	99.5	99	95.5	93
% snapshots, full connectivity	99.5	100	99.5	99.5	96.5	95
average %, connected s-d pairs	99.99999	100	99.99998	99.99998	99.99993	99.9997

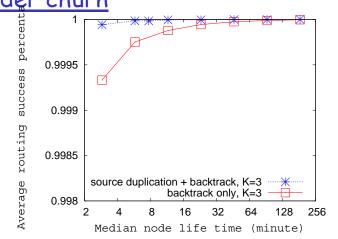
Sigmetrics 2004 (Simon Lam)

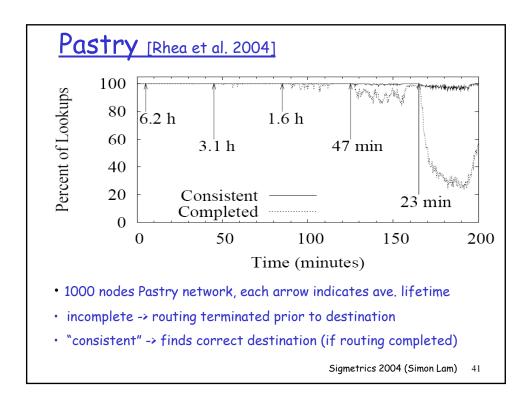
Max Churn Rate vs. Network Size

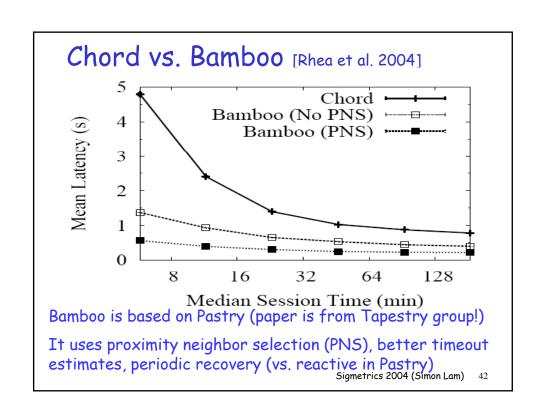

- □ Max sustainable churn rate increases at least linearly with network size

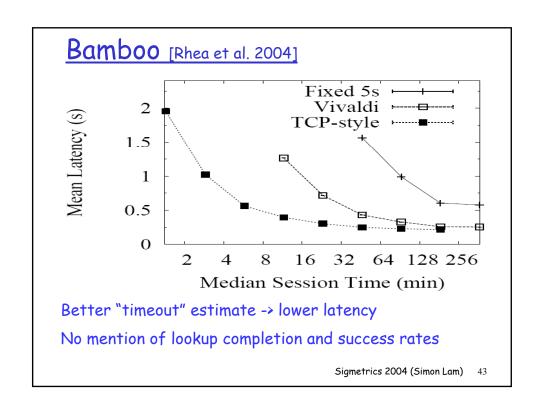
Min Avg. Lifetime vs. Network Size

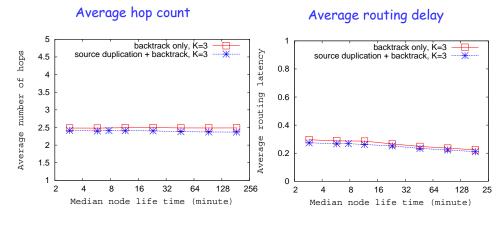
☐ The trend suggests:


when n > 2000, avg. lifetime ~ 12.1 min for K=3,


Sigmetrics 2004 (Simon Lam)


39


Successful routing % for systems under churn


N = 2000, K=3, timeout = 2 sec

Our Hypercube Routing Performance

n = 2000, K=3, timeout = 2 sec

Note that delay does not curve up when lifetime decreases <- because neighbor tables are consistent

Conclusions

- □ Introduced property of K-consistency for hypercube routing scheme
- Join and failure recovery protocols to maintain consistent neighbor tables under node dynamics
- □ The protocols are effective, efficient, and stable, for average node lifetime of a few minutes

Sigmetrics 2004 (Simon Lam) 45

Conclusions (cont.)

- □ Each network has a join capacity that
 - o upper bounds its join rate
 - o decreases when failure rate increases
 - o can be increased by a smaller K or a smaller timeout value
- □ Recommended values for K:
 - o for network with a high churn rate, K=2 or 3
 - o for network with a low churn rate, K=3 or higher