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Abstract-The problem of allocating network resources to the 
users of an integrated services network is investigated in the 
context of rate-based flow control. The network is assumed to be 
a virtual circuit, connection-based packet network. We show that 
the use of Generalized Processor Sharing (GPS), when combined 
with Leaky Bucket admission control, allows the network to 
make a wide range of worst-case performance guarantees on 
throughput and delay. The scheme is flexible in that different 
users may be given widely different performance guarantees, 
and is efficient in that each of the servers is work conserving. 
We present a practical packet-by-packet service discipline, PGPS 
(first proposed by Demers, Shenker, and Keshav [7] under the 
name of Weighted Fair Queueing), that closely approximates 
GPS. This allows us to relate results for GPS to the packet-by- 
packet scheme in a precise manner. 

In this paper, the performance of a single-server GPS system is 
analyzed exactly from the standpoint of worst-case packet delay 
and burstiness when the sources are constrained by leaky buckets. 
The worst-case session backlogs are also determined. In the sequel 
to this paper, these results are extended to arbitrary topology 
networks with multiple nodes. 

I. INTRODUCTION 

This paper and its sequel [17] focus on a central problem 
in the control of congestion in high-speed integrated services 
networks. Traditionally, the flexibility of data networks has 
been traded off with the performance guarantees given to 
its users. For example, the telephone network provides good 
performance guarantees but poor flexibility, while packet 
switched networks are more flexible but only provide marginal 
performance guarantees. Integrated services networks must 
carry a wide range of traffic types and still be able to provide 
performance guarantees to real-time sessions such as voice 
and video. We will investigate an approach to reconcile these 
apparently conflicting demands when the short-term demand 
for link usage frequently exceeds the usable capacity. 

We propose the combined use of a packet service discipline 
based on Generalized Processor Sharing and Leaky Bucket 
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rate control to provide flexible, efficient, and fair use of the 
links. Neither Generalized Processing Sharing, nor its packet- 
based version, PGPS, are new. Generalized Processor Sharing 
is a natural generalization of uniform processor sharing [ 141, 
and the packet-based version (while developed independently 
by us) was first proposed in [7] under the name of Weighted 
Fair Queueing. Our contribution is to suggest the use of PGPS 
in the context of integrated services networks and to combine 
this mechanism with Leaky Bucket admission control in order 
to provide performance guarantees in a flexible environment. 

A major part of our work is to analyze networks of arbitrary 
topology using these specialized servers, and to show how 
the analysis leads to implementable schemes for guaranteeing 
worst-case packet delay. In this paper, however, we will 
restrict our attention to sessions at a single node, and postpone 
the analysis of arbitrary topologies to the sequel. 

Our approach can be described as a strategy for rate-based 
flow control. Under rate-based schemes, a source’s traffic is 
parametrized by a set of statistics such as average rate, max- 
imum rate, and burstiness, and is assigned a vector of values 
corresponding to these parameters. The user also requests 
a certain quality of service that might be characterized, for 
example, by tolerance to worst-case or average delay. The 
network checks to see if a new source can be accommodated 
and, if so, takes actions (such as reserving transmission links 
or switching capacity) to ensure the quality of service desired. 
Once a source begins sending traffic, the network ensures that 
the agreed-upon values of traffic parameters are not violated. 

Our analysis will concentrate on providing guarantees on 
throughput and worst-case packet delay. While packet delay 
in the network can be expressed as the sum of the processing, 
queueing, transmission, and propagation delays, we will focus 
exclusively on how to limit queueing delay. 

We will assume that rate admission control is done through 
leaky buckets [20]. An important advantage of using leaky 
buckets is that this allows us to separate the packet delay into 
two components: delay in the leaky bucket and delay in the 
network. The first of these components is independent of the 
other active sessions, and can be estimated by the user if the 
statistical characterization of the incoming data is sufficiently 
simple (see [ l ,  Sect. 6.31 for an example). The traffic entering 
the network has been “shaped” by the leaky bucket in a 
manner that can be succinctly characterized (we will do this 
in Section V), and so the network can upper bound the second 
component of packet delay through this characterization. This 
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upper bound is independent of the statistics of the incoming 
data, which is helpful in the usual case where these statistics 
are either complex or unknown. A similar approach to the 
analysis of interconnection networks has been taken by Cruz 
[ 5 ] .  From this point on, we will not consider the delay in the 
leaky bucket. 

Generalized Processor Sharing (GPS) is defined and ex- 
plained in Section 11. In Section 111, we present the packet- 
based scheme, PGPS, and show that it  closely approximates 
GPS. Results obtained in this section allow us to translate 
session delay and buffer requirement bounds derived for a 
GPS server system to a PGPS server system. We propose 
a virtual time implementation of PGPS in the next section. 
Then, PGPS is compared to weighted round robin, virtual 
clock multiplexing [21], and stop-and-go queueing [9]-[ 1 11. 

Having established PGPS as a desirable multiplexing 
scheme, we turn our attention to the rate enforcement function 
in Section V. The Leaky Bucket is described and proposed as 
a desirable strategy for admission control. We then proceed 
with an analysis, in Sections VI-VIII, of a single GPS server 
system in which the sessions are constrained by leaky buckets. 
The results obtained here are crucial in the analysis of arbitrary 
topology and multiple node networks, which we will present 
in the sequel to this paper. 

11. GPS MULTIPLEXING 

The choice of an appropriate service discipline at the nodes 
of the network is key to providing effective flow control. 
A good scheme should allow the network to treat users 
differently, in accordance with their desired quality of service. 
However, this jexibility should not compromise the fairness 
of the scheme, i.e., a few classes of users should not be able to 
degrade service to other classes, to the extent that performance 
guarantees are violated. Also, if one assumes that the demand 
for high bandwidth services is likely to keep pace with the 
increase in usable link bandwidth, time and frequency multi- 
plexing are too wasteful of the network resources to be con- 
sidered candidate multiplexing disciplines. Finally, the service 
discipline must be analyzable so that performance guarantees 
can be made in the first place. We now present a flow-based 
multiplexing discipline called Generalized Processor Sharing 
that is efficient, flexible, and analyzable, and that therefore 
seems very appropriate for integrated services networks. How- 
ever, it has the significant drawback of not transmitting packets 
as entities. In Section 111, we will present a packet-based 
multiplexing discipline that is an excellent approximation to 
GPS even when the packets are of variable length. 

A Generalized Processor Sharing (GPS) server is work 
conserving and operates at a fixed rate r .  By work conserving, 
we mean that the server must be busy if there are packets 
waiting in the system. It is characterized by positive real 
numbers 41.42, .... dI%7. Let Sz(~. t )  be the amount of session 
i traffic served in an interval (7. t ] .  A session is backlogged at 
time t if a positive amount of that session’s traffic is queued 
at time t. Then, a GPS server is defined as one for which 
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for any session i that is continuously backlogged in the interval 
(r. t ] .  

Summing over all sessions j: 

.i 

and session i is guaranteed a rate of 

GPS is an attractive multiplexing scheme for a number of 
reasons: 

Define T,  to be the session i average rate. Then, as long 
as T ,  5 y;, the session can be guaranteed a throughput of 
p, independent of the demands of the other sessions. In 
addition to this throughput guarantee, a session i backlog 
will always be cleared at a rate 2 gZ. 
The delay of an arriving session Z bit can be bounded as 
a function of the session i queue length, independent of 
the queues and arrivals of the other sessions. Schemes 
such as FCFS, LCFS, and Strict Priority do not have this 
property. 
By varying the qh,’s, we have the flexibility of treating the 
sessions in a variety of different ways. For example, when 
all &’s are equal, the system reduces to uniform processor 
sharing. As long as the combined average rate of the 
sessions is less than r ,  any assignment of positive 4i’s 
yields a stable system. For example, a high-bandwidth 
delay-insensitive session i can be assigned gi much less 
than its average rate, thus allowing for better treatment 
of the other sessions, 
Most importantly, it is possible to make worst-case net- 
work queueing delay guaruntees when the sources are 
constrained by leaky buckets. We will present our results 
on this later. Thus, GPS is particularly attractive for 
sessions sending real-time traffic such as voice and video. 

Fig. 1 illustrates generalized processor sharing. Variable-length 
packets amve from both sessions on infinite capacity links and 
appear as impulses to the system. For i = 1.2, let A;(O, t )  be 
the amount of session Z traffic that arrives at the system in 
the interval (0. t ]  and, similarly, let S,(O. 1;)  be the amount 
of session i traffic that is served in the interval ( O . t ] .  We 
assume that the server works at rate 1. When $1 = 4 2  and 
both sessions are backlogged, they are each served at rate 
(e.g., interval [1,6]). When 241 = $2 and both sessions are 
backlogged, session 1 is served at rate 5 and session 2 at rate 
$. Notice how increasing the relative weight of 4 2  leads to 
better treatment of that session in terms of both backlog and 
delay. The delay to session 2 goes down by one time unit, and 
the delay to session 1 goes up by one time unit. Also, notice 
that under both choices of 4z, the system is empty at time 13 
since the server is work conserving under GPS. 

It should be clear from the example that the delays expe- 
rienced by a session’s packets can be reduced by increasing 
the value of 4 for that session. This reduction, though, may 
be at the expense of a corresponding increase in delay for 
packets from the other sessions. Fig. 2 demonstrates that this 
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packet Arrival 1 2 3 11 0 5 9 
information Size 1 1 2 2 3 2 2 

61 = &  GPS 3 5 9 13 5 9 11 . 

" 241 = 4 2  GPS 4 5 9 13 4 8 11 .. 
PGPS 4 5 7 13 3 9 11 

PGPS 4 5 9 13 3 7 11 
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The lower portion of the table gives the packet departure times under both schemes. 

Session 1 Session 2 

packet size 
Arrivals 

packet size 

I 3 1  

Fig. 1. An example of generalized processor sharing 

may not be the case when the better-treated session is steady. 
Thus, when combined with appropriate rate enforcement, the 
flexibility of GPS multiplexing can be used effectively to 
control packet delay. 

111. A PACKET-BY-PACKET TRANSMISSION SCHEME-PGPS 

A problem with GPS is that it is an idealized discipline 
that does not transmit packets as entities. It assumes that the 
server can serve multiple sessions simultaneously and that 
the traffic is infinitely divisible. In this section, we present 
a simple packet-by-packet transmission scheme that is an 
excellent approximation to GPS even when the packets are 
of variable length. Our idea is identical to the one used in [7]. 
We will adopt the convention that a packet has arrived only 
after its last bit has arrived. 

Let Fp be the time at which packet p will depart (finish 
service) under Generalized Processor Sharing. Then, a very 
good approximation of GPS would be a work-conserving 

...... 

10 20 30 

2o j d' = 35 
..................... 

1O--tnni 

i d ' - - 5  -1 d. = 37'5 

10 20 30 'Ime i o  20 30 

Fig. 7. The effect of increasing 0, for a steady session r )  

scheme that serves packets in increasing order of Fp. Now, 
suppose that the server becomes free at time T .  The next 
packet to depart under GPS may not have arrived at time r 
and, since the server has no knowledge of when this packet 
will arrive, there is no way for the server to be both work 
conserving and serve the packets in increasing order of Fp. 
The server picks the first packet that would complete service 
in the GPS simulation if no additional packets were to arrive 
after time T .  Let us call this scheme PGPS for packet-by- 
packet Generalized Processor Sharing. As stated earlier, this 
mechanism was originally called Weighted Fair Queueing [7]. 

Table I shows how PGPS performs for the example in Fig. 1. 
Notice that when $1 = 4 2 ,  the first packet to complete 

service under GPS is the session 1 packet that arrives at time 
1. However, the PGPS server is forced to begin serving the 
long session 2 packet at time 0 since there are no other packets 
in the system at that time. Thus, the session 1 packet arriving 
at time 1 departs the system at time 4, i.e., 1 time unit later 
than it would depart under GPS. 

A natural issue to examine at this point is how much later 
packets may depart the system under PGPS relative to GPS. 
First, we present a useful property of GPS systems. 

Lemma I: Let 11 and p' be packets in a GPS system at time 
T .  and suppose that packet p completes service before packet 
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p’ if there are no arrivals after time 7 .  Then, packet p will also 
complete service before packet p’ for any pattern of arrivals 
after time 7 .  

Proofi The sessions to which packets p and p’ belong are 
both backlogged from time T until one completes transmission. 
By (l), the ratio of the service received by these sessions is 

A consequence of this lemma is that if PGPS schedules 
a packet p at time T before another packet p’ that is also 
backlogged at time T ,  then in the simulated GPS system, 
packet p cannot leave later than packet p’ .  Thus, the only 
packets that are delayed more in PGPS are those that arrive 
too late to be transmitted in their GPS order. Intuitively, this 
means that only the packets that have a small delay under GPS 
are delayed more under PGPS. 

Now let Fp be the time at which packet p departs under 
PGPS. We show that 

Theorem 1: For all packets p ,  

independent of future arrivals. 0 

L m a x  
F p  - F p  I -I 

where LmaX is the maximum packet length and T is the rate 
of the server. 

Proofi Since both GPS and PGPS are work-conserving 
disciplines, their busy periods coincide, i.e., the GPS server is 
in a busy period iff the PGPS server is in a busy period. Hence, 
it suffices to prove the result for each busy period. Consider 
any busy period and let the time that it begins be time zero. Let 
p k  be the kth packet in the busy period to depart under PGPS, 
and let its length be L k .  Also, let t k  be the time that p k  departs 
under PGPS and u k  be the time that p k  departs under GPS. 
Finally, let a k  be the time that p k  arrives. w e  now show that 

for k = 1 ,2 ,  .... Let m be the largest integer that satisfies both 
0 < m I k - 1 and U ,  > U k .  Thus, 

(3) U ,  > u k  2 ui for m < i < k. 

Then, packet p ,  is transmitted before packets p , + l  . . . , p k  
under PGPS but after all these packets under GPS. If no such 
integer m exists, then set m = 0. Now, for the case m > 0, 
packet p ,  begins transmission at t ,  - *; so, from Lemma 1, 

(4) min{a,+l, .... a k }  > t ,  - -. 

and depart before 

L ,  
7’ 

Since p , + l .  . . . . p  k - 1  arrive after t ,  - 
p k  does under GPS, 

1 L m  
7Lk 2 - ( L k  + L k - 1  + L k - 2  + .  . . + L m + l )  + t ,  - - 

If m = 0, then p k -  1. . . . I p l  all leave the GPS server before 
p k  does, and so 

0 

Note that if N maximum-size packets leave simultaneously 
in the reference system, they can be served in arbitrary order 
in the packet-based system. Thus, Fp - Fp 2 ( N  - l)* 
even if the refereye system is tracked perfectly. 

Let S, (7 ,  t )  and S, ( T ,  t )  be the amount of session z traffic (in 
bits, not packets) served under GPS and PGPS in the interval 

Theorem 2: For all times T and sessions z: 
[T, t ] .  

s t (0 ,~ )  - S t ( 0 , ~ )  I L m a x  

ProoF The slope of S, alternates between T when a 
session i packet is being transmitted, and 0 when session z is 
not being served. Since the:lope of S, also obeys these limits, 
the difference S,(O. t )  - Sz(O, t )  reaches its maximal value 
when session i packets begin transmission under PGPS. Let t 
be some such time, and let L be the length of the packet going 
into service. Then, the packet completes transmission at time 
t + b. Let 7 be the time at which the given packet completes 
transmission under GPS. Then, since session i packets are 
served in the same order under both schemes, 

L 
Si(0,T)  = Sz(0, t + -). 

T 

From Theorem 1,  

Since the slope of S,  is at most T ,  the theorem follows. 0 
Let & % ( T )  and Q,(t)  be the session i backlog (in units of 

traffic) at time T under PGPS and GPS, respectively. Then, it 
immediately follows from Theorem 2 that 

Corollary 1: For all times T and sessions i 

Q z ( 0 . 7 )  - Q ~ ( o ,  7 )  5 L m a x .  

Theorem 1 generalizes the result shown for the uniform 

Theorem 1 and Corollary 1 can be used to translate 
bounds on GPS worst-case packet delay and backlog to 
corresponding bounds on PGPS. 
Variable packet lengths are easily handled by PGPS. This 
is not true of weighted round robin. 
The results derived so far can be applied to pro- 
vide an alternative solution to a problem studied 
in [4],[191,[2],[8],[3]: There are N input links to a 
multiplexer; the peak rate of the ith link is Ci, and the 
rate of the multiplexer is C 2 E,”=, Ci. Since up to 
Lmax bits from a packet may be queued from any link 
before the packet has “arrived,” at least Lmax bits of 
buffer must be allocated to each link. In fact, in [3] it 
is shown that at least 2Lmax bits are required, and that 
a class of buffer policies called Least Time to Reach 
Bound (LTRB) meets this bound. It is easy to design 
a PGPS policy that meets this bound as well: Setting 
q5z = C,, it is clear that the resulting GPS server ensures 

processing case by Greenberg and Madras [ 121. Notice that 
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that no more than L,,, bits are ever queued at any link. 
The bound of Corollary 1 guarantees that no more than 
2Lma, bits need to be allocated per link under PGPS. 
In fact, if Li is the maximum allowable packet size for 
link i, then the bound on the link i buffer requirement is 
Li +L,,,. Further, various generalizations of the problem 
can be solved: For example, suppose the link speeds are 
arbitrary, but no more than f i ( t )  + rit bits can arrive on 
link i in any interval of length t (for each i). Then, if 
c i r i  5 c, setting 4z = ri for each i yields a PGPS 
service discipline for which the buffer requirement is 
L,,, + maxt20(f i ( t )  - ri t )  bits for each link i. 
There is no constant c 2 0 such that 

Qi(0, t )  - si(0, t )  5 CLmax (8) 

holds for all sessions i over all patterns of arrivals. To see 
this, let K = Lc + 2J, 41 = K ,  4 2  = ... = q 5 ~ ~  = 1 and 
fix all packets sizes at L,,,. At time zero, K - 1 session 
1 packets arrive and one packet arrives from each of the 
other sessions. No more packets arrive after time zero. 
Denote the K - lat session 1 packet to depart GPS (and 
PGPS) as packet p .  Then, Fp = v ( N  + K - l)*, 
and Si(0. Fp)  = for i = 2. .... N .  Thus, the 
first K - 1 packets to depart the GPS system are the 
session 1 packets, and packet p leaves PGPS at time 
( K  - 1) *. Consequently, 

and 

This yields 

K 
= ( K  - l)Lmax( 1 - (9) N - K + 1). 

For any given K ,  the RHS of (9) can be made to approach 
( K  - 1)Lmax arbitrarily closely by increasing N .  

A. Virtual Time Implementation of PGPS 

In this section, we will use the concept of Virtual Time 
to track the progress of GPS that will lead to a practical 
implementation of PGPS. Our interpretation of virtual time 
generalizes the innovative one considered in [7] for uniform 
processor sharing. In the following, we assume that the server 
works at rate 1. 

Denote as an event each arrival and departure from the GPS 
server, and let t ,  be the time at which the j t h  event occurs 
(simultaneous events are ordered arbitrarily). Let the time of 
the first arrival of a busy period be denoted as t l  = 0. Now 
observe that, for each j = 2 .3 .  ..., the set of sessions that are 
busy in the interval ( t , - 1 ,  t,) is fixed, and we may denote this 
set as B,. Virtual time V ( t )  is defined to be zero for all times 

when the server is idle. Consider any busy period, and let the 
time that it begins be time zero. Then, V ( t )  evolves as follows: 

The rate of change of V ,  namely ar.yT), is 

each backlogged session i receives service at rate 4% avF:+T). 
Thus, V can be interpreted as increasing at the marginal rate 
at which backlogged sessions receive service. 

Now suppose that the kth session i packet arrives at time 
uf; and has length L t .  Then, denote the virtual times at 
which this packet begins and completes service as S," and 
F,", respectively. Defining FP = 0 for all i ,  we have 

s," = max{F,k-l. V ( U F ) }  

There are three attractive properties of the virtual time 
interpretation from the standpoint of implementation. First, the 
virtual time finishing times can be determined at the packet 
arrival time. Second, the packets are served in order of virtual 
time finishing time. Finally, we need only update virtual time 
when there are events in the GPS system. However, the price 
to be paid for these advantages is some overhead in keeping 
track of sets B,, which is essential in the updating of virtual 
time. 

Define Next(t) to be the real time at which the next packet 
will depart the GPS system after time t if there are no more 
arrivals after time t .  Thus, the next virtual time update after 
t will be performed at Nez t ( t )  if there are no arrivals in the 
interval [t.Next(t)]. Now, suppose a packet arrives at some 
time t (let it be the j t h  event) and that the time of the event 
just prior to t is 7 (if there is no prior event, i.e., if the packet 
is the first arrival in a busy period, then set T = 0). Then, since 
the set of busy sessions is fixed between events, V ( t )  may be 
computed from (10) and the packet stamped with its virtual 
time finishing time. Next(t) is the real time corresponding to 
the smallest virtual time packet finishing time at time t. This 
real time may be computed from ( I O )  since the set of busy 
sessions, B,, remains fixed over the interval [t, Next@)]: Let 
F,,, be the smallest virtual time finishing time of a packet in 
the system at time t .  Then, from (10) 

Next(t) - t 
Fmin = V ( t )  + 

L B ,  41 

=+ Next(t) = t + (Fmin - 
iEB,  

Given this mechanism for updating virtual time, PGPS 
is defined as follows: When a packet arrives, virtual time 
is updated and the packet is stamped with its virtual time 
finishing time. The server is work conserving and serves 
packets in an increasing order of timestamp. 
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IV. COMPARING PGPS TO OTHER SCHEMES The lack of a punishment feature is an attractive aspect 

Under weighted round robin, every session has an integer 

according a precomputed sequence in an attempt to Serve ses- 
. If an empty buffer is encountered, the sion 1: at a rate of 

server moves to the next session in the order instantaneously. 
When an arriving session i packet just misses its slot in 
a frame, it cannot be transmitted before the next session i 

of PGPS since, in our scheme, the admission of packets is 

it does not seem necessary to punish users at the internal nodes 
as well. Note, however, that in this example PGPS guarantees a 
throughput of to each session even in the absence of access 
control. 

Stop-and-Go ~~~~~i~~ is proposed in [91-[111 and is based 
on a network-wide time slot structure. It has two advantages 

weight w, associated with it. The Server polls the sessions at the network periphery through leaky buckets and 

slot. If the system is heavily loaded in the sense that almost 
every slot is utilized, the packet may have to wait almost N 
slot times to be served, where N is the number of sessions 
sharing the server. Since PGPS approximates GPS to within 
one packet transmission time regardless of the arrival patterns, 
it is immune to such effects. PGPS also handles variable-length 
packets in a much more systematic fashion than does weighted 
round robin. However, if N or the packet sizes are small, then 
it is possible to approximate GPS well by weighted round 
robin. Hahne [13] has analyzed round robin in the context of 
providing fair rates to users of networks that utilize hop-by-hop 
window flow control. 

Zhang proposes an interesting scheme called virtual clock 
multiDlexina [21]. Virtual clock multiplexing allows a guaran- 
teed rate and (average) delay for each session, independent of 
the behavior of other sessions. However, if a session produces 
a large burst of data, even while the system is lightly loaded, 
that session can be “punished” much later when the other 
sessions become active. Under PGPS, the delay of a session 
i packet can be bounded in terms of the session i queue size 
seen by that packet upon arrival, even in the absence of any 
rate control. This enables sessions to take advantage of lightly 
loaded network conditions. We illustrate this difference with 
a numerical example: 

Suppose there are two sessions that submit fixed-size pack- 
ets of one unit each. The rate of the server is one, and the 
packet arrival rate is for each session. Starting at time 
zero, 1000 session 1 packets begin to arrive at a rate of 
1 packethecond. No session 2 packets arrive in the interval 
[0900) but, at time 900, 450 session 2 packets begin to arrive 
at a rate of one packethecond. Now if the sessions are to be 
treated equally, the virtual clock for each session will tick at a 
rate of $, and the PGPS weight assignment will be 41 = 4 2 .  

Since both disciplines are work conserving, they will serve 
session 1 continuously in the interval [0900). 

At time 900-, there are no packets in queue from either 
session; the session 1 virtual clock will read 1800 and the 
session 2 virtual clock will read 900. The 450 session 2 
packets that begin arriving at this time will be stamped 
900902904, ...., 1798, while the 100 session 1 packets that 
anive after time 900 will be stamped 1800.1804; .... 1998. 
Thus, all of the session 2 packets will be served under Virtual 
Clock before any of the session 1 packets are served. The 
session 1 packets are being punished since the session used 
the server exclusively in the interval [0900). Note, however, 
that this exclusive use of the server was not at the expense of 
any session 2 packets. Under PGPS, the sessions are served in 
round robin fashion from time 900 on, which results in much 
less delay to the session 1 packets. 

w 

over our approach: it provides better jitter control and is prob- 
ably easier to implement. A finite number of connection types 
are defined, where a type g connection is characterized by a 
fixed frame size of Tg.  Since each connection must conform 
to a predefined connection type, the scheme is somewhat less 
flexible than PGPS. The admission policy under which delay 
and buffer size guarantees can be made is that no more than 
r,TS bits may be submitted during any type g frame. If sessions 
1.2.  .... N are served by a server of capacity 1, it is stipulated 
that E;’=, T ,  5 1, where the sum is only taken over the real- 
time sessions. The delay guarantees grow linearly with Tg, so 
in order to provide low delay one has to use a small slot size. 
The service discipline is not work conserving and is such that 
each packet may be delayed up to 2Tg time units, even when 
there is only one active session at the server. Observe that for 
a single-session PGPS system in which the peak rate does not 
exceed the rate of the server, each arriving packet is served 
immediately upon arrival. Also, since it is work conserving, 
PGPS will provide better average delay than stop-and-go for 
a given access control scheme. 

It is clear that T ,  is the average rate at which the source i can 
send data over a single slot. The relationship between delay 
and slot size may force Stop-and-Go to allocate bandwidth by 
peak to satisfy delay-senstive sessions. This may also happen 
under PGPS, but not to the same degree. To see this, consider 
an ordoff periodic source that fluctuates between values G - t 
and 0. (As usual, t is small.) The on period is equal to the 
off period, say they are B seconds in duration. We assume 
that B is large. Clearly, the average rate of this session is 
0.5(C - 6 ) .  We are interested in providing this session low 
delay under Stop-and-Go and PGPS. To do this, one has to 
pick a slot size smaller than B, which forces T = C - t. The 
remaining capacity of the server that can be allocated is t. 

Under PGPS, we allocate a large value of 4 to the session 
to bring its delay down to the desired level; however, now 
the remaining capacity that can be allocated is 0.5(C + t). 

Now observe that if there is a second odoff session with 
identical on and off periods as the first sesision, but which 
is relatively less delay sensitive, then PGPS can cany both 
sessions (since the combined sustainable rate is less than C) 
whereas Stop-and-Go cannot. 

v. LEAKY BUCKET 

Fig. 3 depicts the Leaky Bucket scheme [20] that we will 
use to describe the traffic that enters the network. Tokens or 
permits are generated at a fixed rate, p, and packets can be 
released into the network only after removing the required 
number of tokens from the token bucket. There is no bound 
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=kens enter at rate p, pJ 
A . ( T , t )  

To the network Incoming (Bursty) Traffic 

Fig. 3. A Leaky Bucket. 
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Bucket Full 

Fig. 5 .  . l , ( O . t ) ,  S , (O. t ) ,  Q I ( t )  and D l ( t )  

We may now express / , ( t )  as 

L2(t) = a, + K, ( t )  - A,(O. t ) .  

A (7 . t )  I: L(7) + P ? ( t  - 7) - L ( t ) .  

(15) 

From (1 5 )  and ( I  4), we obtain the useful inequality 

(16) 

Fig. 4. . l z ( t )  and / , ( t ) .  

on the number of packets that can be buffered, but the token 
bucket contains at most o bits worth of tokens. In addition to 
securing the required number of tokens, the traffic is further 
constrained to leave the bucket at a maximum rate of C > p. 

The constraint imposed by the leaky bucket is as follows: If 
A ; ( T , ~ )  is the amount of session i flow that leaves the leaky 
bucket and enters the network in time interval (7 .  t ] ,  then 

A i ( ~ , t )  5 min{(t-T)Ci ,gi+p;( t - r ) ) .Vt  2 r 2 0 .  (12) 

for every session i. We say that session i conforms to 
( g i , p i , G ) ,  or Ai N (ci ,pi .Ci) .  

This model for incoming traffic is essentially identical to 
the one recently proposed by Cruz [SI, [6], and it has also 
been used in various forms to represent the inflow of parts 
into manufacturing systems by Kumar [ 181, [ 151. The arrival 
constraint is attractive since it restricts the traffic in terms of 
average sustainable rate (p ) ,  peak rate (C), and burstiness ( a  
and C). Fig. 4 shows how a fairly bursty source might be 
characterized using the constraints. 

Represent Ai(0, t )  as in Fig. 4. Let there be Li(t) bits worth 
of tokens in the session i token bucket at time t. We assume 
that the session starts out with a full bucket of tokens. If Ki(t)  
is the total number of tokens accepted at the session i bucket in 
the interval (0, t]  (it does not include the full bucket of tokens 
that session i starts out with, and does not include arriving 
tokens that find the bucket full), then 

Ki(t)  = min (Ai(fl .7) + p ; ( f  - 7 ) ) .  (13) 
o<r<t 

Thus, for all T 5 t 

K i ( t )  - K ; ( r )  5 pz(t - 7 ) .  (14) 

VI. ANALYSIS 

In this section, we analyze the worst-case performance of 
single-node GPS systems for sessions that operate under Leaky 
Bucket constraints, i.e., the session traffic constrained as in 
(1 2). 

There are N sessions, and the only assumptions we make 
about the incoming traffic are that '4, - (o;.p;,C;) for 
i = 1 , 2 .  .... N and that the system is empty before time zero. 
The server is work conserving (i.e., it is never idle if there is 
work in the system), and operates at the fixed rate of 1. 

Let S, (7.  t )  be the amount of session i traffic served 
in the interval ( ~ . t ] .  Note that S;(O. t )  is continuous and 
nondecreasing for all t (see Fig. 5). The session i backlog 
at time T is defined to be 

Q i ( 7 )  = Ai(O>r) - S,(O.T). 

The session i delay at time 7 is denoted by D ~ ( T ) ,  and is 
the amount of time that it would take for the session i backlog 
to clear if no session i bits were to amve after time 7 .  Thus, 

(17) 

From Fig. 5 ,  we see that D , ( T )  is the horizontal distance 
between curves Ai(0.t)  and S,(O. t )  at the ordinate value of 
A,(O. r ) .  

Clearly, D 2 ( 7 )  depends on the amval functions Al.  ..., A N .  
We are interested in computing the maximum delay over all 
time, and over all arrival functions that are consistent with 
(12). Let D?* be the maximum delay for session i .  Then. 

D , ( T )  = inf{t 2 7 : Sj (0 . t )  = A?(O.T)} - 7 .  

Similarly, we define the maximum backlog for session i, Qt: 
Q: = max rnax&,(r) 

(.4L. 4 y )  T > O  

The problem we will solve in the following sections is: 
Given .... q5.y for a GPS server of rate 1 and given 
(m,. p I .  C',). j = 1. .... N,  what are D: and &: for every 
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session i? We will also be able to characterize the burstiness of 
the output traffic for every session i ,  which will be especially 
useful in our analysis of GPS networks in the sequel. 

A. Dejinitions and Preliminary Results 

We introduce definitions and derive inequalities that are 
helpful in our analysis. Some of these notions are general 
enough to be used in the analysis of any work-conserving 
service discipline (that operates on sources that are Leaky 
Bucket constrained). 

Given AI ,  ..., AN, let a: be defined for each session i and 
time r 2 0 as 

where Z2(r) is defined in (15). Thus, or is the sum of the 
number of tokens left in the bucket and the session backlog 
at the server at time 7 .  If C, = x, we can think of a: as 
the maximum amount of session i backlog at time T+ over all 
arrival functions that are identical to A l .  .... AN up to time r .  

Observe that 0; = o2 and 

Recall (16) 

Substituting for 1; and 1," from (1 8)  

Now notice that 

Combining (20) and (21), we establish the following useful 
result: 

Lemma 2: For every session i, r 5 t :  

Proof: Suppose [t l , tz]  is a system busy period. By 
assumption, 

h' N 

2 = 1  i=l 

Thus, 

i = l  , = I  

Substituting from (1  2) and rearranging terms: 

0 
A simple consequence of this lemma is that all system busy 

periods are bounded. Since session delay is bounded by the 
length of the largest possible system busy period, the session 
delays are bounded as well. Thus, the interval B is finite 
whenever 

We end this section with some comments valid only for 
the GPS system: Let a session i busy period be a maximal 
interval B, contained in a single system busy period, such 
that for all r ,  t E B,: 

p 2  < 1 and may be infinite otherwise. 

Notice that it is possible for a session to have zero backlog 
during its busy period. However, if Q 2 ( r )  > 0 then T must be 
in a session i busy period at time r. We have already shown 
in (2) that 

Lemma: For every interval [r. t ]  that is in a session i busy 
period 

47 S, (r . t )  2 ( t  - T)-. 

E;:l 4J 

Notice that when 4 = 4,  for all i ,  the service guarantee 
reduces to 

t - r  
N 

S, (r . t )  2 -. 

Define a system busy period to be a maximal interval B B. Greedy Sessions 

Session i is defined to be greedy starting at time 7 if such that for any T.  t E B,  r 5 t :  

N 1 Sz(r: t )  = t - 7 

k l  

A,(r. t )  = min{C,(t - 7 ) .  lZ ( r )  + ( t  - r ) p , } .  for all t 2 r. 
(24) 

In terms of the Leaky Bucket, this means that the session uses 
as many tokens as possible (i.e., sends at maximum possible 
rate) for all times 2 r. At time 7 ,  session i has 12(r) tokens left 
in the bucket, but it is constrained to send traffic at a maximum 
rate of G,. Thus, it takes c,-p, time units to deplete the tokens 
in the bucket. After this, the rate will be limited by the token 

Since the system is work conserving, if B = [ t l .  t 2 ] ,  then 
EL1 Qz(ti) = Q z ( t 2 )  0. 

p J  < 1, the length of a system busy 
period is at most 

Lemma 3: When 

arrival rate p 7 .  
Define A: as an arrival function that is greedy starting at 

time r (see Fig. 6). From inspection of the figure [and from 
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for every session i .  We say that session i conforms to (gi? p i )  

or Ai - ( ( ~ i .  p i ) .  Further, we stipulate that xi pi  < 1 to 
ensure stability. 

By relaxing our constraint, we allow step or jump arrivals, 
which create discontinuities in the arrival functions A; .  Our 
convention will be to treat the Ai as left-continuous functions 
(i.e., continuous from the left). Thus, a session i impulse of 
size A at time 0 yields Qi(0 )  = 0 and Qi(O+) = A. Note also 
that li(0) = oz, where l i ( 7 )  is the maximum amount of session 
i traffic that could arrive at time T+ without violating (25). 
When session i is greedy from time T ,  the infinite capacity 
assumption ensures that l , ( t )  = 0 for all t > T .  Thus, (16) 
reduces to 

A:(r . t )  = l i ( 7 )  + ( f  - ~ ) p , . f o r  all t > 7 .  (26) 

Note also that if the session is greedy after time 7, l , ( t)  = 0 
for any t > 7 .  

Defining (TI as before (from 18), we see that it is equal to 

An all-greedy GPS system: Theorem 3 suggests that we 
should examine the dynamics of a system in which all the 

Fig. 6.  A session 1 anival function that is greedy from time r .  

(24)], we see that if a system busy period Starts at time zero, c ) t ( T + )  when session is greedy starting at time T .  

then 

AP(0. t )  2 A(0. t) .VA N ( u t .  p 2 .  C ? ) .  t 2 0. 

The major result in this section is the following: 
Theorem 3: Suppose that C, 2 r for every session j, 

where T is the rate of a GPS server. Then, for every session 
i, D: and Q: are achieved (not necessarily at the same 
time) when every session is greedy starting at time zero, the 
beginning of a system busy period. 

This is an intuitively pleasing and satisfying result. It seems 
reasonable that if a session sends as much traffic as possible at 
all times, it is going to impede the progress of packets arriving 
from the other sessions. Notice, however, that we are claiming 
a worst-case result, which implies that it is never more harmful 
for a subset of the sessions to “save up” their bursts and to 
transmit them at a time greater than zero. 

While there are many examples of service disciplines for 
which this “all-greedy regime” does not maximize delay, 
the amount of work required to establish Theorem 3 is still 
somewhat surprising. Our approach is to prove the theorem 
for the case when C, = x for all z-this implies that the 
links carrying traffic to the server have infinite capacity. This 
is the easiest case to visualize since we do not have to worry 
about the input links. Further, it bounds the performance of 
the finite link speed case since any session can “simulate” a 
finite speed input link by sending packets at a finite rate over 
the link. After we have understood the infinite capacity case, 
it will be shown that a simple extension in the analysis yields 
the result for finite link capacities as well. 

C. Generalized Processor Sharing with Infinite 

sessions are greedy starting at time 0, the beginning of a system 
busy period. This is illustrated in Fig. 7. 

From (26), we know that 

.4,(0. T )  = 0, + / I J .  ‘T 2 0 

and let us assume, for clarity of exposition, that (T, > 0 for 
all i. 

Define ’1 as the first time at which one of the sessions, say 
L(1), ends its busy period. Then, in the interval [().el], each 
session i is in a busy period (since we assumed that CT~ > 0 
for all i )  and is served at rate 0,. Since session L( 1) is 

greedy after 0, it follows that 
E:=, o h  

where i = L(1). (We will show that such a session must exist 
in Lemma 5.)  Now each session j still in a busy period will 
be served at rate 

E,‘=, (t‘k - 

until a time ~2 when another session, L(2) ,  ends its busy 
period. Similarly, for each k :  

As shown in Fig. 7, the slopes of the various segments that 
comprise S,(O. t )  are si. s;. .... From (27) 

. k = 1.2. .... L(2) .  (1 - c:r: PL(, ) )@/ 

E;:, 45, - E::: d L ( J )  

Incoming Link Capacities 

(12) is modified to 

5 i  = When all input link speeds are infinite, the amval conwaint 

I t  can be seen that { s k } .  k = 1.2 .  .... L(7) forms an increasing 
A, (7 .  t )  5 (T, + p l ( f  - 7 ) .  V0 5 T 5 t .  (25) fequence. 
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The  amval functions are scaled 80 t ha t  a univcrsal B ~ ~ V I C C  curve. S(O,t), c m  be drawn. 
After t ime e,, lieision I has a backlog of zero until  the end of the system busy period. 
whlrh 1% at t ime The  ver11caI distance between the dashed cuwc correapondrng to 
i l cson I and S(0, i )  is iQ . ( r ) ,  while the horizontal distance yiclds D,(r)  jest m it 
does in Figure 8. 

Fig. 7. Session 1 arrivals and departures after(), the beginning of a system 
busy period. 

Note that: 
We only require that 

0 5 el 5 e2 5 ... 5 e r .  

allowing for several e; to be equal. 

is always empty after this time. 
We only care about t 5 e L ( , )  since the session i buffer 

Session L ( i )  has exactly one busy period-the interval 

e . ~  is the maximum busy period length, i.e., it meets the 

Any ordering of the sessions that meets (27) is known as 
a feasible ordering. Thus, sessions 1. .... N follow a feasible 
ordering if and only i f  

[O. e;] .  

bound of Lemma 3. 

Lemma 5: At least one feasible ordering exists if E>=, p1 < 
1. 

Proofi By contradiction, suppose there exists an index i. 
1 5 ,i 5 N such that we can label the first i - 1 sessions of 
a feasible ordering (1. .... i - l} but (28) does not hold for 
any of the remaining sessions when k = i. Then, denoting 
L;-l = { I  ,.... i -1},wehaveforeverysessionk$ZLZ-1:  

Summing over all such k ,  we have: 

\ 

C)J * Z/)J 2 1 1 PI; 2 1 -  
k 4 L Z - i  ;EL,-1 J = 1  

which is a contradiction, since we assumed that E-:=, p, < 1. 
Thus, no such index i can exist and the lemma is proven. 0 

In general, there are many feasible orderings possible, but 
the one that comes into play at time 0 depends on the CT,’S. 

For example, if p = p; and 4 = 4 J . j  = 1 . 2 .  .... N ,  then 
there are N !  different feasible orderings. Similarly, there are 
N !  different feasible orderings if pz = 41 for all i .  To simplify 
the notation, let us assume that the sessions are labeled so that 

Fig. 8. The dynamics of an all-greedy GPS system 

,j = L ( j )  for ,j  = 1.2. .... N .  Then, for any two sessions i . j  
indexed greater than k we can define a “universal slope” s k  

by : 
k - 1  

- c?:. - - E,=, / )J  
,’6 = - - - - . i . , j  > k . k  = 1.2 ..... N .  

d) I  $1 ‘;i64k 
This allows us to describe the behavior of all sessions in 
a single figure as is depicted in Fig. 8. Under the all- 
greedy regime, the function L-(t) (described in Section III- 
A) corresponds exactly to the universal service curve S(0 .  t )  
shown in Fig. 8. It is worth noting that the virtual time function 
L 7 ( t )  captures this notion of generalized service for arbitrary 
arrival functions. 

In the remainder of this section, we will prove a tight lower 
bound on the amount of service a session receives when it is in 
a busy period: Recall that, for a given set of arrival functions 
A = {A1. .... A,y}, A’ = {’4;. .... A i . }  is the set such that 
for every session k. Ai(0.  .s) = A k ( 0 .  s) for s E [O. 7 )  and 
session k is greedy starting at time 7 .  

Lemmu 6: Assume that session i is in a busy period in the 
interval [T. t ] .  Then, 
i )  For any subset A1 of 711 sessions. 1 5 m 5 AV and any 
time t 2 T :  

i i )  Under tl’. there exists a subset of the sessions, M * ,  for 
every t 2 T such that equality holds in (29). 

Proof.. For compactness of notation, let J,;i = 2. Vi .  j .  
i )  From (22). 

S.,(T. t )  5 (TJ + /),(t - 7 )  

for all j .  Also. since the interval [T .  t ]  is in a session i busy 
period: 

Thus, 
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Since the system is in a busy period, the server serves Then, 

P - 1  P - 1  'V exactly t - T units of traffic in the interval [T.  t ] .  Thus, 

.V 1 Sk(r .  t )  > c(t - T ) P ~  + s(l + 1 9"). (31) 
t - 7 I rnin{nJ + p 3 ( t  - 7 ) .  4 J l ~ l ( ~ .  t ) }  k=1 k=1 3 = p + l &  

;= l  Proof: For compactness of notation, let & = e , V i , j .  
Now because of the feasible ordering, 

1 - E;I; Pl  

CL, 4ZP 
PP < 

for any subset of sessions 121. Rearranging the terms yields 
(29). 

Thus, 

- IC. (32) 
ii) Since all sessions are greedy after T under A', every 

will have a session busy period that begins at T and 
lasts up to some time e 3 .  As we showed in the discussion 

( 1  - E:;; 
session 

leading UP to Fig. 8, Q J ( ~ )  = 0 for all t 2 P J .  The system 
busy period ends at time e* = maxJ e J .  Define 

Sp(T.f)  < ( t  - 7 )  

CL, 4 Z P  

Also, S,(T. t )  5 4 J P S P ( ~ .  t )  for all J .  Thus, 

.\ \ 

By the definition of GPS, we know that sesqion J E M' 
receives exactly 4 j l S t ( ~ .  t )  units of service in the interval 
(7 ,  t ] .  A session IC is not in M t  only if P k  < t ,  so we must 
have Q k ( t )  = 0. Thus, for k 6 M t ,  

and equality is achieved in (29). 

D. An Important Inequality 

In the previous section, we examined the behavior of the 
GPS system when the sessions are greedy. Here, we prove an 
important inequality that holds for any arrival functions that 
conform to the arrival constraints (25) .  

Theorem 4: Let 1. .... N be a feasible ordering. Then, for 
any time t and session p :  

Lemma 8: Let 1. .... be a feasible ordering, and suppose 
that session p is busy in the interval [T. t ] .  Then, if SP(7 ,  t )  5 we want to show that at the beginning Of a session busy 

period, the collective burstiness of sessions 1. . . .. p will never 
be more than what it  was at time 0. The interesting aspect of 

p p ( t  - T ) :  

- -  
this theorem is that it holds for every feasible ordering of the P P 

sessions. When p3 = p and 43 = 4 for every j ,  it says that Sk('. f )  > ( t  - 7 )  Pk (33) 
the collective burstiness of any subset of sessions is no less k = 1  k = l  

than what it was at the beginning of the system busy period. 
The following three lemmas are used to prove the theorem. 

The first says (essentially) that if session p is served at a 

Proof: Let 

SP(7. t )  = pp( t  - T )  - .r 

rate smaller than its average ratep, during a session p busy 
.I' 2 0. Then, from (31), we are done since IC $ R period, then the sessions indexed lower than p will be served , < U. U correspondingly higher than their average rates. Note that this 

lemma is true even when the sessions are not greedy. 
Lemma 7: Let 1. . . . . N be a feasible ordering, and suppose 

Lemma 9: Let 1. .... N be a feasible ordering, and suppose 
that session p is busy in the interval [T, t ] .  Then, if SP(7 ,  t )  5 

that session p is busy in the interval [ ~ . t ] .  Further, define .r P p ( t  - 7 ) :  

to satisfy 

SP(T. t )  = pp(t  - 7 )  - .I' (30) 

P P 

E.: I En;. 
k=1 k = l  
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Pro05 From Lemma 2, for every k ,  Lemma IO: Suppose that time t is contained in a session p 

(36) 

busy period that begins at time T :  Then 
0; + p k ( t  - 7) - S k ( T r  t )  2 0;. 

S p ( O .  t - T )  5 Sp(T. t ) .  
Summing over k and substituting from (33), we have the result. 

period, then Lemma 9 says that if SP(7. t )  5 p p ( t  - T )  then 
If we choose to be the beginning of a session busy Proo$ Define as the set Of sessions that are busy at 

time f - T under A. From I"M 6: 

D-1 0-1 

a; +Ea: I ap + E a ; .  (34) 
k = l  k=l 

0 

Proof (of Theorem 4): We proceed by induction on the 
index of session p .  

Basis: p = 1. Define T to be the last time at or before t 
such that Ql(7) = 0. Then, session 1 is in a busy period in 
the interval [ ~ , t ] ,  and we have 

Now we will prove Theorem 4. 

The second inequality follows since session 1 is first in a 
feasible order, implying that p1  < . From Lemma 2 ,  E,"=, m b  

0; I a; + p1(t - T )  - S l ( T . 1 ) )  < 0; 5 01. 

( t  - 7 - E,&: + P ? ( t  - T)))4t 

E,€O & Sp(r.t) 2 

Since the order in which the sessions become inactive is a 
feasible ordering, Theorem 4 asserts that: 

= SJ0. t - 7 ) .  

(from Lemma 6) and (36) is shown. 0 
Lemma 11: For every session i ,  D: and Q: are achieved 

(not necessarily at the same time) when every session is greedy 
starting at time zero, the beginning of a system busy period. 

Pro08 We first show that the session i backlog is max- 
imized under A: Consider any set of arrival functions A = 
{ A l .  .... A,v} that conforms to ( 2 3 ,  and suppose that for a 
session i busy period that begins at time T :  

Q , ( t * )  = rriaxQ,(t). 
t > T  

This shows the basis. 
Inductive Step: Assume the hypothesis for 1 .2 .  . . . . p - 1 and 

show it for p .  Observe that if Q z ( t )  = 0 for any session then 
a," 5 at. Now consider two cases: 

From Lemma 10, 

S J O .  t* - T )  I S,(7. t * ) .  Case 1: ah 5 a,: By the induction hypothesis: 

p-1 p-1 

E a ;  I CO1. 
i = l  i = l  

Thus, 

P P CO: I CO,. 
i=l i = l  

Case 2: a; > ap: Session p must be in a session p busy period 
at time t ,  so let T be the time at which this busy period begins. 
Also, from (22): SP(r ,  t )  < p p ( t  - 7 ) .  Applying (34): 

0-1 D-1 U 

f f ~ + * ~ C ~ 5 0 p + A E O ~ I ~ f f k .  (35) 
k = l  k=l k = l  

where, in the last inequality, we have used the induction 
hypothesis. 0 

Proof of the Main Result 

In this section, we will use Lemma 6 and Theorem 4 to 
prove Theorem 3 for infinite capacity incoming links. 

Let A I ,  ... , A N  be the set of arrival functions in which all 
the sessions are greedy from time 0, the beginningpf a system 
busy period. For every session p ,  let Sp (7, t )  and D, ( t )  be the 
session p service and delay functions under '4. We first show 

Also, 

A , ( T . t * )  I a 7 + p , ( t - r ) = A , ( 0 . f f - r ) .  

. i ; (o. t*  - 7 )  - S,(O.t* - 7 )  2 . 4 , ( T . t * )  - S i ( T . t * )  

Q i ( f *  - 7 )  2 Q i ( t * )  

Thus, 

i.e.. 

The case for delay is similar: Consider any set of arrival 
functions A = { A l .  .... A,,-} that conforms to (25); for a 
session i busy period that begins at time T ,  let t* be the 
smallest time in that busy period such that: 

D l ( t * )  = Inax D i ( t ) .  
t2T 

From the definition of delay in (17): 

A,(T. t * )  - S ~ ( T .  t* + D , ( t * ) )  = 0. 

Let us denote df = t* - 7 .  From Lemma 10, 

S , ( O .  dr + D l ( t * ) )  I S,(T. t* + D i ( t * ) )  

and, since O, 2 0:: 

'41(o. d ; )  2 A,(T.  t * ) .  
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Thus, Pro08 First, consider the case C; = 02. Suppose that Qt 
is achieved at some time t * ,  and session i continues to send 
traffic at rate pz after t*. Further, for each j # i ,  let t j  be the 
time of arrival of the last session j bit to be served before time 
t*. Then, Qt is also achieved at t* when the arrival functions 
of all sessions j # i are truncated at t,, i.e., Aj(t j ,  t )  = 0, 
j # i .  In this case, all other session queues are empty at time 
t* and, beginning at time -_ t* ,  the server will exclusively serve 

AZ(0, df) - SZ(0, d: + Di( t*) )  2 

Ai(7, T + t*)  - Si(7, t* + Di( t*) )  = 0 

* B);(df) 2 Dz(t*). 
session i at rate 1 for % units of time, after which session 
i will be served at rate p?.  Thus, 

Thus, we have shown Theorem 3 for infinite capacity 
incoming links. 

S,(t*,t) = min{t - t*.Q: + p,( t*  - t ) } , V t  2 t*. 
VII. GENERALIZED PROCESSOR 

SHARING WITH FINITE LINK SPEEDS 

In the infinite link capacity case, we were able to take 
advantage of the fact that a session could use up all of its 
outstanding tokens instantaneously. In this section, we include 
the maximum rate constraint, i.e., for every session i, the 
incoming session traffic can arrive at a maximum rate of 
C, 2 1. Although this can be established rigorously [16], it is 
not hard to see that Theorem 3 still holds: Consider a given set 
of arrival functions for which there is no peak rate constraint. 
Now consider the intervals over which a particular session 
i is backlogged when the arrivals reach the server through 
(a) infinite capacity input links and (b) input links such that 
1 5 C, for all j and CI, < x for at least one session I C .  
Since the server cannot serve any session at a rate of greater 
than 1, the set of intervals over which session i is backlogged 
is identical for the two cases. This argument holds for every 
session in the system, implying that the session service curves 
are identical for cases (a) and (b). Thus, Lemma 10 continues 
to hold, and Theorem 3 can be established easily from this fact. 
We have not been able to show that Theorem 3 holds when 
C, < 1 for some sessions j ,  but delay bounds calculated for 
the case C, = 1 (or C, = x) apply to such systems since 
any link of capacity 1 (or x) can simulate a link of capacity 
less than 1. 

VIII. THE OUTPUT BURSTINESS ayut 

In this section, we focus on determining, for every session 
z, the least quantity such that 

s, N (a:”‘. p, * r )  

where r is the rate of the server. This definition of output 
burstiness is due to Cruz [ 5 ] .  (To see that this is the best 
possible characterization of the output process, consider the 
case in which session i is the only active session and is 
greedy from time zero. Then, a peak service rate of r and 
a maximum sustainable average rate of pz are both achieved.) 
By characterizing S, in this manner, we can begin to analyze 
networks of servers, which is the focus of the sequel to this 
paper. Fortunately, there is a convenient relationship between 

Lemma 12: If C, 2 T for every session j ,  where r is the 
and Q:: 

rate of the server, then for each session i :  

From this, we have 

We now show that the reverse inequality holds as well: For 
any r 5 t :  

sL(r. t )  = A(7. t )  + Q,( r )  - Q t ( t )  
51: + PL(t - 7 )  + Q L ( T )  - Q 2 ( t )  

= 0: - & I ( t )  + P I ( t  - 7 )  

(since C, = x.) This implies that 

myut 5 a: - Q L ( t )  5 or 5 Q:. 

Thus. 

g o u t  = 0:. 

Now suppose that C, E [r.  x). Since the traffic observed 
under the all-greedy regime is indistinguishable from a system 
in which all incoming links have infinite capacity, we must 
have opUt = Q: in this case as well. 

REFERENCES 

[ I ]  D. Bertsekas and R. Gallager, Dam Nemorks. Englewood Cliffs, NJ: 
Prentice Hall, 1991. 

121 A. Birman, P. C. Chang, .I. S.  C. Chen, and R. Guerin, “Buffer sizing 
in an ISDN frame relay switch,” Tech. Rep. RC14 386, IBM Res., Aug. 
1989. 

131 A. Birman, H. R. Gail, S.  L. Hantler. 2. Rosberg, and M. Sidi, “An 
optimal policy for buffer systems,” Tech. Rep. RC16 641, IBM Res., 
Mar. 1991. 

[4] I .  Cidon, I .  Gopal, G. Grover, and M. Sidi. “Real time packet switching: 
A performance analysis,”IEEE J .  Select. Areas Commun.. vol. SAC-6, 
pp. 15761586, 1988. 

[SI R. L. Cruz, “A calculus for network delay, Part I: Network elements in 
isolation,”l€EE Trans. Inform. Theory, vol. 37, pp. 11&-131, 1991. 

161 -, “A calculus for network delay, Part 11: Network analysis,” IEEE 
Trans. Inform. Theory, vol. 37, pp. 132-141, 1991. 

[7] A. Demers, S.  Keshav, and S. Shenkar, “Analysis and simulation of a 
fair queueing algorithm,” Internet. Res. and Exper.. vol. 1, 1990. 

[SI H. R. Gail, G .  Grover, R. Guerin, S. L. Hantler, Z. Rosberg, and M. 
Sidi, “Buffer size requirements under longest queue first,” Tech. Rep. 
RC14 486, IBM Res., Jan. 1991. 

[9] S.  J. Golestani, “Congestion-free transmission of real-time traffic in 
packet networks,” in Proc. IEEE INFOCOM ’90, San Fransisco, CA, 
1990, pp. 527-536. 

[ I O ]  -, “A framing strategy for connection managment,” in Proc. 
SIGCOMM ‘90, 1990. 

[ 1 11 -, “Duration-limited statistical multiplexing of delay sensitive 
traffic in packet networks,” in Proc. IEEE INFOCOM ‘91, 1991. 

[ 121 A. C. Greenberg and N. Madras, “How fair is fair queueing?,” J.  ACM, 
vol. 3, 1992. 

[I31 E. Hahne, “Round robin scheduling for fair flow control,” Ph.D. thesis, 
Dept. Elect. Eng. and Comput. Sci., M.I.T.. Dec. 1986. 



. I  I 

351 PAREKH AND GALLAGER: PROCESSOR SHARING APPROACH TO FLOW CONTROL 

[ 141 L. Kleinrock, Queueing Systems Vol. 2: Computer Applications. New 
York: Wiley, 1976. 

[15] C. Lu and P. R. Kumar, “Distributed scheduling based on due dates and 
buffer prioritization,” Tech. Rep., Univ. of Illinois, 1990. 

[16] A. K. Parekh, “A generalized processor sharing aproach to flow control 
in integrated services networks,” Ph.D. thesis, Dept. of Elect. Eng. and 
Comput. Sci., M.I.T., Feb. 1992. 

[17] A. K. Parekh and R. G .  Gallager, “A generalized processor sharing 
approach to flow control-The multiple node case,” Tech. Rep. 2076, 
Lab. for Inform. and Decision Syst., M.I.T., 1991. 

[I81 J. R. Perkins and P. R. Kumar, “Stable distributed real-time scheduling 
of flexible manufacturing systems,’’ IEEE Trans. Aut. Conrr., vol. AC-34, 

[I91 G. Sasaki, “Input buffer requirements for round robin polling systems,” 
in Proc. Allerton Con$ Commun.. Contr., and Comput., 1989. 

[20] J. Turner, “New directions in communications, or Which way to the 
information age?,” IEEE Commun. Mag., vol. 24, pp. 8-15, 1986. 

[21] L. Zhang, “A new architecture for packet switching network protocols,” 
Ph.D. thesis, Dept. Elect. Eng. and Comput. Sci., M.I.T., Aug. 1989. 

pp, 139-148, 1989. 

Robert G. Gallager (S‘58-M‘61-F‘68) received 
the B.S E.E degree in electncal engineering from 
the University of Pennsylvania in 1953, and the 
S.M. and Sc.D degrees in electncal engineering 
from the Massachusetts Institute of Technology in 
1957 and 1960, respectively. 

Following two years at Bell Telephone Labo- 
ratones and two years in the U.S. Signal Corps, 
he has been at M.1.T since 1956. He is currently 
the Fujitsu Professor of Electrical Engineering and 
CO-Director of the Laboratory for Information and 

Decision Systems. His early work was on information theory, and his textbook 
Information Theory and Reliable Communication (New York Wiley, 1968) is 
still widely used. Later research focused on data networks. Data Networks 
(Englewood Cliffs, NJ: Prentice Hall, 1992), coauthored with D. Bertsekas, 
helps provide a conceptual foundation for this field. Recent interests include 
multiaccess information theory, radio networks, and all-optical networks. He 
has been a consultant at Codex Motorola since its formation in 1962. He was 
on the IEEE Information Theory Society’s Board of Governors from 1965 
to 1970 and 1979 to 1988, and was its president in 1971. He was elected 
a member of the National Academy of Engineering in 1979 and a member 
of the National Academv of Sciences in 1992. He was the recipient of the 

K. (M,92) the B,E,S, de- 
gree in mathematical sciences from Johns Hopkins 
University, the S.M degree in operations research 
from the Sloan School of Management, and the 
Ph.D. degree in electrical engineenng and computer 
science from the Massachusetts Institute of Tech- 
nology in 1992. 

He was involved In private network design as 
a Member of Technical Staff at AT&T Bell Lab- 
oratories from 1985 to 1987. From February to 
June 1992, he was a Postdoctoral Fellow at the 

Laboratory for Computer Science at M.1.T , where he was associated wlth the 
Advanced Network Architecture Group In October 1992, he joined the High 
Performance Computing and Communications Group at IBM as a Scientific 
Staff Member. His current research interests are in application-dnven quality 
of service for integrated services networks, and in distnbuted protocols for 
global client-server computing. While a student at M.I.T., he was a Vinton 
Hayes Fellow and a Center for Intelligent Control Fellow A paper from 
his Ph.D. dissertation, jointly authored with Prof. Robert Gallager, won the 
INFOCOM ‘93 best paper award. 

IEEE Medal of Honor in 1990, awarded for fundamental contributions to 
coding techniques’ 


