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o Origin of counting Bloom filters
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Origin and applications

JRandomized data structure intfroduced by
Burton Bloom [CACM 1970]

o It represents a set for membership queries, with
false positives

o Probability of false positive can be controlled by
design parameters

o When space efficiency is important, a Bloom filter
may be used if the effect of false positives can be
mitigated.

[ First applications in dictionaries and
databases
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First application in networking:
distributed cache (2000)

Proxy 2
Cache 2
Proxy 1 Summary 1
Cache 1 Summary 3
Summary 2
Summary 3
Proxy 3
Cache 3
Summary 1
Summary 2

O Numerous applications in networking since 2000
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Standard Bloom Filter

0 A Bloom filter is an array of m bits representing
aset S={xq, X, .., X} of nelements
o Array set to O initially

d k independent hash functions h, ... , h, with range
{1,2, .., m}

o Assume that each hash function maps each item in the
universe to a random number uniformly over the range

{1,2, .., m}

1 For each element x in S, the bit h(x) in the array
issettol, forl<ick,

o A bit in the array may be set to 1 multiple times for
different elements
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A Bloom filter example

(three hash functions)

Insert X; and X,




Standard Bloom Filter (cont.)

[ To check membership of y in S, check
whether hi(y), 1ci<k, are all set to 1
o If not,y is definitely notin S
o Else, we conclude that y is in S, but sometimes this

conclusion is wrong (false positive)

L For many applications, false positives are
acceptable as long as the probability of a
false positive is small enough

dWe will assume that kn < m
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False positive probability

O After all members of S have been hashed to a Bloom
filter, the probability that a specific bit is still O is

p' — (1 _%)kn ~ e—kn/m — p

O For a non member, it may be found to be a member
of S (all of its k bits are nonzero) with false positive
probability

(1-pH =(1-p)
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False positive probability (cont.)

dDefine
fr=(1-p) = (- (1-—)")
m
f — (1 . p)k — (1 _ e—kn/m)k

[ Two competing forces as k increases

o Larger k -> (1= P"* is smaller for a fixed p’

o Larger k -> p'= (1—1/m)"" is smaller -> 1-p' larger
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False positive rate vs. k

Number of bits per member m =8

n

optimal k =8In2=545...

[

1 2 3 4 5 6 7 8 9

Number of Hash functions
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Optimal number k from derivative
Rewrite f as

f =exp(ln(1—e™"™)") =exp(kIn(l—e™ ™))
Let |g=kln(1—e™"™)

Minimizing ¢ will minimize f =exp(Q)

__ okn/m
a_g — ln(l . e—kn/m) + k_kn/m a(l '\e )
ok l1—€ ok
=In(1-e""™) + k_kn/m N gtam _ —In(2)+1n(2)=0
l—e m

if we plug k = (m/ n)In 2 which is optimal

(It 1s in fact a global optimum)
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Optimal k from symmetry

—kn/m

d Alternatively, from p=¢ we get
m
k==—"In(p)
N
From previous slide, we have
m
g=kln(1-e™™) =——In(p)In(1- p)
n
d From above, symmetry indicates that the

minimum value for g occurs when p=1/2.

Thus
Ky = ——In(1/2) = ZIn(2)
N N
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Optimal k from symmetry
using the precise probability of false positive

f'=>1-p" =exp(kin(1-p"))

From p'=(1-1/m)", solving for k

1
K= In( p'
=1/ m) P

Let g'=KkIn(1-p") (in equation for f ' above)

1 v A
i1/ m PP
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Using the precise probability of false
positive to get optimal k (cont.)

dFrom previous slide

1
"= | “YIn(l1—p'
J Nin(1-1/m) n(p)in(1=p)

By symmetry, g' (also ') minimized at p'=1/2

dOptimal k is

1 1
K = In(p') = In(1/2
o = md—1m P Ay m 2
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Optimal number of hash functions

Q Using g = Min(2) the false positive rate is
n

Ma2) M 2)

1-p)"  =(0.5"  =(0.6185)™", where In(2)=0.6931

d In practice, k should be an integer. May choose an integer
value smaller than k,,, to reduce hashing overhead

m/n denotes

hite ner entrv
Wil o r"-ll IV ,

m/n=6 k=4 peror = 0.0561
m/n=8 k=6 peror = 0.0215
m/n=12 k=8 peror = 0.00314
m/n =16 k=11 peror = 0.000458

False positive rate
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False positive rate vs. bits per entry
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Standard Bloom Filter tricks

1 Two Bloom filters representing sets S; and
S, with the same number of bits and using
the same hash functions.

o A Bloom filter that represents the union of S; and
S, can be obtained by taking the OR of the bit
vectors
A Bloom filter can be halved in size. Suppose
the size is a power of 2.

o Just OR the first and second halves of the bit
vector

o When hashing to do a lookup, the highest order bit
is masked

Notation: OR denotes bitwise or
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Counting Bloom filters

dProposed by Fan et al. [2000] for distributed
caching

dEvery entry in a counting Bloom filter is a small
counter (rather than a single bit).

o When an item is inserted into the set, the
corresponding counters are each incremented by 1

o When an item is deleted from the set, the
corresponding counters are each decremented by 1
d To avoid counter overflow, its size must be
sufficiently large. It was found that 4 bits per
counter are enough.
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Counter overflow probability

dConsider a set of n elements, k hash
functions, and m counters
o C(i) is the count for the ith counter

Plo(i) = 1= (”.kj -4
i \m m

Plc(i) > j]s(”.k]ij
i Jm

jm
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Counter overflow probability (cont.)
A Choose k such that k< m/n (In 2)

Then j j
PLc(i) > j]s(e.”—kj s(eh.”j

jm J

1<i<m I

j
Plmaxc(i) = ] < m(elnzj for some i

Using 4 bits, each counter counts from O to
15

P[maxc(i) >16]<mx1.37x107"

1<i<m
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Counter overflow consequences

dWhen a counter does overflow, it may be left
at its maximum value.

[ This can later cause a false negative only if
eventually the counter goes down to O when it
should have remain at nonzero.

U The expected time to this event is very large
but is something we need to keep in mind for
any application that does not allow false
negatives
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Conclusions

dWherever a list or set is used, and space is at
a premium, a Bloom filter may be used if the
effect of false positives can be mitigated

o No false negative

A With a counting Bloom filter, false negatives
are possible, albeit highly unlikely
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The End
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