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Bloom Filters
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Origin and applications
Randomized data structure introduced by 

Burton Bloom [CACM 1970]
o It represents a set for membership queries, with 

false positives
o Probability of false positive can be controlled byo Probability of false positive can be controlled by 

design parameters
o When space efficiency is important, a Bloom filter 

ma be used if the effect f false p sitives can bemay be used if the effect of false positives can be 
mitigated.

First applications in dictionaries and 
databases
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First application in networking: 
distributed cache (2000)distributed cache (2000)
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 N li ti i t ki i 2000
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Standard Bloom Filter
A Bloom filter is an array of m bits representing 

a set S = { x1, x2, … , xn} of n elements{ 1 2 n}
o Array set to 0 initially

k independent hash functions h1, … , hk with range 
{1 2 }{1, 2, …, m}
o Assume that each hash function maps each item in the 

universe to a random number uniformly over the rangeuniverse to a random number uniformly over the range 
{1, 2, …, m}

For each element x in S, the bit hi(x) in the array 
i t t 1 f 1 i kis set to 1, for 1 ≤ i ≤ k, 
o A bit in the array may be set to 1 multiple times for 

different elementsff m
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A Bloom filter example
(three hash functions)( )

Insert X1 and X2

Check Y1 and Y2
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Standard Bloom Filter (cont.)

To check membership of y in S, check 
whether hi(y), 1≤i≤k,  are all set to 1whether hi(y), ≤ ≤k, are all set to
o If not, y is definitely not in S
o Else, we conclude that y is in S, but sometimes this 

conclusion is wrong (false positive)
For many applications, false positives are 

t bl l th b bilit facceptable as long as the probability of a 
false positive is small enough

We will assume that kn < m
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False positive probability
 After all members of S have been hashed to a Bloom 

filter, the probability that a specific bit is still 0 is

/1' (1 )kn kn mp e p
m

−= − =

 For a non member, it may be found to be a member 
of S (all of its k bits are nonzero) with false positive

m

of S (all of its k bits are nonzero) with false positive 
probability

(1 ') (1 )k kp p− −
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False positive probability (cont.)

Define

11' (1 ') (1 (1 ) )k kn kf p
m

= − = − −

/(1 ) (1 )k kn m kf p e−= − = −

 Two competing forces as k increases

o Larger k > is smaller for a fixed p’(1 ')kp−o Larger k  ->                   is smaller for a fixed p

o Larger k  ->  p’=                    is smaller  ->  1-p’ larger(1 1 / )knm−

(1 )p−
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False positive rate vs. k
mNumber of bits per member 8m
n

=

Number of
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Optimal number k from derivative
Rewrite asf

/ /

Rewrite  as 
exp(ln(1 ) ) exp( ln(1 ))kn m k kn m

f
f e k e− −= − = −

/Let     ln(1 )
Minimizing     will minimize  exp( )

kn mg k e
g f g

−= −
=g p( )g f g

/
/

/
(1 )ln(1 )

1

kn m
kn m

kn m
g k ee
k k

−
−

−

∂ ∂ −= − +
∂ ∂

/ /
/ln(1 ) ln(2) ln(2) 0

1
kn m kn m

kn m
k ne e
e m

− −
−= − + = − + =

/1 kn mk e k∂ − ∂

if we plug ( / ) ln 2 which is optimal
( i i f l b l i )

k m n=
1 e m−

(It is in fact a global optimum)
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Optimal k from symmetry
Alternatively, from                         we get/kn mp e−=

ln( )mk pln( )

From previous slide, we have

k p
n

= −

/

From previous slide, we have

ln(1 ) ln( ) ln(1 )kn m mg k e p p−= − = − −

From above, symmetry indicates that the 
minimum value for g occurs when p=1/2.  

n

g p
Thus    

ln(1 / 2) ln(2)opt
m mk
n n

= − =
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Optimal k from symmetry
using the precise probability of false positiveusing the precise probability of false positive

' (1 ') exp( ln(1 '))kf p k p= − = −

From  ' (1 1 / ) ,   solving for   knp m k= −

( ) p( ( ))f p p

( ) , g
1= ln( ')

l (1 1 / )

p

k p
ln(1 1 / )n m−

(in equation for '  above)Let  ' ln(1 ')       fg k p= − ( q )( )
1 ln( ') ln(1 ')

ln(1 1 / )

fg p

p p
n m

= −
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Using the precise probability of false 
positive to get optimal k (cont.)p g p ( )

From previous slide
11' ln( ') ln(1 ')

ln(1 1 / )
g p p

n m
= −

−

By symmetry, g’ (also f’) minimized at p’=1/2

Optimal  k is 
1 1' ln( ') ln(1 / 2)

ln(1 1 / ) ln(1 1 / )optk p
n m n m

= =
− −
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Optimal number of hash functions
 Using     the false positive rate is

ln(2) ln(2) /
m m

ln(2)opt
mk
n

=

 In practice, k should be an integer.  May choose an integer  
l ll h k d h hi h d

( ) ( ) / (1 ) (0.5) (0.6185) , where ln(2) 0.6931    m nn np− = =

value smaller than kopt to reduce hashing overhead    

m/n denotes 
bits per entry False positive ratebits per entry
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False positive rate vs. bits per entry

4 hash functions

False 
positive 
raterate

Using optimal number 
of hash functions
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Standard Bloom Filter tricks
Two Bloom filters representing sets S1 and 

S2 with the same number of bits and using g
the same hash functions.
o A Bloom filter that represents the union of S1 and 

S2 can be obtained by taking the OR of the bitS2 can be obtained by taking the OR of the bit 
vectors

A Bloom filter can be halved in size.  Suppose 
h i i f 2the size is a power of 2.
o Just OR the first and second halves of the bit 

vectorvector
o When hashing to do a lookup, the highest order bit 

is masked
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Counting Bloom filters

Proposed by Fan et al. [2000] for distributed 
cachingcach ng

Every entry in a counting Bloom filter is a small 
counter (rather than a single bit).( g )
o When an item is inserted into the set, the 

corresponding counters are each incremented by 1
h d l d f h ho When an item is deleted from the set, the 

corresponding counters are each decremented by 1
To avoid counter overflow its size must beTo avoid counter overflow, its size must be 

sufficiently large.  It was found that 4 bits per 
counter are enough.u ug .
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Counter overflow probability
Consider a set of n elements, k hashConsider a set of n elements, k hash 

functions, and m counters
o C(i) is the count for the ith counter

1 1[ ( ) ] 1
j nk jnk

P c i j
j

−     = = −         j m m         

1[ ( ) ]
nk  1[ ( ) ]   jP c i j
j m

 ≥ ≤  
 

  (a very loose upper bound)
j

enk
jm

 ≤  
 

2/16/2017 Bloom Filters (Simon S. Lam) 18

 



2/16/2017

19

Counter overflow probability (cont.)
Choose k such that k ≤ m/n (ln 2) 

Then ln 2
j j

enk e   ln 2[ ( ) ] enk eP c i j
jm j

   ≥ ≤ ≤   
   

j
 

1

ln 2[max ( ) ]
j

i m

eP c i j m
j≤ ≤

 ≥ ≤  
 

for some i

Using 4 bits, each counter counts from 0 to 
15

15

1
[max ( ) 16] 1.37 10

i m
P c i m −

≤ ≤
≥ ≤ × ×
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Counter overflow consequences

When a counter does overflow, it may be left 
at its maximum value.  at ts max mum value.

This can later cause a false negative only if 
eventually the counter goes down to 0 when it y g
should have remain at nonzero.  

The expected time to this event is very large p y g
but is something we need to keep in mind for 
any application that does not allow false 

tinegatives
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Conclusions

Wherever a list or set is used, and space is at 
a premium, a Bloom filter may be used if the a prem um, a Bloom f lter may be used f the
effect of false positives can be mitigated
o No false negative

With a counting Bloom filter, false negatives 
are possible, albeit highly unlikely
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The End
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