GAIMD Congestion Control

Motivation for new congestion control protocols

- Reducing cwnd to half of its value after a loss indication is too severe a reduction for some real-time apps (e.g., interactive multimedia)

- New apps may use UDP instead of TCP because they do not require reliable delivery

- Increasing use of UDP without congestion control would threaten stability of Internet

\Rightarrow Need new CC protocols for apps that prefer an alternative to TCP
TCP-friendly protocols

- Alternatives to TCP congestion control with smaller send rate fluctuations
 - Equation-based rate control
 - Datagram Congestion Control Protocol (RFC 4340)
 - Difficult to measure loss rate and TO in real time
 - GAIMD in this paper

- TCP-friendliness to better co-exist with TCP traffic
 - The send rate of a non-TCP flow should be approximately the same as that of a TCP flow under the same conditions of round-trip time and loss rate
Consider a more general version of AIMD; let $\alpha > 0$ and $1 > \beta > 0$; let b denote the number of packets acknowledged by each ack

For each new ack received, \[W \leftarrow W + \frac{\alpha}{bW} \]

For a TD ack, \[W \leftarrow \beta W \]

For a timeout, \[W \leftarrow 1 \]

Other mechanisms (Slow Start, congestion indications, and round-trip time estimation) are the same as those of TCP Reno
Previous models of TCP
(for $\alpha = 1$, $\beta = \frac{1}{2}$)

- No timeout (Matthis et al. 1997)

 \[
 \text{send rate} = T(p, RTT, b) = \frac{1}{RTT} \sqrt{\frac{3}{2bp}}
 \]

- Timeouts included (Padhye et al. 1998)

 \[
 \text{send rate} = T(p, RTT, T_0, b) = \frac{1}{RTT \left(\sqrt{\frac{2bp}{3}} \right) + \min \left(1, 3 \sqrt{\frac{3bp}{8}} \right) p(1 + 32p^2)T_0}
 \]
GAIMD send rate

send rate = $T_{\alpha, \beta}(p, RTT, T_0, b)$

= \frac{1}{RTT \left(\sqrt{\frac{2b(1-\beta)p}{\alpha(1+\beta)}} \right) + \min \left(1, 3 \sqrt{\frac{(1-\beta^2)bp}{2\alpha}} \right) p(1+32p^2)T_0}$

- Same model and assumptions as Padhye et al.
 - p: loss (indication) rate
 - RTT: mean round-trip time
 - T_0: mean timeout value
- Reduces to previous formula with $\alpha = 1$ and $\beta = \frac{1}{2}$
- Send rate decreases with a larger RTT, larger T_0, or larger b
- Send rate increases for a larger α (> 0), or a larger β (< 1)
Interpreting the send rate formula

- Denominator is sum of the following 2 terms

\[
TD_{\alpha,\beta}(p, RTT, b) = RTT \left(\frac{\sqrt{2b(1-\beta)p}}{\alpha(1+\beta)} \right)
\]

\[
TO_{\alpha,\beta}(p, T_0, b) = Q \cdot p(1+32p^2)T_0
\]

where \(Q = \min \left(1, 3 \sqrt{\frac{(1-\beta^2)bp}{2\alpha}} \right) \)

- \(Q \), probability of a loss indication being a TO, increases towards 1 as \(p \) increases

- For a small \(p \), \(TD = O(p^{0.5}) \) \(\gg \) \(TO = O(p^{1.5}) \)
 but as \(p \) increases, the TO term cannot be ignored
Formula validation

- Is the formula accurate? Over what range of loss rate \(p \) is it accurate?

- What is the general trend when the formula loses accuracy?

- When do sending rate variations become significant?
Simulation setup

16 TCP Reno flows, 16 GAIMD flows, and flows with ON/OFF times to model web-like traffic (UDP flows and short TCP flows)

- Mean ON time = 1 s, mean OFF time = 2 s, Pareto distribution
- During ON time, each source sends 500 Kbps
Prediction accuracy

- Measure of accuracy:
 - predicted sending rate/average actual sending rate

- Validity range of the formula
 - For each β, vary α from 0.1 to 1.0
 - For each (α, β), vary the number of ON/OFF flows from 10 to 70 to create a loss rate about 1% to 30%

- Impact of loss pattern on the accuracy of the formula
 - Used different kinds of routers: drop-tail and RED

GAIMD (Simon S. Lam)
Accuracy (1)

prediction/measurement

Figure 2: Accuracy for \(\beta = 0.5 \) and drop-tail
Accuracy (2)

prediction/measurement

Formula good for loss rate up to 20%

Figure 4: Accuracy for $\beta = 0.875$ and drop-tail
Accuracy (3)
prediction/measurement

RED router may not satisfy correlated loss assumption

Figure 5: Accuracy for $\beta = 0.875$ and RED
Sending Rate Variation (drop-tail)

accuracy for individual GAIMD flows and TCP flows

$\alpha=0.4, \ \beta=0.75$, drop-tail router
Sending Rate Variation (RED)

accuracy for individual GAIMD flows and TCP flows

$\alpha = 0.4, \ \beta = 0.75, \ RED\ router$
Summary of Validation Tests

- Accurate for loss rate $p < 20$

- Loss patterns (RED vs. drop-tail) do not have a large impact on accuracy

- Sending rate variance is small for a loss rate of up to 10%

- Trend: rate formulas tend to overestimate when loss rate is high or when α, β are aggressive
 - Overestimates are similar for both TCP and GAIMD (in most experiments)
TCP-friendly GAIMD

- Choose α and β values such that

 send rate $= \frac{1}{RTT \left(\sqrt{\frac{2b(1 - \beta)p}{\alpha(1 + \beta)}} \right) + \min \left(1, 3\sqrt{\frac{(1 - \beta^2)bp}{2\alpha}} \right) p(1 + 32p^2)T_0}$

 $= T_{\frac{1}{2}}^{1,1} (p, RTT, T_0, b)$

- For all p, only solution is $\alpha = 1$ and $\beta = 1/2$
TD TCP-friendly curve

\[TD_{\alpha,\beta}(p, RTT, b) = TD_{1,\frac{1}{2}}(p, RTT, b) \]

\[RTT \left(\sqrt{\frac{2b(1-\beta)p}{\alpha(1+\beta)}} \right) = RTT \left(\sqrt{\frac{2b(1-1/2)p}{(1+1/2)}} \right) \]

\[\alpha = \frac{3(1-\beta)}{(1+\beta)} \]
TO TCP-friendly curve

\[TO_{\alpha,\beta}(p, T_0, b) = TO_{\frac{1}{1,2}}(p, T_0, b) \]

\[
\min\left(1,3\sqrt{\frac{(1 - \beta^2)bp}{2\alpha}}\right)p(1 + 32p^2)T_0 = \min\left(1,3\sqrt{\frac{(1 - 1/4)bp}{2}}\right)p(1 + 32p^2)T_0
\]

\[
\frac{(1 - \beta^2)}{2\alpha} = \frac{3}{8}
\]

\[
\alpha = \frac{4(1 - \beta^2)}{3}
\]

GAIMD (Simon S. Lam) 19
Minimizing error over a range of p values

- Error function
 \[E_{\beta}(\alpha) = \int_{0}^{1} w(p) \left(\frac{T_{\alpha,\beta}(p)}{T_{\frac{1}{2}}(p)} - 1 \right) dp \]

where $w(p)$ allocates weight p between 0 and 1.

- For a given β, minimize error to get the best α
Error as a function of α

- $\beta = 0.875 \quad T_0 = 4(\text{RTT})$
- Optimal value of α increases as threshold increases
(α, β) curves for the three approaches

We propose to use β=0.875 and α=0.31
Chiu and Jain model

Two competing TCP Reno flows:

- Additive increase gives slope of 1, as window size increases
- Multiplicative decrease reduces window size proportionally

Connection 2 window size

Connection 1 window size

equal window size

loss: decrease window by factor of 2
congestion avoidance: additive increase
loss: decrease window by factor of 2
congestion avoidance: additive increase

GAIMD (Simon S. Lam)
Evolution of Window Sizes

- Apply Chiu and Jain [5] model to a TCP flow and a GAIMD flow (no timeout, same RTT).
- GAIMD with $\alpha = 0.31$ and $\beta = 0.875$.
- Windows of the two flows do not converge to equal window size curve, but zigzag across it.
- GAIMD has smaller window size oscillations.
Experiments on TCP friendliness

- TCP Reno flows compete with GAIMD(0.31, 0.875) flows, \(n \) flows each, same simulation topology
- Drop-tail or RED bottleneck link
- Each run for 120 seconds of simulated time
- Vary \(n \) from 1 to 64
- Loss rate controlled by \(n \) value and link bandwidth
GAIMD competing with Reno
1.5 Mbps droptail link (high loss rate)

DropTail 1.5M Link, TCP/Reno, GAIMD(0.31, 0.875)

GAIMD
GAIMD mean
TCP
TCP mean

Normalized sending rate

Total number of GAIMD and TCP flows (2n)

GAIMD (Simon S. Lam)
GAIMD competing with Reno
15 Mbps droptail link (→ smaller loss rate)
GAIMD competing with Reno
1.5 Mbps RED link (high loss rate)
GAIMD competing with Reno
15 Mbps RED link (→ smaller loss rate)

RED 15M Link, TCP/Reno, GAIMD(0.31, 0.875)

Normalized sending rate vs. Total number of GAIMD and TCP flows (2n)
Rate Fluctuations vs. time

4 GAIMD(0.31, 0.875) flows & 4 TCP Reno flows share

- 15 Mbps RED link
- Each point in a trace obtained by averaging over 150 ms, about 2-3 times RTT, of a flow
- From [33] we know that the CoV of GAIMD(0.31, 0.875) send rate is about half the CoV of TCP send rate
Conclusions

- A general version of AIMD with α and β parameter values
 - A formula for the (mean) send rate of a GAIMD flow as a function of α, β, p, b, RTT, and T_0; it is accurate for p up to 20%
 - Very easy to implement – modify a few lines of code
 - Equation-based rate control is complex and needs to measure p and T_0 which is hard

- Relationship between α and β for GAIMD to be TCP-friendly
 - Simulation results from experiments show that GAIMD(0.31, 0.875) flows compete with TCP Reno (also SACK flows), at a drop-tail or RED bottleneck link, in a friendly manner
 - GAIMD(0.31, 0.875) has smaller rate fluctuations
The End