Greedy routing by distributed
Delaunay triangulation
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Greedy Routing

It is scalable to alarge

d (destination) hetwork
o because each node

stores info about its
directly-connected
neighbors only

d But it fails at a local
minimum, where all
neighbors are farther away
from the destination than
the node itself

local minimum to d
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Greedy routing protocols
include a recovery method

7 Face routing used by GFG
[Bose et al. 99] and GPSR
[Karp & Kung 00]

o for planar graphs (2D) only
o successful planarization of a
general graph requires that
i.  the graph is a "unit disk” graph
and

ii. hnode location information is
accurate.

the face includes the local min. Both assumptions are unrealistic
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Delaunay triangulation (DT)?

A set of points in 2D
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A trianqulation of S

Circumcircle of this triangle is not empty
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Delaunay trianqulation of S

Circumcircle of every triangle is empty




Greedy forwarding in a DT always
succeeds to find a destination node

destination 3 Theorem and proof for
nodes in 2D

[Bose & Morin 2004 ]

A Each node is identified
by its coordinates in 2D

source
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DT in d-dimensional Euclidean space

O DT definition generalized to 3D or higher
dimension

triangle simplex

empty circumcircle empty circum-hypersphere

3 In any dimension, the DT of S is a graph,
denoted by DT(S)

O neighbors in the graph are called DT neighbors
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Greedy forwarding in a DT
always succeeds to find a node
closest to a destination location

location 3 Theorem and proof for
° nodes in a d-dimensional
Euclidean space, d > 2

[Lee & Lam 2006]

3 Node coordinates may
source be arbitrary

Idea: When greedy routing is stuck at a local minimum
(dead end), forward packet to a DT neighbor

(Vl(] a Tunnel) Greedy Routing (S. S. Lam) 9



Distributed system model of DT

7 A set S of nodes in a d-dimensional
Euclidean space

O Each node assigns itself coordinates in the space
to be used as the node's identifier

o "uknowsv" means " u knows v's coordinates "

3 Each node is a communicating state machine
O a node's state is set of nodes it knows
O protocol messages it sends and receives

No need to think about d-dimensional objects
except when proving theorems
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A distributed DT
CU
DT(C, ) local DT computed by u

set of nodes u knows

N, neighbors of u in DT(C, )

d The distributed DT is correct iff, forallue S,

N, = set of u’s neighbors in DT(S)
Y X

local info global info

2 No broadcast, N,& €, and |C,| « [S]
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Node u finds nodes and computes
its local DT

; o® 0! How does u search?

e h J .1

When does u stop?

C,~{u,a,b,c,d}

DT(C,) N ={a, b, c}
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Application to Layer 2 routing

O Layer 2 network represented by an
arbitrary graph of nodes and physical links
(connectivity graph)

3 Minimal assumptions:
ograph is connected
oeach physical link is bidirectional

7 The connectivity graph is not the DT graph

Need a protocol for nodes to compute the
distributed DT

Greedy Routing (S. S. Lam) 13



Extension - Multi-hop DT

a Connectivity graph -
nodes and physical links

A DT graph

A Ina multi-hop DT,
neighbors can be

O directly connected

o multiple hops apart and
a physical link that is communicate via a virtual

not a DT edge link (tunnel)
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Each node has a forwarding table

3 Each entry in the forwarding
table is a 4-tuple

<source, pred, succ, dest>

3 for the DT edge a-d, to
provide the path a-b-c-d,
each node stores a tuple,
e.g.,

o node b stores<a, a, ¢, d>

The tuple is used by b for forwarding in both directions
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In a multi-hop DT, each node u

O maintains tuples in its forwarding table F, as

soft state
state of node u

C, = set of destination nodes in tuples of F,

N, = set of neighbors in DT(C,)

!

hode u's local DT
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A multi-hop DT is correct iff

1. forallue S, N, = set of u's neighbors in
DT(S) (the distributed DT is correct)
2. for every DT edge (u, v), there exists a unique

k-hop path between u and v in the forwarding

tables of nodes in S
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MDT's 2-step greedy forwarding

node U receives a packet
with destination d

greedy step 1 l

=

yes

a physical neighbor v closest to d ?—— transmit to v

greedy step 2 1 no

yes

- forward to w

Ja DT neighbor w closest to d ?

no
node U is closest to d

(using a tuple in
forwarding table)
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DT's 2-step greedy - example

M

destination

7 Source ¢, dest. k

7 At node c, physical
neighbor closest to k

s b
S Oc transmits msg to b

~

f
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2-step greedy example (cont.)

destination 7 Node b is a local minimum

3 with multi-hop DT neighbor |
closest to k

0 node b forwards msg to | by
transmitting it to e

3 node e forwards msg to | by

transmitting it to h
< does not perform greedy step 1

3 h transmits msg to |
0 j finds itself closest to k

4/4/2017
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In a correct multi-hop DT

a MDT's 2-step greedy forwarding provides
guaranteed delivery to a node that is closest
to the destination location

Tlnonnovn and nranf [l am and Oinn 20111
1 1 I8V ol GAl INA F' AV AV M | LI.—Ulll GAl INA W'U|| hv-l&J

We next present a join protocol for nodes
to construct a correct multi-hop DT
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MDT join protocol: initial step

JGiven: a correct
multi-hop DT of S

T node a boots up

Jto join S, a needs to
find the closest node
In S
O It must be a neighbor

of ain the DT of
S {a}
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2-step greedy in existing DT finds
node closest to a

T asends JOIN_req tob

with a's location as
destination

0 It is greedily forwarded
to node ¢ which is closest
toa

7 Each node along the
path of JOIN_req
stores a forwarding
tuple for the path
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Closest node ¢ found

O ¢ sends JOIN_ rep to a
along the reverse path

Node a begins an
iterative search

T a sends NB_req to ¢
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Finding more DT neighbors

0 c adds a to its set C.
3 ¢ recomputes DT(C_)

7 Set of a's new neighbors
inDT(C.)isN,={j,d}

3 ¢ sends NB_rep(N,°)
to a
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Iterative search by node u
for a distributed DT [Lee and Lam 2006]

repeat

for all x €|N, ""|do node X

remove x from N e receive NB_req from u
send NB_req to x C.=C,u{u}

receive NB_rep(N,*) compute DT(C,) ; update N,

C,=C,u{N/
compute DT(C,): update N,
update N W

N_/X = u's neighbors in DT(C,)
send NB_rep (N/¥) to u

until N, is empty (successfully joined)

N, new neighbors that have not been sent a NB_req
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Path to a multi-hop DT neighbor

7 Node a has learned |
j from node c

Oa sends NB_req

. oa-c path has been
N established

~~~~~ & 0Oc-j: the existing
multi-hop DT is
correct; a forwarding
path exists between ¢
( and J

3 The virtual link a-j is
set up
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Physical-link shortcut

0 j received NB_req and
sends NB_rep to a

Q At any intermediate
node along the reverse
path j-h-e-c-b-

0 if a node (h in this
example) finds that dest.
a is a physical neighbor,
the msg is transmitted
directly to a

0 h updates its tuple for a
Tuples for aand j in nodes b, and |

c, and e will time out
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When join protocol terminates the
multi-hop DT of S {u} is correct

3 For a single join
O Theorem and proof [Lam and Qian 2011]

3 Theorem also holds for concurrent joins
that are independent

Q A correct multi-hop DT can be constructed
by nodes joining serially
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Concurrent events

d Two practical problems

1. At network initialization, all nodes join

concurrently o construct a correct multi-hop
DT

2. Dynamic topology changes occurring at a high
rate (churn)

= nodes
= Links

7 MDT solution - Each node runs the iterative search

protocol repeatedly and asynchronously (controlled
by a timer)
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Initialization - Accuracy vs. time

concurrent joins of 300 nodes in 3D, ave. msg delay =15 ms
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Convergence to a correct
multi-hop DT

300 nodes in 3D join concurrently, S0 experiments

1
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Convergence to a correct
multi-hop DT

700 nodes in 3D join concurrently, S0 experiments
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Achieving 100% routing success rate is
faster
300 nodes in 3D join concurrently, S0 experiments
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Greedy Routing (S. S. Lam) 34



Achieving 100% routing success rate is
faster

700 nodes in 3D join concurrently, 50 experiments
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7 500 simulation experiments
0 300 - 1500 nodes in 3D and 2D, ran on some
difficult graphs
o Convergence to a correct multi-hop DT
in every experiment

7 Conjecture. The iterative search protocol
when run repeatedly by a set of nodes is
self -stabilizing.

o No proof, but no counter example has been found
in simulations
O What assumptions are needed?
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Churn - Accuracy vs. time

300 nodes in 3D, churn rate = 20 nodes/second

from time O to 5 sec, ave. msg delay = 15 ms
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Msqg cost/node/sec vs. churn rate

300 nodes in 3D, ave. msg delay =15 ms
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Comparison of 5 protocols in 2D

Routing stretch vs. e
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Initialization msg cost vs. N
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Virtual vs. physical coordinates
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Multi-hop DT - overview

3 Nodes in a d-dimensional Euclidean space
O Each node assigns itself coordinates in the space
O any connectivity graph, bidirectional links

3 MDT protocols
O 2-step greedy forwarding
o Join protocol - each node runs iterative search once

O Leave and failure protocols for repairing node states
after a single leave or failure

O Maintenance protocol - each node runs optimized
iterative search periodically to repair node states

O Network initialization by concurrent joins - each
node runs iterative search once followed by optimized
iterative search repeatedly
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MDT protocols performance

3 An efficient and effective search method
for nodes to construct and maintain a
correct multi-hop DT - fast convergence

7 2-step greedy forwarding provides
guaranteed delivery to a node closest to a
given location - basis for a DHT

O scalable and highly resilient to dynamic
topology changes

O every node runs the same protocols - no
special nodes
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Routing applications in layer 2

ad Wireless routing for nodes with inaccurate
coordinates in 2D or 3D
a Lowest routing stretch compared to other
geographic routing protocols
7 Wired or wireless routing using virtual
coordinates
a VPoD and GDV provide end-to-end routing cost close
to that of shortest path routing [Qian & Lam 2011]
7 Finding a node closest to a location in a virtual
space

O Delaunay DHT - highly resilient to churn [Qian
and Lam 2012]
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The end
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