Greedy routing by distributed Delaunay triangulation
Greedy Routing

- It is scalable to a large network
 - because each node stores info about its directly-connected neighbors only
- But it fails at a local minimum, where all neighbors are farther away from the destination than the node itself
Greedy routing protocols include a recovery method

- Face routing used by GFG [Bose et al. 99] and GPSR [Karp & Kung 00]
 - for planar graphs (2D) only
 - successful planarization of a general graph requires that
 1. the graph is a “unit disk” graph and
 2. node location information is accurate.

Both assumptions are unrealistic
Delaunay triangulation (DT)?

A set of points in 2D
A triangulation of S

Circumcircle of this triangle is not empty
Delaunay triangulation of S

Circumcircle of every triangle is empty
Greedy forwarding in a DT always succeeds to find a destination node.

- Theorem and proof for nodes in 2D
 - Bose & Morin 2004
- Each node is identified by its coordinates in 2D
DT in d-dimensional Euclidean space

- DT definition generalized to 3D or higher dimension

<table>
<thead>
<tr>
<th>2D</th>
<th>d-dimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>triangle</td>
<td>simplex</td>
</tr>
<tr>
<td>empty circumcircle</td>
<td>empty circum-hypersphere</td>
</tr>
</tbody>
</table>

- In any dimension, the DT of S is a graph, denoted by $\text{DT}(S)$
 - neighbors in the graph are called DT neighbors
Greedy forwarding in a DT always succeeds to find a node closest to a destination location.

- Theorem and proof for nodes in a d-dimensional Euclidean space, $d \geq 2$ [Lee & Lam 2006]

- Node coordinates may be arbitrary

Idea: When greedy routing is stuck at a local minimum (dead end), forward packet to a DT neighbor (via a tunnel)
Distributed system model of DT

- A set S of nodes in a d-dimensional Euclidean space
 - Each node assigns itself coordinates in the space to be used as the node's identifier
 - "u knows v" means "u knows v's coordinates"

- Each node is a communicating state machine
 - a node's state is set of nodes it knows
 - protocol messages it sends and receives

No need to think about d-dimensional objects except when proving theorems
A distributed DT

\(C_u \) set of nodes \(u \) knows

\(\text{DT}(C_u) \) local DT computed by \(u \)

\(N_u \) neighbors of \(u \) in \(\text{DT}(C_u) \)

- The distributed DT is correct iff, for all \(u \in S \),
 \[N_u = \text{set of } u's \text{ neighbors in } \text{DT}(S) \]

- No broadcast, \(N_u \subseteq C_u \) and \(|C_u| \ll |S| \)

Greedy Routing (S. S. Lam) 11
Node u finds nodes and computes its local DT

How does u search?

When does u stop?

$C_u = \{u, a, b, c, d\}$

$DT(C_u)$

$N_u = \{a, b, c\}$
Application to Layer 2 routing

- Layer 2 network represented by an arbitrary graph of nodes and physical links (connectivity graph)

- Minimal assumptions:
 - graph is connected
 - each physical link is bidirectional

- The connectivity graph is not the DT graph

 Need a protocol for nodes to compute the distributed DT
Extension - Multi-hop DT

- Connectivity graph - nodes and physical links

- DT graph

- In a multi-hop DT, neighbors can be
 - directly connected
 - multiple hops apart and communicate via a virtual link (tunnel)
Each node has a forwarding table

- Each entry in the forwarding table is a 4-tuple \(<source, pred, succ, dest>\)

- for the DT edge a–d, to provide the path a–b–c–d, each node stores a tuple, e.g.,
 - node b stores \(<a, a, c, d>\)

The tuple is used by b for forwarding in both directions
In a multi-hop DT, each node u

- maintains tuples in its forwarding table F_u as soft state

$$C_u = \text{set of destination nodes in tuples of } F_u$$

$$N_u = \text{set of neighbors in } DT(C_u)$$

node u's local DT
A multi-hop DT is correct iff

1. for all $u \in S$, $N_u = \text{set of } u\text{'s neighbors in } DT(S) \text{ (the distributed DT is correct)}$

2. for every DT edge (u, v), there exists a unique k-hop path between u and v in the forwarding tables of nodes in S
MDT’s 2-step greedy forwarding

node \(u \) receives a packet with destination \(d \)

greedy step 1

\[\exists \text{ a physical neighbor } v \text{ closest to } d \ ? \]

- yes \(\rightarrow \text{ transmit to } v \)
- no

greedy step 2

\[\exists \text{ a DT neighbor } w \text{ closest to } d \ ? \]

- yes \(\rightarrow \text{ forward to } w \)
- no

node \(u \) is closest to \(d \)

(using a tuple in forwarding table)
MDT’s 2-step greedy - example

- Source c, dest. k
- At node c, physical neighbor closest to k is b
 - c transmits msg to b
2-step greedy example (cont.)

- Node \(b \) is a local minimum
- with multi-hop DT neighbor \(j \) closest to \(k \)
- node \(b \) forwards msg to \(j \) by transmitting it to \(e \)
- node \(e \) forwards msg to \(j \) by transmitting it to \(h \)
 - does not perform greedy step 1
- \(h \) transmits msg to \(j \)
- \(j \) finds itself closest to \(k \)
In a correct multi-hop DT

- MDT’s 2-step greedy forwarding provides guaranteed delivery to a node that is closest to the destination location

Theorem and proof [Lam and Qian 2011]

We next present a join protocol for nodes to construct a correct multi-hop DT
MDT join protocol: initial step

- Given: a correct multi-hop DT of S
- node a boots up
- to join S, a needs to find the closest node in S
 - It must be a neighbor of a in the DT of $S \cup \{a\}$
2-step greedy in existing DT finds node closest to \emph{a}.

- \emph{a} sends JOIN_req to \emph{b} with \emph{a}'s location as destination.

- It is greedily forwarded to node \emph{c} which is closest to \emph{a}.

- Each node along the path of JOIN_req stores a forwarding tuple for the path.
Closest node c found

- c sends JOIN_rep to a along the reverse path

Node a begins an iterative search
- a sends NB_req to c
Finding more DT neighbors

- **c** adds **a** to its set \(C_c \)
- **c** recomputes \(DT(C_c) \)
- Set of **a**'s new neighbors in \(DT(C_c) \) is \(N_a^c = \{ j, d \} \)
- **c** sends \(NB_{\text{rep}}(N_a^c) \) to **a**
Iterative search by node u

repeat
for all $x \in N_u^{\text{new}}$ do
remove x from N_u^{new}
send NB_req to x
receive $\text{NB}_\text{rep}(N_u^x)$
$C_u = C_u \cup \{N_u^x\}$
compute $\text{DT}(C_u)$; update N_u
update N_u^{new}

node x
receive NB_req from u
$C_x = C_x \cup \{u\}$
compute $\text{DT}(C_x)$; update N_x
$N_u^x = u$'s neighbors in $\text{DT}(C_x)$
send $\text{NB}_\text{rep}(N_u^x)$ to u

until N_u^{new} is empty (successfully joined)

N_u^{new} new neighbors that have not been sent a NB_req
Path to a multi-hop DT neighbor

- Node a has learned j from node c
 - a sends NB_req
 - a-c path has been established
 - c-j: the existing multi-hop DT is correct; a forwarding path exists between c and j

- The virtual link a-j is set up
Physical-link shortcut

- j received NB_req and sends NB_rep to a
- At any intermediate node along the reverse path j-h-e-c-b-
 - if a node (h in this example) finds that dest. a is a physical neighbor, the msg is transmitted directly to a
- h updates its tuple for a and j

Tuples for a and j in nodes b, c, and e will time out
When join protocol terminates the multi-hop DT of $S \cup \{u\}$ is correct

- For a single join
 - Theorem and proof [Lam and Qian 2011]

- Theorem also holds for concurrent joins that are independent

- A correct multi-hop DT can be constructed by nodes joining serially
Concurrent events

- Two practical problems
 1. At network initialization, all nodes join concurrently to construct a correct multi-hop DT
 2. Dynamic topology changes occurring at a high rate (churn)
 - nodes
 - Links
- MDT solution - Each node runs the iterative search protocol repeatedly and asynchronously (controlled by a timer)
Initialization - Accuracy vs. time

concurrent joins of 300 nodes in 3D, ave. msg delay = 15 ms

Each node has run iterative search 2 or 3 times

accuracy = 1 ⇔ correct MDT

max. token delay = 1.5s
max. token delay = 1s
max. token delay = 0.5s

10 sec TO
Convergence to a correct multi-hop DT

300 nodes in 3D join concurrently, 50 experiments

max. no. = 6
Convergence to a correct multi-hop DT

700 nodes in 3D join concurrently, 50 experiments

Cumulative fraction of experiments

Max. no. of iterative searches by a node

max. no. = 8

Greedy Routing (S. S. Lam)
Achieving 100% routing success rate is faster

300 nodes in 3D join concurrently, 50 experiments
Achieving 100% routing success rate is faster

700 nodes in 3D join concurrently, 50 experiments

Greedy Routing (S. S. Lam)
500 simulation experiments
- 300 - 1500 nodes in 3D and 2D, ran on some difficult graphs
- Convergence to a correct multi-hop DT in every experiment

Conjecture. The iterative search protocol when run repeatedly by a set of nodes is self-stabilizing.
- No proof, but no counter example has been found in simulations
- What assumptions are needed?
Churn - Accuracy vs. time

300 nodes in 3D, churn rate = 20 nodes/second
from time 0 to 5 sec, ave. msg delay = 15 ms

Each node has run iterative search 2 or 3 times

Greedy Routing (S. S. Lam)
Msg cost/node/sec vs. churn rate

300 nodes in 3D, ave. msg delay =15 ms

- Control message cost depends more on TO interval than on churn rate
- TO interval should be adaptive

Graphs for 4 different topologies and location accuracies
Comparison of 5 protocols in 2D

Routing stretch vs. e

Log scale

300 nodes with inaccurate coordinates, static topologies, density = 9.7

only for packets delivered by GPSR

Greedy Routing (S. S. Lam)
Initialization msg cost vs. N

Node density $= 12$

MDT costs do not increase with N
Virtual vs. physical coordinates

![Graph showing comparison between 4D arbitrary coordinates, 3D e=1, and 4D virtual coordinates (VPoD) across different numbers of nodes. The graph uses a log scale for the y-axis. Inaccurate physical coordinates are indicated with a note.]
Multi-hop DT - overview

- Nodes in a d-dimensional Euclidean space
 - Each node assigns itself coordinates in the space
 - any connectivity graph, bidirectional links

- MDT protocols
 - 2-step greedy forwarding
 - Join protocol - each node runs iterative search once
 - Leave and failure protocols for repairing node states after a single leave or failure
 - Maintenance protocol - each node runs optimized iterative search periodically to repair node states
 - Network initialization by concurrent joins - each node runs iterative search once followed by optimized iterative search repeatedly
MDT protocols performance

- An efficient and effective search method for nodes to construct and maintain a correct multi-hop DT - fast convergence
- 2-step greedy forwarding provides guaranteed delivery to a node closest to a given location - basis for a DHT
- scalable and highly resilient to dynamic topology changes
- every node runs the same protocols - no special nodes
Routing applications in layer 2

- Wireless routing for nodes with inaccurate coordinates in 2D or 3D
 - Lowest routing stretch compared to other geographic routing protocols
- Wired or wireless routing using virtual coordinates
 - VPoD and GDV provide end-to-end routing cost close to that of shortest path routing [Qian & Lam 2011]
- Finding a node closest to a location in a virtual space
 - Delaunay DHT - highly resilient to churn [Qian and Lam 2012]
References

The end