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Number in system N(t)

T

Timet —

average population = %. [ gn(t)dt

where 7 1s duration of the experiment
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Exercise - check Little's Law for the
following example

Consider 6 jobs that have gone through a system during
the time interval [0, 15], where time is in seconds, as

shown in the table:
1 0.5 45
2 15 3.0
3 6.0 11.0
4 7.0 140
For the time duration [0, 15]: ° 82 100
6 120 13.0

(a) calculate throughput rate;

(b) plot number of jobs in the system as a function of
time from O to 15 and calculate the average number over
the duration [0, 15];

(c) calculate the average delay of the 6 jobs.

Verify that Little's Law is satisfied by the results in (a),
(b), and (c).
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Random variable with discrete values

Random variable X with discrete values X, X,, ..., X

Let P, = probability [X = X] for1=1,2,....,m

— m
Its expected value (mean) is X =% X P
=1

Its second moment is X* =

M3

| =1
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Random Variable with continuous values

Random variable X with probability distribution
function (PDF), F,(X) =P[X <X], X=0
Its probability density function (pdf) 1s

dF, (X)
fy (X) =
dx
T4+a avinnrntad xraliia 1o v —_ roo s ¥ N\
Its expected value 1s X = | - X T, (X)AX

Its second moment 1s

X2 = [, 00dx > (X)?

What if F,(x) is discontinuous?
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Poisson arrival process at rate 1

O It is a counting process with independent increments.
Let X(s, s+t) be the number of arrivals in the time
interval (s, s+t). For any time s,

(A"

k>0,t=>0
K!

P[X(s,s+1)=Kk]=

A The above can be derived from the binomial
distribution by dividing t into n small intervals and let
n go to infinity:

K n—k
P[X(s,s+1t)=Kk]= hm[m(%j (1—%) kK>0,t>0
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Time between consecutive arrivals in a Poisson
process has the exponential distribution

[ Consider the random variable T which is the time
between consecutive arrivals

3 Probability distribution function of T is
A(t) = P[T <t]=1-P[T >1]

=1-P[X(s,s+1t)=0]=1-€", t=0

O Probability density function of T is

a(t) = d'zit) =le™ t>0

memoryless property
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Topics

O Average delay of M/G/1 queue
with FCFS (FIFO) scheduling

% Pollaczek-Khinchin formula
% motivation for packet switching

0 Residual life of a random variable
2 Conservation Law (M/6/1)
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Single-Server Queue

A W () —

queue server (work conserving)

average service time, in seconds 4 ic transmission ti me)

service rate, in packets/second (4 = 1/X)

arrival rate, in packets/second

N o T X

utilization of server

Conservation of flow (A < & , unbounded buffer)

A= pu

_ A _ )y
p= ZZ—/Ix
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M/G/1 queue

0 Single server

O work-conserving - it does not idle when there is work, also
no overhead, i.e., it performs 1 second of work per second

O FCFS service

3 Arrivals according to a Poisson process at
rate A jobs/second

0 Service times of arrivals are xy, X,, ..., X; ...
which are independent, identically
distributed (with a general distribution)

0 Average service time is X, average wait is W,

average delay is T=W + X
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Let U(t) be the unfinished work at time t

U (t)

1/31/2017

) time

31 2 3 - 5
arrivals and departures
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Derivation of W

Time average of unfinished work is

=_ jfu (t)at

_1(13
+ W x; and w; are
T 2 E X' Z . independent

For Poisson arrivals, the average wait is equal
to U from the Poisson arrivals see time
average (PASTA) Theorem
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Derivation of W (cont.)

0 The average wait is

. 2 B 2
W:ﬂ(lx%xvvj: AX W= oW
2 2 2
X2
W(-p)= >
— Pollaczek-Khinchin (P-K)
AX mean value formula
W =
2(1-p)
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M/G/1 queue

/
Markovian T
/

. General
Poisson

Average delay is

/foz 0 1.0
2(1-p)

T=x+W = x+

Also called Pollaczek-Khinchin (P-K) mean value formula
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Special Cases

1. Service times have an
exponential distribution
(M/M/1). We then have

X =2(X)
W AP AR} _ pX

C2(l-p) 1-p 1-p

__PX +Y:pi+i—pi
1-p 1—-p
x| p 1

l—p |[1-p A

1/31/2017

T decreases as A
Increases

A—104
U—10u
104 _A

P=Tou ™ 1

X
0.1 X

0 1.0
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2. Service times are constant (deterministic)

!

X2 =(X)2 M/D/1
_AUX)¥ _ pX
W= = A
2(1-p) 2(1-p)
T=_PX 4x=(pF+2-2p)X
2(1-p) 2(1-p)
T decreases as A
T:,O(2—,0) | increases
2(1-p) A
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Two Servers and Two Queues:

60 jobs/sec Q

100 jobs/sec
60 jobs/sec Q
100 jobs/sec

Single Higher Speed Server:
120 jobs/sec Q .

200 jobs/sec
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Delay performance of packet
switching over circuit switching

Consider how to share a 10 Gbps channel

1. Circuit switching : Divide 10 Gbps of bandwidth into
10,000 channels of 1 Mbps each and allocate them to
10,000 sources

2. Packet switching: Packets from 10,000 sources
queue to share the 10 Gbps channel

Packet switching delay is 10-4 of circuit
switching delay

Contribution of queueing theory!
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Residual life of a random variable x

n n
residual area = sz /2 duration = in
life =1 =

Average residual life found by a random

arrival = area/duration
1 1 lXﬁ
l 2 —y? 1., 1, _)(52 2
2 2 2" 27 N\ 2
0 time

T random arrival
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Mean residual life for examples

. . X2 X
mean residual life = — > —
2 X 2
Example 1: X 1s a constant
X2 = (X)?

mean residual life= X /2

Example 2: X is exponentially distributed

with density function f, (X)= ue™**

Recall that the vl vl ,
exponential X=1/u and X —_2/,u
distribution Is mean residual life = X =1/ u
memoryless
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1/31/2017

Conservation Law
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For a work conserving server, work gets done at
one second per second.

U(t)

U(1) depends on the arrivals only.
U(t) is independent of order of service

31 2 3 - 5
arrivals and departures (FCFES)
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R classes of packets

A Ay Ag

with arrival rates,

P=pPp TP, T..T Pr

mean service times, Xl, X2, covs Xg
and second moments, x2 ooy X
Define p, =4 xx forr:1,2,.. R

1
1M
S

r:

ilrxf_ﬁi x__l?_pz
2 24 ) 2 2X

X2

2X

r

where U is mean residual service, p, 1s the fraction of time a class r packet is
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M/G/1 Conservation Law

A Non-preemptive, work-conserving server

QLlet W, be the average wait of class r
packets,r=1,2, .., R

dlet N o D€ the average number of class r packets in queue

The time average of unfinished work, U (1), 1s

L_J :US +iNq,rZ :US "‘ZR‘,/IrWrZ :US +i/0rvvr
r=1 r=1 r=1

We already have from P-K formula (for p<1)
AX B X oL Y
2(1-p) 2x (dA-p) [l=p
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M/G/1 Conservation Law (cont.)

R
Therefore, U + Z:,orV\/r = IUS,)O for p <1
r=1 T
R
Zprvvr — Js -Ug = p s = PWecrs
r=1 1—,0 1_,0

which 1s the Conservation Law. It holds for
any non-preemptive work-conserving queueing
discipline
Q Any preferential treatment for one
class/customer is afforded at the expense
of other classes/customers

M/G/1 queue (Simon S. Lam) 26

26



The end
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