Network Verification Using Atomic
Predicates
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Difficulty in Managing Large Networks

= Complexity of network protocols
o unexpected protocol interactions

o links may be physical or virtual (e.g., point to point, Ethernet, VLAN)

o access control list (ACL) - complex syntax, ACLs designed and
configured by different people over a long period of time

o packet transformations (e.g., NATs, MPLS and IP tunnels)

= (Operator error was the largest single cause of failures -

with configuration errors being the largest category of
operator errors
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Data Plane Verification

* How do we know packet networks are working
correctly?

* A uniform model for verifying packet networks
o Seminal framework by Xie et al. (IEEE Infocom 2005)

o A graph where each node is a packet filter or a packet
transformer
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Prior Work

Two approaches:

= Reformulate the network verification problem within the
context of a verification tool previously designed for
another domain (less effort but inefficient)

Symbolic model checking [2009]

SAT/SMT solvers [2011]

Datalog [2015]

Symbolic execution [2016]

O O O O

= (Custom design new data structures and algorithms to

directly compute reachability trees (much more effort but much more
efficient )

o Header Space Analysis/Hassel in C [2012-2013]

o  Atomic Predicates Verifier [2013]
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Network Reachability Properties

= Properties

o loop-freedom (no forwarding loop for any packet)
reachability via waypoints (e.g. firewalls)
nonexistence of black holes in routers

o
o
o network slice isolation (i.e., virtual networks)
o

= Compute packet sets that can travel from port x to porty
o forward reachability trees rooted at a source port
o reverse reachability trees rooted at a destination port
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Packet

» Each packet has a header and a payload
» A packet header is partitioned into multiple fields

» Packets with identical values in their header fields
are considered to be the same by packet filters

hegder

field, | field, field, payload
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Packet Network

(assume no transformer for now)

ACL

Forwarding
ACL Table
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Packet filters

» Routers/switches
o forwarding table determines packet sets to output ports

= Access control list (ACL)

o guard input and output ports of boxes

o determines set of packets that can pass through

o a firewall is an ACL with a large number of rules

= The set of packets that can travel through a sequence of packet
filters can be computed by intersection of the packet sets that
represent the filters

o reachability set along multiple paths is the union of reachability sets
along individual paths
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Intersection and Union of Packet Sets
are Computation-intensive

= Multidimensional sets

o with many allowed intervals in each dimension and arbitrary
overlaps

o worst case computation time of set intersection/union is 0(2")

= Efficiency of these operations determines the efficiency of
reachability analysis

= The time and space performance of a network verification
tool depends on

o data structure for representing packet sets, and

o algorithm for computing reachability sets
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Box Model in AP Verifier

= Each ACL is converted to a predicate specifying the packet
set allowed by the ACL

* For each output port, a predicate is computed from the

forwarding table
o specifying the packet set forwarded to the output port
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Predicates represent packet sets

= Each variable in a predicate represents one packet header bit

* Predicate P specifies the set of packets for which P evaluates to
true

= [n AP Verifier, predicates are implemented as binary decision
diagrams (BDDs) which are rooted, directed acyclic graphs

o intersection and union of packet sets are replaced by conjunction and
disjunction of predicates

o BDD operations are performed using highly efficient graph algorithms
|R. Bryant, 1986]
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BDD Representation

* Uniqueness

= Representation size for each rule

Theorem 1. If the length of a packet header is h bits, and an ACL rule
specifies each header field by an interval, a prefix or a suffix, then the
number of nodes in the BDD graph representing an ACL rule is less or
equal to 2+2h.
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o conjunction (disjunction) requires time proportional to the product
of operand sizes in the worst case; complement is easy

h is the number of header bits relevant for verification
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Datasets

Stanford | Internet2 | Purdue
No. of boxes 16 9 1,646
No. of ports used 58 56 2,736

Stanford Internet2 | Purdue
No of rules Forwarding | ACL | Forwarding | ACL
‘ | 757,170 1,584 126,017 3,605

Statistics of three real networks.

 All boxes in Stanford and Internet2 dataset are routers

e Boxes in Purdue dataset consist of routers and switches
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Representation Size - ACL
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Representation Size — Table
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Computation Times
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Computation Times
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Observations

" Increasing the number of rules in an ACL or a
forwarding table does not always mean more BDD
nodes

= Computing BDDs for ACLs and for forwarding
tables is fast

o in milliseconds for each ACL or table
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Atomic Predicates - Definition

Given a set P of predicates, its set {p,, ..., p,} of atomic
predicates satisfies five properties

1. p; # false,¥Yi € {1, ...,k}
2. Vp; = true
3. piApj=false, for i # ]

4. Each predicate P € P, P # false, is equal to the
disjunction of a subset of atomic predicates:

P = ViES(P) Pi, where S(P) - {1, ,k}

5. kis the minimum number such that the set{p,, ..., p.}
satisfies the above four properties
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Meaning of Atomic Predicates

* Given a set P of predicates, there are numerous sets of
predicates that satisfy the first four properties

o interested in the set with the smallest number of predicates™

* An equivalence class Cis a packet set

o pkt, and pkt, both € C if and only if each predicate in 7P evaluates to
the same value for both packets

* The meaning of atomic predicates

Theorem 2. For a given set 2 of predicates, the atomic
predicates for P specify the equivalence classes in the set
of all packets with respect to .

*Note: The equivalence classes specified by atomic predicates are the
coarsest equivalence classes.
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Computing Atomic Predicates

* |Compute the set of atomic predicates for predicate P:

_ | {true} ifP = falseortrue
A(PY) = {{P, - P} otherwise

P;,P, two sets of predicates. P;’s set of atomic predicates
is {by,'-,b;} and P,’s set of atomic predicates is {dq, ..., dpy }
Compute a set of predicates, {a4, ..., ai}:

{a; = b;, Ad; |a; # false,i; €{1,..,1}i; €{1,..,m}}

Theorem 3. The set of atomic predicates for P; U P, is
{ay,..,a;} where, fori € {1, ..., k}, a; is computed by
the above formula.

In the worst case, the above set {a;} can have ¢ m predicates; in practice most of
them are false
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Atomic Predicates in Real Networks

= Datasets of three real networks from Stanford
University, Purdue University, and Internet?2

= Compute separate sets of atomic predicates for
ACLs and forwarding tables

Stanford Internet2 Purdue
No. of rules Forwarding | ACL | Forwarding ACL
' ‘ 757,170 1,584 126,017 3,605
No. of atomic
bredicates (494 21 216) 3,917
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Time to Compute Atomic Predicates

atomic predicates for ACLs

random selection (ms) smallest ACL first (ms)
Stanford 1.56 0.84
Purdue 886.21 450.31

atomic predicates for forwarding

random selection (ms) selection by box (ms)
Stanford 210.26 201.40
Internet2 154 .91 148.28

* Order of predicates affects computation time

» Computed in a fraction of second
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Number of Atomic Predicates
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Number of Atomic Predicates
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Number of Atomic Predicates
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Number of Atomic Predicates
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Packet Set Specification

= The set of packets P that can pass through an output port is
specified by the conjunction of its predicates for
forwarding and ACLs

o represented by two sets of identifiers of atomic predicates

» Pis specified by

P = (ViESF fl) A (vjESA a’j )

where Sy is the set of integer identifiers of atomic
predicates for forwarding, S, is the set of integer
identifiers of atomic predicates for ACLs.
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Reachability Tree

= Reachability tree consists of every path along which a nonempty set of
packets can travel from source port to another port in the network

= Each node stores a port number and the set of packets that can reach
the port from the source

o The packet set of is represented by identifiers of atomic predicates

o The same port may appear in multiple paths of the tree
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A Reachability Tree Example

Box1
12,3.43.15 1,2 pOT‘tl po-rtz JS[FQ} _ {'1,:3..(')}
ports
S(F3) = {L,2,3} o
l °(4e) = 12} L'[Fll) = {1}
porty portg portiq _ |
portgPFs) = 1.2} ort; port porty portiof——es
ports S — 2] porty  POTt8fers—r5 | POt Portio
Box2 Box3 Box4
A small network example.
45,6;12 4,5,6;2 4; 2 4; 2 4; 2 1;2
ports portg ports portg portig— portip —
1,2,3,4,5,6; 1,2 /
—porty ports porty ports porty ports portg portip—
1,23;:1,2 123:;12 12:12 12:2 1,2:2 1,2; 2 292
The reachability tree of port,.
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Storage Cost of Reachability Trees

Size (MB) Size (MB)
Hassel in C 323.06 Hassel in C 187.60
AP Verifier 8.70 AP Verifier 6.72
Stanford network (58 ports). Internet2 (56 ports).

= Storing reachability trees for all ports

o Hassel in C required 37 times more memory for the Stanford
network and 28 times more memory for Internet?2

= Storing intermediate data

o maximum memory was over 400 MB for Hassel in C and was less
than 1 MB for AP Verifier
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Loop Detection by Computing the
Reachability Tree for One Port

Average (ms)

Median (ms)

Maximum (ms)

Hassel in C 218.22 53.45 1881.41
AP Verifier 0.95 1.03 1.38
AP Verifier (BDD) 4.23 4.21 10.67

Reachability tree computation from one port (loop detection) in Stanford network.

AP Verifier is 230 times faster

Average (ms)

Median (ms)

Maximum (ms)

Hassel in C 754.19 609.14 5873.44
AP Verifier 0.27 0.29 0.45
AP Verifier (BDD) 2.96 3.05 8.34

Reachability tree computation from one port (loop detection) in Internet?2.

AP Verifier is 2793 times faster

* Twelve infinite loop paths in the Stanford network

* Two infinite loop paths in Internet?2
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Black Hole Detection

= Ablack hole in the forwarding table is a set of packets that
are dropped due to no forwarding entry

= No black hole in forwarding tables of the Stanford network.
Black holes in every forwarding table of Internet?2

o forwarding tables of Stanford network have default routes

Average (ms) Median (ms) Maximum (ms)
AP Verifier 0.011 0.0064 0.040

Black hole detection for each forwarding table in Stanford network.

Average (ms) Median (ms) Maximum (ms)
AP Verifier 0.014 0.014 0.027

Black hole detection for each forwarding table in Internet?2.
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Slice Isolation

= Different network slices for different customers
(applications)
o slices do not overlap

» Aslice can be defined by a set of ports together with a set
of packets allowed in the slice

= Slice, have set T; of ports, a set of packets represented by
Srpyand Sy, fori=1,2
If TyNT, =0 or Sp, N Sp, = @ or Sa, NS4, = @ then
return “two slices are isolated”

else Slice, overlaps Slice, at Ty N Ty
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Required Waypoints

* From a source port s to a set of destination ports

o traverses the reachability tree from s to check that every path in the
tree passes through an input port of the waypoint before reaching
any destination port in the specified set

* From a set of source ports to a set of destination ports

= All packets from port s pass through any member of a set of
waypoints or several waypoints in a specified sequence
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Benefits of Atomic Predicates

= Atomic predicates for a given set of predicates
o They specify the (coarsest) equivalence classes of packets

o Observation: An atomic predicate represents a very large number
of equivalent packets in numerous “fragments” of the packet space

» Each predicate stored and represented as a set of integers

o space efficient

= Conjunction (disjunction) of two predicates computed as
intersection (union) of two sets of integers

o time efficient

= Automated tool based upon a formal method
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Networks with Packet Transformers

(a very short introduction)

Let U denote the set of all elements.* Without qualification,
an element x i1s always in set U, and a set of elements is
always a subset of U. A predicate specifies a set of elements
in U. Predicate true specifies U. Predicate false specifies the
empty set.

The indicator function for a set DD of elements and an
element x is defined as follows:

I xe D,

Ip(z) = {0 ré¢D.
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Transformers

Let 7 denote a set of transformers. A transformer 1" € T
maps an element from its domain to a set of elements in its
range. Both the domain and the range of 1" are subsets of U.

For a transformer 7', and an element x in the domain of 7',
T'(x) denotes the set of elements after transformation. For a
set D of elements, we define

(D)= | T(x) (8)

reD

Assumption. For each transformer 7', its inverse T-1is a
function from the range of 7' to the domain of 7.

For an element x € U, T~ () is undefined if x is not in
the range of 7.
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Packet Equivalence

Definition 3 (Equivalence w.r.t. P and T). Given a set P of
predicates and a set T of transformers. Let {C1,C5,....C,}
denote equivalence classes specified by the atomic predzcares
for P.

Two elements x1,xo in set U are equivalent w.r.t. P and T
if and only if the following two conditions hold:

1) Ic (x1) = I, (.cr:g) for each i € {1,...,n}.
2) Either both T, '--- T '(x1) and T 1 Tt (ag) are
undefined, or

I, (T T M) = 1o, (T - T () (9)

Y [

X [ XL
for each i € {1,...,n}, any positive integer k and any
possible sequence 1., ...T,, of transformers, T, €
T.7€{l,....k}
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Algorithm

Notation. Given any set, Q, of predicates, we use A(Q)
to denote the set of atomic predicates for ©, which can be
computed using one of the algorithms in [26], [28].

Algorithm 1 for computing atomic predicates after adding
transformers
Input: a set P of predicates, a set 7 of transformers
Output: a set B = {by,ba, ..., b} of predicates

1. P« P.B+ A(P)

2: Compute the following set:

R = {T(b;)| for each T' € T, and
for each b; € B that is transformed by 7'}

3. if B=A(P'UR) then

4 return B.

5: else

6 P+ P UR., B+ AP
7. goto line 2

8: end if
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Performance for two large networks

provider cone 1 | provider cone 2 | ratio
customer net AS 37684 AS 52941
# routers 51 92 1.80
# duplex ports 1,048 1,920 1.83
ave. # of neighbors per router 20.5 20.9 1.02
# rules 6,958,862 11,691,232 1.68
# tier-1 ISPs 15 15

TABLE II. Statistics of the two provider cone datasets.

provider cone 1 | provider cone 2 | ratio
with 51 NATs 0.02800 0.07800 2.79
with 40 IP-in-IP 0.03420 0.06221 1.82
with 40 MPLS 0.04021 0.06542 1.63

TABLE V: Ave. time to compute reachability tree from one

port (seconds).

provider cone 1

provider cone 2

ratio

predicates, atomic predi-
cates and 40 MPLS

355.57

739.42

2.08

one reachability tree (ave.)

2.07

4.45

2.15

TABLE VI: Memory space usage (Mbytes).
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Summary

Definition of packet equivalence for packet networks with filters and
transformers

Definition of atomic predicates which specify the (coarsest)
equivalence classes of packets

Algorithm to compute atomic predicates

Algorithm to compute reachability tree from a port to all other ports in
a network

By representing a very large set of equivalent packets by a single
integer, the use of atomic predicates reduces the computation time and
space by orders of magnitude

Verification tools (AP Verifier and APT) designed to recover quickly
from network changes including link/box status change,
addition/removal or a NAT or tunnel, and rule updates
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The end
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