

Network layer

- delivers segments from sending to receiving host
 - sender encapsulates segments into datagrams
 - Receiver de-encapsulates and delivers segments to transport layer
- network layer in every host, every router
- Router examines IP header field in every passing datagram (exception: routers running MPLS)

- Before datagrams can flow, end hosts and routers between them establish a virtual circuit
 - Routers maintain state info
 - Earlier networks designed initially to compete with IP:

ATM, frame relay, X.25 (from old to very old)

- MPLS protocol designed more recently to provide virtual circuits supported by IP routers (typically within the same AS/ISP)
- Today, such virtual circuits serve as virtual links in Internet

3/23/2017

Network Data Plane (S. S. Lam)

<u>Network layer: data plane, control plane</u>

Data plane

- □ local, per-router function
- determines how datagram arriving on an input port is forwarded to an output port

Control plane

Inetwork-wide logic □determines how datagram is routed among routers along end-end path from source host to destination host **D**main approach:

- routing protocols implemented in routers
- new approach
 - software-defined networking (SDN): implemented in logically centralized server(s)

Per-router control plane

Individual routing process *in every router*. They interact by exchanging routing protocol messages

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs). The controller computes routes.

The big picture (preview)

Data plane

- Forwarding using network and link headers
 - Datagrams
 - VLANs
 - MPLS virtual circuits and IP tunnels (transformers)
 - NATs (transformers)
- Filtering (access control lists, firewalls)
 - using transport, network, link headers

OpenFlow (SDN)

- match+action abstraction unifies routers, switches, firewalls, and NATs (but not VCs and tunnels)
- Control plane
 - Routing protocols
 - intra-AS (OSPF, distance vector, Cisco proprietary)
 - inter-AS (eBGP, iBGP)

SDN

centralized controller

Network Data Plane (S. S. Lam)

8

IPv4 Forwarding tab	d billion possible entries		
Destination Address Range	Link Interface		
11001000 00010111 00010 through 11001000 00010111 00010	0		
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1		
11001000 00010111 00011000 00000000 through 11001000 00010111 00011111 1111111	2		
otherwise	3		
3/23/2017	Network Data Plane (S. S. Lam) 11		

Longest prefix match

	<u>Prefix</u>	Link Interface	
11001	000 00010111 00010	0	
11001	000 00010111 00011000	1	
11001	000 00010111 00011	2	
	otherwise	3	
Examples			
DA: 11001	.000 00010111 00010 <mark>110 10</mark>	100001 Which interface?	
DA: 11001	1000 00010111 00011000 10	Which interface?	
A forwardi 500,000 IF	ng table in an Internet co Pprefixes	re router has more than	
	Fast implementation uses Addressable Memory (To	•	
3/23/2017	decreasing order	Network Data Plane (S. S. Lam) 1	2

VC Forwa	arding to	ble vc number	
Forwarding table in	n	$\begin{array}{c} 12 \\ \hline \\ 2 \\ \hline \\ 1 \\ 2 \\ \hline \\ 2 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	
northwest router:	i	interface	
Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1 2 3 1	12 63 7 97	3 1 2 3	<mark>22</mark> 18 17 87
used vs. IP forward	ding table with v	rt fixed-length VC ariable-length prefi sidered to be in dat e	xes. (This is not
May have addition	onal state inforr	nation about service	e guarantees
3/23/2017		Network Data Plan	e (S. S. Lam) 15

<u>A:</u> Typic	ress prefix: how to get one? ally, a customer network gets allocated ion of its provider ISP's address space
ISP's block	<u>11001000 00010111 0001</u> 0000 00000000 200.23.16.0/20
Organization 0 Organization 1 Organization 2 Organization 7	11001000 00010111 0001000 0000000 200.23.16.0/23 11001000 00010111 00010010 00000000 200.23.18.0/23 11001000 00010111 00010100 00000000 200.23.20.0/23 11001000 00010111 00011110 00000000 200.23.30.0/23
3/23/2017	Network Data Plane (S. S. Lam) 18

Access Control List (ACL)

- lists of rules used in firewalls and for guarding input ports and output ports
- first match determines action to take on packet

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	ТСР	> 1023	80	any
allow	outside of 222.22/16	222.22/16	ТСР	80	» 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

3/23/2017

Network Data Plane (S. S. Lam) 21

Packet filters and transformers in the data plane

- Conceptual framework for data plane verification
 - Let the packet universe be the set of all possible bit strings representing all feasible packet headers (or packets), namely: the packet space
- A packet filter allows a subset of packets to pass through, while dropping all other packets.
 - Forwarding tables and ACLs can both be modeled as packet filters
- We next consider network devices that transform packet headers.

Motivation: local network uses just one IP address as far as outside world is concerned

- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable/visible by outside world (a security plus).

□ 16-bit port-number field:

- 60,000+ simultaneous connections with a single IP address
- □ NAT is controversial:
 - routers should only process up to layer 3

 violates "end-to-end argument"
 - NAT possibility must be taken into account by app designers, e.g., IPsec, P2P applications, etc.
 - address shortage should instead be solved by IPv6

IPv6

- Initial motivation: 32-bit address space soon to be completely allocated (mid 1990s).
- Additional motivation:
 - simpler header format to speed up processing/forwarding
 - header change to facilitate QoS
- □ IPv6 datagram format:
 - fixed-length 40 byte header
 - no fragmentation allowed

Other Changes from IPv4

- Checksum: removed entirely to reduce processing time at each hop
- Options: allowed, but outside of header, indicated by "Next Header" field
- □ ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - including multicast group management functions

<u>Concept – Tunnel as a virtual link</u>
Many possibilities:
□ IPv6 in IPv4 tunnel (previous example)
□ IPv4 in IPv6 tunnel
□ IPv4 in IPv4 tunnel
 new routing path
□ IPv4 in MPLS tunnel
 virtual circuit
3/23/2017 Network Data Plane (S. S. Lam) 33

<u>Link Virtualization: A Network as a</u> <u>Link</u>

Virtual circuits provided by

- ATM, frame relay, which are packet-switching networks in their own right (obsolete)
 - with service models, addressing, routing different from Internet
- □ A subnet of MPLS capable routers

Each is viewed as a link connecting two IP nodes

<u>Multiprotocol label switching (MPLS)</u>

- initial goal: speed up IP forwarding by using fixedlength label (instead of variable-length IP prefix) to do forwarding
 - borrowing ideas from Virtual Circuit (VC) approach
 - MPLS routers insert and remove MPLS header but IP datagram still keeps IP address

MPLS capable routers

- a.k.a. label-switched router
- forward packets in a "forward equivalence class" to outgoing interface based only on label value (does not inspect IP address)
 - Much faster than longest prefix match
 - MPLS forwarding table distinct from IP forwarding tables

Image: Image:

Generalized Forwarding in Software Defined Networking (SDN)

Each router contains a *flow table* that is computed and distributed by a *logically centralized* routing controller

OpenFlow abstraction

- match+action: unifies different kinds of devices
- Router (layer3)
 - match: longest destination IP prefix
 - action: forward to a port
- Switch (layer 2)
 - match: destination MAC/VLAN address
 - action: forward to port or flood

- Firewall
 - match: IP addresses and protocol field, TCP/UDP port numbers
 - action: permit or deny
- NAT
 - match: IP address and port
 - action: rewrite address and port

OpenFlow data plane abstraction

- In flow: defined by header fields (for link, network, transport layers)
- generalized forwarding
 - Flow entry: match fields, priority, counters, instructions
 - Actions: for matched packet drop, forward, modify the packet, or send it to controller

Flow table in a router/switch (computed and distributed by controller) defines router's match+action rules

The big picture (review)

Data plane

- Forwarding using network and link headers
 - Datagrams
 - VLANs
 - MPLS virtual circuits and IP tunnels (transformers)
 - NATs (transformers)
- Filtering (access control lists, firewalls)
 - using transport, network, link headers

OpenFlow (SDN)

- match+action abstraction unifies routers, switches, firewalls, and NATs (but not VCs and tunnels)
- Control plane
 - Routing protocols
 - intra-AS (OSPF, distance vector, Cisco proprietary)
 - inter-AS (eBGP, iBGP)

SDN

centralized controller

Network Data Plane (S. S. Lam) 43

