Network Data Plane
Network layer

- delivers segments from sending to receiving host
 - sender encapsulates segments into datagrams
 - Receiver de-encapsulates and delivers segments to transport layer

- network layer in every host, every router

- Router examines IP header field in every passing datagram (exception: routers running MPLS)
Key Network-Layer Functions

- **forwarding**: move a packet from router’s input interface to an appropriate output interface

- **routing**: determine route taken by packets from source to destination
 - routing protocols (*intra-AS and inter-AS*) where AS is acronym for “Autonomous System”
 - every AS runs the same inter-AS protocol
Virtual-circuit networks need 3rd function

- Before datagrams can flow, end hosts and routers between them establish a virtual circuit
 - Routers maintain state info
 - Earlier networks designed initially to compete with IP:
 - ATM, frame relay, X.25 (from old to very old)
 - MPLS protocol designed more recently to provide virtual circuits supported by IP routers (typically within the same AS)

- Today, such virtual circuits serve as virtual links in Internet
Network layer: data plane, control plane

Data plane
- local, per-router function
- determines how datagram arriving on an input port is *forwarded* to an output port

Control plane
- network-wide logic
- determines how datagram is routed among routers along end-end path from source host to destination host
- main approach:
 - *routing protocols* implemented in routers
- new approach
 - *software-defined networking (SDN)*: implemented in logically centralized server(s)
Per-router control plane

Individual routing process *in every router*. They interact by exchanging routing protocol messages.
Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs). The controller computes routes.
Datagram networks

- IPv4, IPv6
- No network-level concept of “connection” or “flow”
- Each packet forwarded independently using destination host address
 - Packets between same source-dest pair may take different paths
IPv4 addressing: CIDR

Classful addressing (now obsolete): fixed-length subnet portion of 8, 16 or 24 bits

CIDR: Classless InterDomain Routing

- subnet portion of address of variable length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

```
11001000 00010111 00010000 00000000
```

200.23.16.0/23
Forwarding table

4 billion possible entries

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>11001000 00010111 00010000 00000000</code> through <code>11001000 00010111 00011000 00000000</code></td>
<td>0</td>
</tr>
<tr>
<td><code>11001000 00010111 00010111 11111111</code> through <code>11001000 00010111 00011000 00000000</code></td>
<td>1</td>
</tr>
<tr>
<td><code>11001000 00010111 00011000 00000000</code> through <code>11001000 00010111 00011111 11111111</code></td>
<td>2</td>
</tr>
<tr>
<td><code>11001000 00010111 00011111 11111111</code> otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

1/12/2017
Longest prefix match

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples

- **DA:** 11001000 00010111 000110110 10100001
 - Which interface?

- **DA:** 11001000 00010111 00011000 10101010
 - Which interface?

An forwarding table in an Internet core router has more than 500,000 IP prefixes.

Fast implementation uses Ternary Content Addressable Memory (TCAM), prefixes sorted in decreasing order
Virtual circuits: signaling protocols

- used to set up, maintain, tear down VC
- not used in Internet’s network layer, but may be used underneath the IP layer to provide a virtual link (e.g., MPLS tunnel)
Virtual circuit (VC)

- call setup, teardown for each call before data can flow
- each packet carries a VC identifier which
 - is fixed length and short
 - only needs to be unique for a link
 - is carried in an additional header inserted between link and network layer headers (called layer 2½)

- every router on source-dest path maintains state information for each passing VC
 - incoming and outgoing VC identifiers,
 - resources allocated to VC (bandwidth, buffers)
VC Forwarding table

Forwarding table in northwest router:

<table>
<thead>
<tr>
<th>Incoming interface</th>
<th>Incoming VC #</th>
<th>Outgoing interface</th>
<th>Outgoing VC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Forwarding is fast because short fixed-length VC numbers are used** vs. IP forwarding table with variable-length prefixes. (This is not forwarding in IP layer but it is considered to be in *data plane*.)

- **May have additional state information about service guarantees**
The Internet Network layer

Host, router network layer functions:

- Transport layer: TCP, UDP
 - Routing protocols
 - path selection
 - RIP, OSPF, BGP
 - IP protocol
 - addressing conventions
 - datagram format
 - packet handling conventions
 - ICMP protocol
 - error reporting
 - router “signaling”

Network layer

Link layer

physical layer

1/12/2017

Network Data Plane (S. S. Lam)
IP datagram format

- **IP protocol version number**
- **Header length**
- "**Type**" of data
- Max number of remaining hops (decremented at each router)
- Upper layer protocol to deliver payload to

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total datagram length</td>
<td>Number of bytes for the entire datagram</td>
</tr>
<tr>
<td>Fragment/Reassembly</td>
<td>Indicate if datagram is fragmented or not</td>
</tr>
<tr>
<td>Source IP address</td>
<td>32-bit address of the source node</td>
</tr>
<tr>
<td>Destination IP address</td>
<td>32-bit address of the destination node</td>
</tr>
<tr>
<td>Options</td>
<td>Additional data (if any)</td>
</tr>
<tr>
<td>Data</td>
<td>Variable length, typically a TCP or UDP segment</td>
</tr>
</tbody>
</table>

E.g. timestamp, record route taken, specify list of routers to visit.
IP address prefix: how to get one?

A: Typically, a customer network gets allocated a portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>

1/12/2017

Network Data Plane (S. S. Lam)
Hierarchical addressing: route aggregation allows efficient advertisement of routing information

Organization 0
200.23.16.0/23

Organization 1
200.23.18.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

Fly-By-Night-ISP

ISPs-R-Us

“Send me anything with address beginning 200.23.16.0/20 ”

“Send me anything with address beginning 199.31.0.0/16 ”

Internet
Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

Hole(s) in a block of addresses ← reason for longest prefix match

Organization 0
200.23.16.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

Organization 1
200.23.18.0/23

Fly-By-Night-ISP

"Send me anything with address beginning 200.23.16.0/20"

"Send me anything with address beginning 199.31.0.0/16 or 200.23.18.0/23"

Internet

Network Data Plane (S. S. Lam)
Access Control List (ACL)

- lists of rules used in firewalls and for guarding input ports and output ports
- *first match* determines action to take on packet

<table>
<thead>
<tr>
<th>action</th>
<th>source address</th>
<th>dest address</th>
<th>protocol</th>
<th>source port</th>
<th>dest port</th>
<th>flag bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>222.22/16</td>
<td>outside of 222.22/16</td>
<td>TCP</td>
<td>> 1023</td>
<td>80</td>
<td>any</td>
</tr>
<tr>
<td>allow</td>
<td>outside of 222.22/16</td>
<td>222.22/16</td>
<td>TCP</td>
<td>80</td>
<td>> 1023</td>
<td>ACK</td>
</tr>
<tr>
<td>allow</td>
<td>222.22/16</td>
<td>outside of 222.22/16</td>
<td>UDP</td>
<td>> 1023</td>
<td>53</td>
<td>---</td>
</tr>
<tr>
<td>allow</td>
<td>outside of 222.22/16</td>
<td>222.22/16</td>
<td>UDP</td>
<td>53</td>
<td>> 1023</td>
<td>----</td>
</tr>
<tr>
<td>deny</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>all</td>
</tr>
</tbody>
</table>
Packet filters and transformers in the data plane

- Let the packet universe be the set of all possible bit strings representing all feasible packet headers (or packets). A packet filter let a subset of packets pass through, while dropping all other packets.
- Forwarding tables and ACLs can be modeled as packet filters.
- We next consider network devices that transform packet headers.
NAT: Network Address Translation

rest of Internet → local network 10.0.0/24

138.76.29.7

10.0.0.4

10.0.0.1
10.0.0.2
10.0.0.3

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination within network have 10.0.0/24 addresses for source, destination
NAT: Network Address Translation

Motivation: local network uses just one IP address as far as outside world is concerned

- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable/visible by outside world (a security plus).
NAT: Network Address Translation

1: host 10.0.0.1 sends datagram with port number 3345

2: NAT router changes datagram's source addr and port number

3: Reply arrives for 138.76.29.7, 5001

4: NAT router changes datagram's dest addr and port number to 10.0.0.1, 3345

Network Data Plane (S. S. Lam) 24
NAT: Network Address Translation

- 16-bit port-number field:
 - 60,000+ simultaneous connections with a single IP address

- NAT is controversial:
 - routers should only process up to layer 3
 - violates “end-to-end argument”
 - NAT possibility must be taken into account by app designers, e.g., IPsec, P2P applications, etc.
 - address shortage should instead be solved by IPv6
IPv6

- Initial motivation: 32-bit address space soon to be completely allocated.
- Additional motivation:
 - simpler header format to speed up processing/forwarding
 - header change to facilitate QoS
- IPv6 datagram format:
 - fixed-length 40 byte header
 - no fragmentation allowed
IPv6 Header (Cont)

Priority: identify priority of datagrams within flow or in different apps

Flow Label: identify datagrams in same “flow.”
 (concept of “flow” not defined).

Next header: identify upper layer protocol for data

IPv6 Header Diagram

```
<table>
<thead>
<tr>
<th>ver</th>
<th>pri</th>
<th>flow label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>payload len</td>
</tr>
<tr>
<td></td>
<td></td>
<td>next hdr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hop limit</td>
</tr>
</tbody>
</table>
```

- **source address** (128 bits)
- **destination address** (128 bits)

data

32 bits
Other Changes from IPv4

- **Checksum**: removed entirely to reduce processing time at each hop
- **Options**: allowed, but outside of header, indicated by “Next Header” field
- **ICMPv6**: new version of ICMP
 - additional message types, e.g. “Packet Too Big”
 - including *multicast group management* functions
Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneously
 - no “flag day”
 - How will the network operate with mixed IPv4 and IPv6 routers?

- **Tunneling**: IPv6 carried as payload in IPv4 datagram among IPv4 routers (also vice versa)
Tunneling

Logical view:

Physical view:
Tunneling

Logical view:

Physical view:

Routers B and E have dual stacks.

In this example, B encapsulates v6 packet in v4 packet.

E extracts v6 packet from v4 packet.
Concept - Tunnel as a virtual link

Many possibilities:

- IPv4 in MPLS tunnel (virtual circuit)
- IPv6 in IPv4 tunnel (previous example)
- IPv4 in IPv6 tunnel
- IPv4 in IPv4 tunnel (new routing path)

...
Link Virtualization: A Network as a Link

Virtual circuits provided by

- ATM, frame relay, which are packet-switching networks in their own right (obsolete)
 - with service models, addressing, routing different from Internet
- A subnet of MPLS capable routers

Each is viewed as a link connecting two IP nodes
Multiprotocol label switching (MPLS)

- **initial goal**: speed up IP forwarding by using fixed-length label (instead of variable-length IP prefix) to do forwarding
 - borrowing ideas from Virtual Circuit (VC) approach
 - MPLS routers insert and remove MPLS header but IP datagram still keeps IP address
MPLS capable routers

- a.k.a. label-switched router
- forward packets to outgoing interface based only on label value (*does not inspect IP address*)
 - Much faster than longest prefix match
 - MPLS forwarding table distinct from IP forwarding tables
- **flexibility**: MPLS forwarding decisions can differ from those of IP
MPLS forwarding tables

There are two predetermined routes from R4 to A.
MPLS applications

- **Fast failure recovery** - rerouting flows quickly to pre-computed backup paths (useful for VoIP)

- **Traffic engineering** - network operator can override IP routing and allocate traffic toward the same destination to multiple paths

- **Resource provision for virtual private networks**
Generalized Forwarding in Software Defined Networking (SDN)

Each router contains a **flow table** that is computed and distributed by a **logically centralized routing controller**.
OpenFlow abstraction

- **match+action**: unifies different kinds of devices

- **Router** (layer 3)
 - **match**: longest destination IP prefix
 - **action**: forward to a port

- **Switch** (layer 2)
 - **match**: destination MAC/VLAN address
 - **action**: forward to port or flood

- **Firewall**
 - **match**: IP addresses and protocol field, TCP/UDP port numbers
 - **action**: permit or deny

- **NAT**
 - **match**: IP address and port
 - **action**: rewrite address and port
OpenFlow data plane abstraction

- **flow**: defined by header fields (for link, network, transport layers)
- **generalized forwarding**
 - *Flow entry*: match fields, priority, counters, instructions
 - *Actions*: for matched packet - drop, forward, modify the packet, or send it to controller

Flow table in a router/switch (computed and distributed by controller) defines router’s match+action rules
OpenFlow: Flow Table Entries

1. Drop packet
2. Forward packet to port(s)
3. Modify Fields
4. Encapsulate and send to controller

Switch Port	VLAN ID	MAC src	MAC dst	Eth type	IP Src	IP Dst	IP Prot	TCP Src_port	TCP Dst_port

Link layer | Network layer | Transport layer

1/12/2017

Network Data Plane (S. S. Lam)
The End