
1

Sliding Window Protocol and
TCP Congestion Control

Simon S. Lam
Department of Computer Science
Th U i it f T t A tiThe University of Texas at Austin

1TCP Congestion Control (Simon S. Lam)

2

Reliable data transferf
 important in app., transport, link layers

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

TCP Congestion Control (Simon S. Lam) 2

p y p ()

3

Channel AbstractionsChannel Abstract ons

 Lossy FIFO channel Lossy FIFO channel
 delivers a subsequence in FIFO order
 example: delivery service provided by a p y p y

physical link

L d i d li i (LRD) Lossy, reordering, duplicative (LRD)
channel
 x mpl : d liv s vic p vid d b IP b example: delivery service provided by IP or by

UDP protocol

TCP Congestion Control (Simon S. Lam) 3

4

Sliding Window Protocol
 Consider an infinite array, Source, at the

sender, and an infinite array, Sink, at the
receiver.

send windowSource:

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:

P1
Sender

g g

received r + RW – 1
Sink:

next expected

P2
Receiver

0 1 2 r

delivered receive window
d d ()

TCP Congestion Control (Simon S. Lam) 4

SW send window size (s - a ≤ SW)
RW receive window size

5

Sliding Windows in ActionSl d ng W ndows n Act on
Data unit r has just been received by P2

 Receive window slides forward Receive window slides forward
 P2 sends cumulative ack with sequence

number it expects to receive next (r+3)number it expects to receive next (r+3)

0 1 2 a–1 a s–1 s

send windowSource:
P1

Sender

unacknowledgedacknowledged
Sender

r+3

0 1 2 r

r + RW – 1
Sink:

P2
Receiver

next expected

TCP Congestion Control (Simon S. Lam) 5
delivered receive window

Receiver

6

Sliding Windows in ActionSl d ng W ndows n Act on
 P1 has just received cumulative ack with

3 t t d br+3 as next expected sequence number
 Send window slides forward

0 1 2 a–1 a s–1 s

send windowSource:

P1
Sender

acknowledged

r + RW – 1next expected

0 1 2 r

delivered receive window

r RW 1
Sink:

P2
Receiver

next expected

TCP Congestion Control (Simon S. Lam) 6

delivered receive window

7

Sliding Window protocol
 Functions provided

 error control (reliable delivery)
 in-order delivery
 flow and congestion control (by varying send

i d i)window size)
 TCP uses cumulative acks (needed for correctness)

Oth ki d f kOther kinds of acks (to improve performance)

 selective nack
 selective ack (TCP SACK) selective ack (TCP SACK)
 bit-vector representing entire state of receive

window (in addition to first sequence number of

TCP Congestion Control (Simon S. Lam) 7

(q
window)

8

Sliding Windows for Lossy FIFO Channels
A ll b f bi i k h d f A small number of bits in packet header for
sequence number

 Necessary and sufficient condition for correct Necessary and sufficient condition for correct
operation: SW + RW ≤ MaxSeqNum

 Necessity: RW receive window size
SW send window size

P1
Sender

0 1 2 a–1 a
send windowSource:

SW send window size

acknowledged unacknowledged

Sink: next expected

P2
Receiver

0 1 2

delivered

Sink: next expected

receive window

TCP Congestion Control (Simon S. Lam) 8

9

Sliding Windows for Lossy FIFO
Ch lChannels
 Sufficiency can only be Interesting special casesy y

demonstrated by using a
formal method to prove
that the protocol

g p
 SW = RW = 1

alternating-bit
lthat the protocol

provides reliable in-
order delivery. See
Sh k d L ACM

protocol
 SW = 7, RW = 1

out of order arrivalsShankar and Lam, ACM
TOPLAS, Vol. 14, No. 3,
July 1992.

out-of-order arrivals
not accepted, e.g.,
HDLCy

 SW = RW

TCP Congestion Control (Simon S. Lam) 9

10

Sliding Windows for LRD ChannelsSl d ng W ndows for LRD Channels

Assumption: Packets have bounded lifetime LAssumption: Packets have bounded lifetime L
 Be careful how fast sequence numbers are

consumed (i.e., by arrival of data to be sent m (, y f
into network)

(send rate)× L < MaxSeqNum
 TCP

 32-bit sequence numbers
 counts bytes
 assumes that datagrams will be discarded by IP

if too old

TCP Congestion Control (Simon S. Lam) 10

if too old

11

Window Size Controls Sending RateW g

RTTRTT

timeSource 1 2 W 1 2 W

data ACKs

time
Destination 1 2 W 1 2 W

 ~ W packets per RTT when no loss

11TCP Congestion Control (Simon S. Lam)

12

Throughput Throughput
 Limit the number of unacked transmitted

k ts i th t k t i d si Wpackets in the network to window size W

M th h t k t /
W

Max. throughput packets/sec
RTT

W MSS×
= bytes/sec

(assuming no loss, MSS denotes maximum segment size)

W MSS
RTT
×

(assuming no loss, MSS denotes maximum segment size)

Where did we apply Little’s Law?
Answer : Consider the TCP send buffer

12

Answer : Consider the TCP send buffer

TCP Congestion Control (Simon S. Lam)

13

Throughput or send rate?
 Previous formula actually provides an upper bound

 Average number in the send buffer is less than W unless g m ff
packet arrival rate to send buffer is infinite

 If a packet is lost in the network with probability p, then
the average time in send buffer is (1) Op RTT p T− × + ×g ff
Since TO > RTT, actual throughput is smaller.

 Th th hp t f h st’s TCP s nd b ff is th

(1) Op RTT p T× + ×

 The throughput of a host s TCP send buffer is the
host’s send rate into the network (including
original transmissions and retransmissions)

13TCP Congestion Control (Simon S. Lam)

14

Fast Retransmit
 Time-out period often

relatively long:
 If sender receives 3

duplicate ACKs forrelatively long
 long delay before

resending lost packet
 Detect lost segments

duplicate ACKs for
the same data, it
supposes that Detect lost segments

via duplicate ACKs
 Sender often sends

supposes that
segment after
ACKed data was

many segments back-to-
back

 If segment is lost,
h ll l k l

lost:
 fast retransmit:

resend se mentthere will likely be many
duplicate ACKs.

resend segment
before timer expires

TCP Congestion Control (Simon S. Lam) 14

15

Host A Host B

X

eg
m

en
t X

r
2n

d
se

eo
ut

 f
or

ti
m

e

time
R di t ft t i l d li t ACK

TCP Congestion Control (Simon S. Lam) 15

Resending a segment after triple duplicate ACK
without waiting for timeout

16

TCP Flow ControlF
receiver: explicitly informs

sender of (dynamically sender won’t overrun
flow control

y y
changing) amount of
free buffer space
 RcvWindow field in

receiver’s buffers by
transmitting too much,

too fast
TCP segment header

sender: keeps amount of sender keeps amount of
transmitted, unACKed
data less than most
recently received y
RcvWindow value

buffer at receive side of a TCP connection

TCP Congestion Control (Simon S. Lam) 16

17

Causes/costs of congestion: scenario
 four senders
 multi-hop paths λ

in
Q: what happens as and

increase at many
λ'in

 Timeout & retransmit
increase at many
senders?

Host A λin : original data

positive feedback
 instability

finite shared output
li k b ff

in g
λ'in : original data plus

retransmitted data

link buffers

Host B λout

TCP Congestion Control (Simon S. Lam) 17

18

Effect of CongestionEffect of Congest on
 W too big for many flows -> congestion
 Packet loss -> transmissions on links a packet has Packet loss -> transmissions on links a packet has

traversed prior to loss are wasted
 Congestion collapse due to too many retransmissions

and too much wasted transmission capacity
 October 1986, Internet had its first congestion

collapsecollapse
goodput

upper boundupper bound

collapse
desired

18
load (aggregate send rate)

TCP Congestion Control (Simon S. Lam)

collapse

19

TCP Window ControlTCP W ndow Control

 Receiver flow control Receiver flow control
 Avoid overloading receiver
 rcvwindow: receiver’s advertised window (also rwnd)
 Receiver sends rcvwindow to sender Receiver sends rcvwindow to sender

 Network congestion control
 Sender tries to avoid overloading network
 It infers network congestion from “loss indications”
 congwin: congestion window (also cwnd)

 Sender sets W = min (congwin, rcvwindow)

19TCP Congestion Control (Simon S. Lam)

20

TCP Congestion Control
 end-to-end control (no network

assistance)
 sender limits transmission:

How does sender
determine CongWin?

 loss event = timeout or sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

 Roughly the send buffer’s

 loss event timeout or
3 duplicate acks

 TCP sender reduces
CongWin after a loss Roughly, the send buffer s CongWin after a loss
event

three mechanisms:
lh h CongWin

/

where CongWin is in bytes

 slow start
 reduce to 1 segment

after timeout event
AIMD (ddi i i

throughput ≤ CongWin
RTT bytes/sec

 AIMD (additive increase
multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is
l t C Wi

TCP Congestion Control (Simon S. Lam) 20

equal to CongWin.

21

TCP Slow StartTCP Slow Start

 Probing for usable bandwidth Probing for usable bandwidth

When connection begins CongWin = 1 MSSWhen connection begins, CongWin = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 2500 bytes/sec = 20 kbpsy p

 available bandwidth may be >> MSS/RTTy
 desirable to quickly ramp up to a higher rate

TCP Congestion Control (Simon S. Lam) 21

22

TCP Slow Start (more)
 When connection

begins, increase rate
exponentially until

Host A Host B
exponentially until
first loss event or
“threshold”

d bl i

RT
T

 double CongWin every
RTT

 done by incrementing
CongWin by 1 MSS forCongWin by 1 MSS for
every ACK received

 Summary: initial rate
is slow but ramps upis slow but ramps up
exponentially fast time

TCP Congestion Control (Simon S. Lam) 22

23

Congestion avoidance state &
responses to loss eventsresponses to loss events

Q: If no loss, when should
the exponential increase
switch to linear? 12

14

w
 s

iz
e

TCP
Reno

3 dup ACKs

switch to linear?
A: When CongWin gets to

current value of
threshold 6

8

10

n
w

in
do

w
eg

m
en

ts
)

Reno

Implementation:
 For initial slow start,

h h ld l 0

2

4

ng
es

tio
n (s
e

threshold
TCP

Tahoe
threshold is set to a large
value (e.g., 64 Kbytes)

 Subsequently, threshold is
bl

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round
co

variable
 At a loss event, threshold is

set to 1/2 of CongWin just
b f l

Tahoe Reno

Note: For simplicity, CongWin is in number

TCP Congestion Control (Simon S. Lam) 23

before loss event
p y g

of segments in the above graph.

24

Rationale for Reno’s Fast Recoveryf F y
 After 3 dup ACKs:

 CongWin is cut in half 3 dup ACKs indicate g f
(multiplicative decrease)

 window then grows linearly
(additive increase)

 3 dup ACKs indicate
network capable of
delivering some segments (add t ve ncrease)

 But after timeout event:
 CongWin is set to 1 MSS

instead;
 timeout occurring
before 3 dup ACKs is instead;

 window then grows
exponentially to threshold,
then grows linearly

before 3 dup ACKs is
“more alarming”

then grows linearly

Additive Increase Multiplicative Decrease (AIMD)

TCP Congestion Control (Simon S. Lam) 24

25

TCP Reno (example scenario) (mp)

CongWin Timeout

3 dupACKs

halved

th sh ld h dInitial slow start t
threshold reached
during slow start

In this example, 3 dupACKs during slow
start before reaching initial threshold

24TCP Congestion Control (Simon S. Lam)

f g

26

Example: FR/FR entry and exit

9

Example FR/FR entry and ex t

S 1 2 3 4 5 6 87 1 10 119 timeS

timeR

1 2 3 4 5 6 87 1

Exit FR/FR1 1 1 1 1 1 1

10 11

loss
9

9
4

timeR

cwnd 8
ssthresh

7
4 4

4
4
11 deflate cwnd

4
 Above scenario: Packet 1 is lost, packets 2, 3, and

4 are received; 3 dupACKs with seq. no. 1 returned

ssthresh 4 44

 Fast retransmit
 Retransmit packet 1 upon 3 dupACKs

 Fast recovery (in steps)

26

y (p)
 Inflate cwnd with #dupACKs such that new packets 9,

10, and 11 can be sent while repairing loss
TCP Congestion Control (Simon S. Lam)

27

FR/FR (in more detail)FR/FR (n more deta l)

 Enter FR/FR after 3 dupACKsp
 Set ssthresh ← max(flightsize/2, 2)
 Retransmit lost packet
 Set cwnd ← ssthresh + #dupACKs (window inflation) Set cwnd ← ssthresh + #dupACKs (window inflation)
 Wait till W=min(rwnd, cwnd) is large enough; transmit

new packet(s)
O d ACK (1 RTT l t) s t d ssth sh On non-dup ACK (1 RTT later), set cwnd ← ssthresh
(window deflation)

 Enter Congestion Avoidance

27TCP Congestion Control (Simon S. Lam)

28

Summary: TCP Congestion Control (Reno)Summary TCP Congestion Control (Reno)
 When CongWin is below Threshold, sender in

slow-start phase window grows exponentially (untilslow-start phase, window grows exponentially (until
loss event or exceeding threshold).

 When CongWin is above Threshold, sender is in When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs Threshold When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to Threshold
(also fast retransmit)

 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

TCP Congestion Control (Simon S. Lam) 28

29

Successive TimeoutsSuccess ve T meouts
 When there is another timeout, double the timeout

valuevalue
 Keep doing so for each additional loss-retransmission

 Exponential backoff up to
max timeout value equalmax timeout value equal
to 64 times initial timeout
value

(There are other variations.)

29

Note: red line in figure denotes first timeout
TCP Congestion Control (Simon S. Lam)

30

AIMD in steady state (when no timeout)

multiplicative decrease:
cut CongWin in half
after loss event (3 dup

additive increase:
increase CongWin by
1 MSS every RTT in after loss event (3 dup

acks)
1 MSS every RTT in
the absence of any
loss event: probing

24 Kbytes

congestion
window What limits the average

window size (or throughput)?

16 Kbytes

8 Kbytes

TCP Congestion Control (Simon S. Lam) 30

timeLong-lived TCP connection

31

First approximation
M. Mathis, et al., “The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm,”ACM Computer Communicatons Review, 27(3), 1997.

No slow-start, no timeout, long-lived TCP
c nn cti nconnection

 Independent identically distributed “periods”
 Three dupACKs are received in a round with Three dupACKs are received in a round with

probability p
Ave.

31TCP Congestion Control (Simon S. Lam)

of RTTs

32

Geometric Distribution

d d l l f l h b b lIndependent trials - a trial fails with probability p
Ave. no. of transmissions to get first “failure”

1(1)ib
∞ ∞

 1

1 1

1

(1)

(1)

i
i

i i

i

n ib i p p

p i p

−

= =

∞
−

= = −

= −

1

(1)

(1) (1)

i

i i

p i p

d dp p p p
d d

=

∞ ∞

= −

= − − = − −

1 0

2

() ()

1 1
1 1

i i
p p p p

dp dp
dp p
dp p p

= =

= − =
− +

1 1
1/

dp p p
p

+
=

Ave no of trials to get first “success” is

32

Ave. no. of trials to get first success is
1/(1-p)

TCP Congestion Control (Simon S. Lam)

33

First approximation (cont.)
send rate (in packets/sec)

F rst approx mat on (cont.)
 Average number of
packets delivered in

23
no. of packets/period 8

time per period

W

WRTT
= =

packets delivered in
one period (area under
one saw-tooth)

time per period
2

1 / 1 3

RTT

p

= =

2 2
21 3

2 2 2 8
W W W + =

22
3

RTT p
RTT

p

= =

 Average number of
packets sent per period is
1/p

 Equate the two and solve
f W t

33

for W, we get

TCP Congestion Control (Simon S. Lam)

8
3

W
p

=

34

TCP ACK generation [RFC 1122, RFC 2581]TCP ACK generat on [RFC , RFC 58]

Event at Receiver TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACKexpected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other

send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq #

Immediately send duplicate ACK,
indicating seq. # of next expected bytehigher than expect seq. # .

Gap detected

Arrival of segment that
ti ll l t l fill

indicating seq. # of next expected byte

Immediate send ACK, provided that
t t t t l d f

34

partially or completely fills gap segment starts at lower end of gap

TCP Congestion Control (Simon S. Lam)

35

Receiver implements Delayed ACKsmp m D y K
 Receiver sends one ACK for every two packets

received -> each saw-tooth is WxRTT wide
d h 2-> area under a saw-tooth is 23 1

4
W

p
=

 Send rate is 1 / 1 / 1 3
44 / (3)

p p
RTT W RTT pRTT p

= =
⋅ ⋅

 One ACK for every b packets received -> send rate
is

() pp

1 3
2RTT bp

35

p

TCP Congestion Control (Simon S. Lam)

36

Challenges in the futureg f
 TCP average throughput (approximate) in terms of

loss rate, p

1.22 MSS
RTT p

⋅ for b = 1
p

 Example: 1500-byte segments, 100ms RTT, to get
10 Gbps throughput loss rate needs to be very low10 Gbps throughput, loss rate needs to be very low

p = 2x10-10

 New versions of TCP needed for connections with
large delay-bandwidth product
 E g data center networks (local global)

36TCP Congestion Control (Simon S. Lam)

 E.g., data center networks (local, global)

37

A more detailed model

Reference:
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Th h t A Si l M d l d it E i i l V lid ti ”Throughput: A Simple Model and its Empirical Validation,”
Proceedings ACM SIGCOMM, 1998.

TCP Congestion Control (Simon S. Lam) 37

38

Motivation Mot vat on

 Previous formulas not so accurate when Previous formulas not so accurate when
loss rates are high

 TCP traces show that there are more loss
indications due to timeouts (TO) than due ()
to triple dupACKs (TD)

38TCP Congestion Control (Simon S. Lam)

39

AIMD with Timeouts

i l d k

 No slow start
triple dup acks

 b = 1 (no delayed ack)

39TCP Congestion Control (Simon S. Lam)

40

Problem 3 in HW #2

 no triple duplicate Acks
 packet loss (timeout) with probability p

Simplified:

 packet loss (timeout) with probability p
 timeout interval fixed at T0 after each
loss

First success in
next cycle

TCP Congestion Control (Simon S. Lam) 40

41

The EndThe End

41TCP Congestion Control (Simon S. Lam)

