Sliding Window Protocol and
TCP Congestion Control

Simon S. Lam
Department of Computer Science
The University of Texas at Austin

TCP Congestion Control (Simon S. Lam)

1

Reliable data transfer

O important in app., transport, link layers

-
QO
O O
O %‘ senamgl |receiver I
8 - ProcCess Process
0 | 1
+= L()relic:ble c:hc:mnel)j ret_sencl) deliver data()
8_ 5 relicble data reliable data
o > transfer protocol transfer protocol
% O (sending side) (receiving side)
+ udt_send()i [packet | [packet| Irdt_rcv()
T—b()unrelicible c:hcmnel);r
(a) provided service (b) service implementation

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

TCP Congestion Control (Simon S. Lam)

Channel Abstractions

3 Lossy FIFO channel
O delivers a subsequence in FIFO order

O example: delivery service provided by a
physical link

3 Lossy, reordering, duplicative (LRD)
channel

O example: delivery service provided by IP or by
UDP protocol

TCP Congestion Control (Simon S. Lam)

Sliding Window Protocol

3 Consider an infinite array, Source, at the
sender, and an infinite array, Sink, at the

receiver.

Source: }‘— send window—’l

PL JoJuf2] [[[| t]a 1 s

Send

enaen acknowledged | unacknowledged”

Sink : next exr eder%ceived r+RW-1
ink » N

oftfz[[[[T [[[]r

P2 |

Receiver delivered | receive window |

SW send window size (s -a< SW)
RW receive window size

TCP Congestion Control (Simon S. Lam)

Sliding Windows in Action

3 Data unit r has just been received by P2
O Receive window slides forward

7 P2 sends cumulative ack with sequence
number it expects to receive next (r+3)

Source: send window

Sender

}‘—acknowledged—’TnacknowledgeT

-

Sink: next eTpecTed r+ fw -1

e 012l T T T TTTT]r
Receiver

. y |) . . —
delivered | receive window
TCP Congestion Control (Simon S. Lam)

Sliding Windows in Action

3 P1 has just received cumulative ack with
r+3 as next expected sequence number

o Send window slides forward

Source: }“ send window g
P1

sencer [0 E 2T et T o s

I acknowledged I

: next expected r+RW-1
Sink:

e oLt 2l TT T T T T Iel I]
Receiver

: \ | . .
delivered | receive window |

TCP Congestion Control (Simon S. Lam)

Sliding Window protocol

3 Functions provided
O error control (reliable delivery)
O in-order delivery
o flow and congestion control (by varying send
window size)
O TCP uses cumulative acks (needed for correctness)

3 Other kinds of acks (to improve performance)
O selective nack
O selective ack (TCP SACK)

O bit-vector representing entire state of receive
window (in addition to first sequence number of
window)

TCP Congestion Control (Simon S. Lam)

Sliding Windows for Lossy FIFO Channels

3 A small number of bits in packet header for
sequence humber

3 Necessary and sufficient condition for correct
operation: SW + RW < MaxSeqNum

O Necessity:

Source:

PLLoftf2] T T 1T bt
Sender a

send window

RW receive window size
SW send window size

acknowledged

Sink:

| unacknowledged

nex’rl expected

P2 |

Receiver |

delivered

receive window

TCP Congestion Control (Simon S. Lam) 8

Sliding Windows for Lossy FIFO
Channels

7 Sufficiency can only be O Interesting special cases
demonstrated by using a o SW = RW =1
formal method to prove
that the protocol
provides reliable in-
order delivery. See

alternating-bit
protocol

oSW=7,RW=1

Shankar and Lam, ACM out-of-order arrivals
TOPLAS, Vol. 14, No. 3, not accepted, e.g.,
July 1992, HDLC

o SW = RW

TCP Congestion Control (Simon S. Lam)

9

Sliding Windows for LRD Channels

3 Assumption: Packets have bounded lifetime L

7 Be careful how fast sequence numbers are
consumed (i.e., by arrival of data to be sent
into network)

(send rate)x L < MaxSeqNum

3 TCP

O 32-bit sequence numbers
O counts bytes

O assumes that datagrams will be discarded by IP
if too old

TCP Congestion Control (Simon S. Lam) 10

10

Window Size Controls Sending Rate

Source

Destination

1(2

» time

data

1

2

1

2

time

3 ~ W packets per RTT when no loss

TCP Congestion Control (Simon S. Lam)

11

11

Throughput

J Limit the number of unacked transmitted
packets in the network to window size W

W
3 Max. throughput = BTT packets/sec

WxMSS
= RIT bytes/sec

(assuming no loss, MSS denotes maximum segment size)

3 Where did we apply Little's Law?
Answer : Consider the TCP send buffer

TCP Congestion Control (Simon S. Lam) 12

12

Throughput or send rate?

3 Previous formula actually provides an upper bound

O Average humber in the send buffer is less than W unless
packet arrival rate to send buffer is infinite

O If a packet is lost in the network with probability p, then
the average time in send bufferis (1— p)xRTT + pxT,

Since T, > RTT, actual throughput is smaller.

3 The throughput of a host's TCP send buffer is the
host's send rate into the network (including
original fransmissions and reftransmissions)

TCP Congestion Control (Simon S. Lam)

13

13

Fast Retransmit

0 Time-out period often O If sender receives 3

relatively long: duplicate ACKs for
o long delay before -
resgendin;l lost packet the same data, it
7 Detect lost segments supposes that
via duplicate ACKs segment after
o Sender often sends ACKed data was
many segments back-to- lost:
back .
O If segment is lost, O fast retransmit:
there will likely be many resend segment
duplicate ACKs. before timer expires

TCP Congestion Control (Simon S. Lam) 14

14

\X
+—
<
Q)
e -
S
Q
m
2
N I
C SeSend 2nd
< SIMmen;
+—
s |
o
Q
EL
+ ¥ v
time

Resending a segment after triple duplicate ACK
without waiting for timeout

TCP Congestion Control (Simon S. Lam)

15

15

TCP Flow Control

-flow control
sender won't overrun
receiver's buffers by

transmitting foo much,
too fast

.|1— BevWindow —||-

i
/ A / _Fapplication

/ process
////
b RevBuffer ———

buffer at receive side of a TCP connection

data from
1%

receiver: explicitly informs
sender of (dynamically
changing) amount of
free buffer space
O RcvWindow field in
TCP segment header

sender: keeps amount of
transmitted, unACKed
data less than most

recently received
RcvWindow wvalue

TCP Congestion Control (Simon S. Lam) 16

16

Causes/costs of congestion: scenario

3 four senders
3 multi-hop paths
3 Timeout & retransmit

Q: what happens as kin and A",
Increase at many

senders? positive feedback

%l—;:m: original data > instability
' » original data plus ?l
' retransmitted data I
finite shared output
link puffers
Host B xout
1' N
[| A

TCP Congestion Control (Simon S. Lam) 17

17

Effect of Congestion

3 W too big for many flows -> congestion

O Packet loss -> transmissions on links a packet has
traversed prior to loss are wasted

O Congestion collapse due to too many retransmissions
and tfoo much wasted transmission capacity

3 October 1986, Internet had its first congestion
collapse

goodput
A
.~ upper bound

“——desired

.— collapse

load (aggregate send rate)
TCP Congestion Control (Simon S. Lam) 18

18

TCP Window Control

0 Receiver flow control
O Avoid overloading receiver
O rcvwindow: receiver's advertised window (also rwnd)
O Receiver sends rcvwindow to sender

0 Network congestion control
O Sender tries to avoid overloading network
o It infers network congestion from "loss indications”
O congwin: congestion window (also cwnd)

0 Sender sets W = min (congwin, rcvwindow)

TCP Congestion Control (Simon S. Lam)

19

19

TCP Congestion Control

7 end-to-end control (no network How does sender

assistance) determine CongWin?
7 sender limits transmission: 0 loss event = timeout or
LastByteSent-LastByteAcked 3 duplicate acks
< CongWin O TCP sender reduces
3 Roughly, the send buffer's CongWin after a loss
event
: three mechanisms:
CongWin :
throughput « bytes/sec O slow start
RTT
— O reduce to 1 segment
where CongWin is in bytes after timeout event

O AIMD (additive increase
multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is
equal to CongWin.

TCP Congestion Control (Simon S. Lam) 20

20

TCP Slow Start

O Probing for usable bandwidth

7 When connection begins, CongWin = 1 MSS

o Example: MSS = 500 bytes & RTT = 200 msec
o initial rate = 2500 bytes/sec = 20 kbps

O available bandwidth may be >> MSS/RTT
O desirable to quickly ramp up to a higher rate

TCP Congestion Control (Simon S. Lam) 21

21

TCP Slow Start (more)

[When connection
begins, increase rate
exponentially until
first loss event or
"threshold"

O double CongWin every
RTT

O done by incrementin
CongWin by 1 MSS for
every ACK received

J Summary: initial rate
is slow but ramps up
exponentially fast

time

TCP Congestion Control (Simon S. Lam)

22

22

Congestion avoidance state &

responses to loss events

Q: If no loss, when should
the exponential increase
switch to linear?

A: When CongWin gets to
current value of
threshold

Implementation:

3 For initial slow start,
threshold is set to a large
value (e.g., 64 Kbytes)

O Subsequently, threshold is
variable

O At aloss event, threshold is
set to 1/2 of CongWin just
before loss event

14
12
10

8

o N b~ O

3 dup ACKs

l

th res

TCP
Tahoe

congestion window size
(segments)

Note:

1.2 3 45 6 7 8 910 11121314 15

Transmission round

" Tahoe © Reno

For simplicity, CongWin is in number

of segments in the above graph.

TCP Congestion Control (Simon S. Lam) 23

23

Rationale for Reno's Fast Recovery

3 3 dup ACKs indicate
network capable of
delivering some segments

0 Timeou’r occurr'ing

~ AN/ A ...
061 ore 3 dup ACKs is

“more alarming”

0 After 3 dup ACKs:
O CongWin is cut in half
(multiplicative decrease)

O window then grows linearly
(additive increase)
3 But after timeout event:
O CongWin is set to 1 MSS
instead;
O window then grows

exponentially to threshold,
then grows linearly

Additive Increase Multiplicative Decrease (AIMD)

TCP Congestion Control (Simon S. Lam) 24

24

TCP Reno (example scenario)

CongWin Timeout

3 dupACKs

A

/ / halved M/

threshold reached
during slow start

Initial slow start

In this example, 3 dupACKs during slow
start before reaching initial threshold

TCP Congestion Control (Simon S. Lam) 24

25

Example: FR/FR entry and exit

8 911011)
. » time
LAy 7 Exit FR/FR
' ' | time
cwnd 8 7 9 11 4 <—deflate cwnd
ssthresh 4 4 4 4

O Above scenario: Packet 1 is lost, packets 2, 3, and
4 are received; 3 dupACKs with seq. no. 1 returned
3 Fast retransmit
O Retransmit packet 1 upon 3 dupACKs
O Fast recovery (in steps)

o Inflate cwnd with #dupACKs such that new packets 9,
10, and 11 can be sent while repairing loss
TCP Congestion Control (Simon S. Lam)

26

26

FR/FR (in more detail)

3 Enter FR/FR after 3 dupACKs
O Set ssthresh « max(flightsize/2, 2)
O Retransmit lost packet
O Set cwnd « ssthresh + #dupACKs (window inflation)

O Wait till W=min(rwnd, cwnd) is large enough; transmit
new packet(s)
O On non-dup ACK (1 RT
(window deflation)
3 Enter Congestion Avoidance

|

later), set cwnd « ssthresh

TCP Congestion Control (Simon S. Lam)

27

27

Summary: TCP Congestion Control (Reno)

0 When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially (until
loss event or exceeding threshold).

3 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

3 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to Threshold
(also fast retransmit)

3 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

TCP Congestion Control (Simon S. Lam) 28

28

Successive Timeouts

A When there is another timeout, double the timeout
value

3 Keep doing so for each additional loss-retransmission
o Exponential backoff up to 14
max timeout value equal 1.2}
to 64 times initial timeout

value

1F

o
w

bit rate (Mbps)
o
o)

(There are other variations.)

o
»

o
o

5 10 15 20
time (seconds)

(=]

(=)

Note: red line in figure denotes first timeout

TCP Congestion Control (Simon S. Lam) 29

29

AIMD in steady state (when no timeout)

additive increase:

multiplicative decrease:

increase CongWin by cut CongWin in half
1 MSS every RTT in after loss event (3 dup
the absence of any acks)
loss event: probing
congestion What limits the average
24 Kbylos | window size (or throughput)?

16 Kbytes —

8 Kbytes —

» time

Long-lived TCP connection

TCP Congestion Control (Simon S. Lam) 30

30

First approximation

M. Mathis, et al., "The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm,"ACM Computer Communicatons Review, 27(3), 1997.

3 No slow-start, no timeout, long-lived TCP
connection

3 Independent identically distributed "periods”

3 Three dupACKs are received in a round with
probability p

Ave.congestion window (packets)

LSS

I
I
|
I
I

w IW 5T1
0 2z w z 2w Time (RTT) # of RTTs

TCP Congestion Control (Simon S. Lam) 31

31

Geometric Distribution

Independent trials - a trial fails with probability p
Ave. no. of transmissions to get first "failure”

[ee]

n = Yib =ii(l— P p

=1

= pii(l— p)"

d < . d < .
= —p——2.(=p)==-p—2 (I-p)
dp; dpg

d 1 1

_pdp 1-1+p :pp2
= 1/p

Ave. no. of trials to get first "success” is
1/(1-p)

TCP Congestion Control (Simon S. Lam)

32

32

First approximation (cont.)

d Average number of
packets delivered in
one period (area under
onhe saw-tooth)

2 2
2 2\ 2 8
O Average humber of

packets sent per period is
1/p

O Equate the two and solve

W, we get
for W,weg wo |8

3p

send rate (in packets/sec)

3\/\/2
_ no. of packets/period | g
time per period STT (Vz\/j

I/p || 1 |3
2] RTT \2p

RTT
[3p

TCP Congestion Control (Simon S

. Lam)

33

33

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

TCP Congestion Control (Simon S. Lam)

34

34

Receiver implements Delayed ACKs

O Receiver sends one ACK for every two packets
received -> each saw-tooth is WxRTT wide

-> area under a saw-toothis 3W?2 1
4 p

3 Send rate is L/p — 1/p — l 3
RTT-W RTT-4/(3p) RTT\4p

T One ACK for every b packets received -> send rate
is

1 3
RTT '\ 2bp

TCP Congestion Control (Simon S. Lam) 35

35

Challenges in the future

3 TCP average throughput (approximate) in terms of
loss rate, p

1.22-MSS for b =1
RTT./p

0 Example: 1500-byte segments, 100ms RTT, to get

10 f'hnc 'I'hr'mlnhnu'l' loss rate needs to be verv low

bt 4
p=2x10-10

3 New versions of TCP needed for connections with
large delay-bandwidth product
o E.g., data center networks (local, global)

TCP Congestion Control (Simon S. Lam)

36

36

A more detailed model

Reference:

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP
Throughput: A Simple Model and its Empirical Validation,"
Proceedings ACM SIGCOMM, 1998.

TCP Congestion Control (Simon S. Lam)

37

37

Motivation

3 Previous formulas not so accurate when
loss rates are high

3 TCP traces show that there are more loss
indications due to timeouts (TO) than due
to triple dupACKs (TD)

TCP Congestion Control (Simon S. Lam)

38

38

AIMD with Timeou’rs

4 Wi | Wi
W _I_,—I_ R,=2 L
H | ﬁAﬁ

triple dup acks
3 No slow start

A b=1 (no delayed ack)

TCP Congestion Control (Simon S. Lam)

39

39

Problem 3 in HW #?2

Simplified:
M no triple duplicate Acks
A O packet loss (timeout) with probability p
O timeout interval fixed at T, after each
B = = =0 e T loss
First success in
Q next cycle .-
3 ? }(W—T)/2 \ —
12]4 [] [1----- [] |
123 ----- WWw+1 time (round number)
-(—T04>l<77-04>l LTO—)-
< one cycle >

TCP Congestion Control (Simon S. Lam) 40

40

The End

TCP Congestion Control (Simon S. Lam)

41

41

