
1

Sliding Window Protocol and
TCP Congestion Control

Simon S. Lam
Department of Computer Science
Th U i it f T t A tiThe University of Texas at Austin

1TCP Congestion Control (Simon S. Lam)

2

Reliable data transferf
 important in app., transport, link layers

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

TCP Congestion Control (Simon S. Lam) 2

p y p ()

3

Channel AbstractionsChannel Abstract ons

 Lossy FIFO channel Lossy FIFO channel
 delivers a subsequence in FIFO order
 example: delivery service provided by a p y p y

physical link

L d i d li i (LRD) Lossy, reordering, duplicative (LRD)
channel
 x mpl : d liv s vic p vid d b IP b example: delivery service provided by IP or by

UDP protocol

TCP Congestion Control (Simon S. Lam) 3

4

Sliding Window Protocol
 Consider an infinite array, Source, at the

sender, and an infinite array, Sink, at the
receiver.

send windowSource:

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:

P1
Sender

g g

received r + RW – 1
Sink:

next expected

P2
Receiver

0 1 2 r

delivered receive window
d d ()

TCP Congestion Control (Simon S. Lam) 4

SW send window size (s - a ≤ SW)
RW receive window size

5

Sliding Windows in ActionSl d ng W ndows n Act on
Data unit r has just been received by P2

 Receive window slides forward Receive window slides forward
 P2 sends cumulative ack with sequence

number it expects to receive next (r+3)number it expects to receive next (r+3)

0 1 2 a–1 a s–1 s

send windowSource:
P1

Sender

unacknowledgedacknowledged
Sender

r+3

0 1 2 r

r + RW – 1
Sink:

P2
Receiver

next expected

TCP Congestion Control (Simon S. Lam) 5
delivered receive window

Receiver

6

Sliding Windows in ActionSl d ng W ndows n Act on
 P1 has just received cumulative ack with

3 t t d br+3 as next expected sequence number
 Send window slides forward

0 1 2 a–1 a s–1 s

send windowSource:

P1
Sender

acknowledged

r + RW – 1next expected

0 1 2 r

delivered receive window

r RW 1
Sink:

P2
Receiver

next expected

TCP Congestion Control (Simon S. Lam) 6

delivered receive window

7

Sliding Window protocol
 Functions provided

 error control (reliable delivery)
 in-order delivery
 flow and congestion control (by varying send

i d i)window size)
 TCP uses cumulative acks (needed for correctness)

Oth ki d f kOther kinds of acks (to improve performance)

 selective nack
 selective ack (TCP SACK) selective ack (TCP SACK)
 bit-vector representing entire state of receive

window (in addition to first sequence number of

TCP Congestion Control (Simon S. Lam) 7

(q
window)

8

Sliding Windows for Lossy FIFO Channels
A ll b f bi i k h d f A small number of bits in packet header for
sequence number

 Necessary and sufficient condition for correct Necessary and sufficient condition for correct
operation: SW + RW ≤ MaxSeqNum

 Necessity: RW receive window size
SW send window size

P1
Sender

0 1 2 a–1 a
send windowSource:

SW send window size

acknowledged unacknowledged

Sink: next expected

P2
Receiver

0 1 2

delivered

Sink: next expected

receive window

TCP Congestion Control (Simon S. Lam) 8

9

Sliding Windows for Lossy FIFO
Ch lChannels
 Sufficiency can only be  Interesting special casesy y

demonstrated by using a
formal method to prove
that the protocol

g p
 SW = RW = 1

alternating-bit
lthat the protocol

provides reliable in-
order delivery. See
Sh k d L ACM

protocol
 SW = 7, RW = 1

out of order arrivalsShankar and Lam, ACM
TOPLAS, Vol. 14, No. 3,
July 1992.

out-of-order arrivals
not accepted, e.g.,
HDLCy

 SW = RW

TCP Congestion Control (Simon S. Lam) 9

10

Sliding Windows for LRD ChannelsSl d ng W ndows for LRD Channels

Assumption: Packets have bounded lifetime LAssumption: Packets have bounded lifetime L
 Be careful how fast sequence numbers are

consumed (i.e., by arrival of data to be sent m (, y f
into network)

(send rate)× L < MaxSeqNum
 TCP

 32-bit sequence numbers
 counts bytes
 assumes that datagrams will be discarded by IP

if too old

TCP Congestion Control (Simon S. Lam) 10

if too old

11

Window Size Controls Sending RateW g

RTTRTT

timeSource 1 2 W 1 2 W

data ACKs

time
Destination 1 2 W 1 2 W

 ~ W packets per RTT when no loss

11TCP Congestion Control (Simon S. Lam)

12

Throughput Throughput
 Limit the number of unacked transmitted

k ts i th t k t i d si Wpackets in the network to window size W

M th h t k t /
W

Max. throughput packets/sec
RTT



W MSS×
= bytes/sec

(assuming no loss, MSS denotes maximum segment size)

W MSS
RTT
×

(assuming no loss, MSS denotes maximum segment size)

Where did we apply Little’s Law?
Answer : Consider the TCP send buffer

12

Answer : Consider the TCP send buffer

TCP Congestion Control (Simon S. Lam)

13

Throughput or send rate?
 Previous formula actually provides an upper bound

 Average number in the send buffer is less than W unless g m ff
packet arrival rate to send buffer is infinite

 If a packet is lost in the network with probability p, then
the average time in send buffer is (1) Op RTT p T− × + ×g ff
Since TO > RTT, actual throughput is smaller.

 Th th hp t f h st’s TCP s nd b ff is th

(1) Op RTT p T× + ×

 The throughput of a host s TCP send buffer is the
host’s send rate into the network (including
original transmissions and retransmissions)

13TCP Congestion Control (Simon S. Lam)

14

Fast Retransmit
 Time-out period often

relatively long:
 If sender receives 3

duplicate ACKs forrelatively long
 long delay before

resending lost packet
 Detect lost segments

duplicate ACKs for
the same data, it
supposes that Detect lost segments

via duplicate ACKs
 Sender often sends

supposes that
segment after
ACKed data was

many segments back-to-
back

 If segment is lost,
h ll l k l

lost:
 fast retransmit:

resend se mentthere will likely be many
duplicate ACKs.

resend segment
before timer expires

TCP Congestion Control (Simon S. Lam) 14

15

Host A Host B

X

eg
m

en
t X

r
2n

d
se

eo
ut

 f
or

ti
m

e

time
R di t ft t i l d li t ACK

TCP Congestion Control (Simon S. Lam) 15

Resending a segment after triple duplicate ACK
without waiting for timeout

16

TCP Flow ControlF
receiver: explicitly informs

sender of (dynamically sender won’t overrun
flow control

y y
changing) amount of
free buffer space
 RcvWindow field in

receiver’s buffers by
transmitting too much,

too fast
TCP segment header

sender: keeps amount of sender keeps amount of
transmitted, unACKed
data less than most
recently received y
RcvWindow value

buffer at receive side of a TCP connection

TCP Congestion Control (Simon S. Lam) 16

17

Causes/costs of congestion: scenario
 four senders
 multi-hop paths λ

in
Q: what happens as and

increase at many
λ'in

 Timeout & retransmit
increase at many
senders?

Host A λin : original data

positive feedback
 instability

finite shared output
li k b ff

in g
λ'in : original data plus

retransmitted data

link buffers

Host B λout

TCP Congestion Control (Simon S. Lam) 17

18

Effect of CongestionEffect of Congest on
 W too big for many flows -> congestion
 Packet loss -> transmissions on links a packet has Packet loss -> transmissions on links a packet has

traversed prior to loss are wasted
 Congestion collapse due to too many retransmissions

and too much wasted transmission capacity
 October 1986, Internet had its first congestion

collapsecollapse
goodput

upper boundupper bound

collapse
desired

18
load (aggregate send rate)

TCP Congestion Control (Simon S. Lam)

collapse

19

TCP Window ControlTCP W ndow Control

 Receiver flow control Receiver flow control
 Avoid overloading receiver
 rcvwindow: receiver’s advertised window (also rwnd)
 Receiver sends rcvwindow to sender Receiver sends rcvwindow to sender

 Network congestion control
 Sender tries to avoid overloading network
 It infers network congestion from “loss indications”
 congwin: congestion window (also cwnd)

 Sender sets W = min (congwin, rcvwindow)

19TCP Congestion Control (Simon S. Lam)

20

TCP Congestion Control
 end-to-end control (no network

assistance)
 sender limits transmission:

How does sender
determine CongWin?

 loss event = timeout or sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

 Roughly the send buffer’s

 loss event timeout or
3 duplicate acks

 TCP sender reduces
CongWin after a loss Roughly, the send buffer s CongWin after a loss
event

three mechanisms:
lh h CongWin

/

where CongWin is in bytes

 slow start
 reduce to 1 segment

after timeout event
AIMD (ddi i i

throughput ≤ CongWin
RTT bytes/sec

 AIMD (additive increase
multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is
l t C Wi

TCP Congestion Control (Simon S. Lam) 20

equal to CongWin.

21

TCP Slow StartTCP Slow Start

 Probing for usable bandwidth Probing for usable bandwidth

When connection begins CongWin = 1 MSSWhen connection begins, CongWin = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 2500 bytes/sec = 20 kbpsy p

 available bandwidth may be >> MSS/RTTy
 desirable to quickly ramp up to a higher rate

TCP Congestion Control (Simon S. Lam) 21

22

TCP Slow Start (more)
 When connection

begins, increase rate
exponentially until

Host A Host B
exponentially until
first loss event or
“threshold”

d bl i

RT
T

 double CongWin every
RTT

 done by incrementing
CongWin by 1 MSS forCongWin by 1 MSS for
every ACK received

 Summary: initial rate
is slow but ramps upis slow but ramps up
exponentially fast time

TCP Congestion Control (Simon S. Lam) 22

23

Congestion avoidance state &
responses to loss eventsresponses to loss events

Q: If no loss, when should
the exponential increase
switch to linear? 12

14

w
 s

iz
e

TCP
Reno

3 dup ACKs

switch to linear?
A: When CongWin gets to

current value of
threshold 6

8

10

n
w

in
do

w
eg

m
en

ts
)

Reno

Implementation:
 For initial slow start,

h h ld l 0

2

4

ng
es

tio
n (s
e

threshold
TCP

Tahoe
threshold is set to a large
value (e.g., 64 Kbytes)

 Subsequently, threshold is
bl

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round
co

variable
 At a loss event, threshold is

set to 1/2 of CongWin just
b f l

Tahoe Reno

Note: For simplicity, CongWin is in number

TCP Congestion Control (Simon S. Lam) 23

before loss event
p y g

of segments in the above graph.

24

Rationale for Reno’s Fast Recoveryf F y
 After 3 dup ACKs:

 CongWin is cut in half  3 dup ACKs indicate g f
(multiplicative decrease)

 window then grows linearly
(additive increase)

 3 dup ACKs indicate
network capable of
delivering some segments (add t ve ncrease)

 But after timeout event:
 CongWin is set to 1 MSS

instead;
 timeout occurring
before 3 dup ACKs is instead;

 window then grows
exponentially to threshold,
then grows linearly

before 3 dup ACKs is
“more alarming”

then grows linearly

Additive Increase Multiplicative Decrease (AIMD)

TCP Congestion Control (Simon S. Lam) 24

25

TCP Reno (example scenario) (mp)

CongWin Timeout

3 dupACKs

halved

th sh ld h dInitial slow start t
threshold reached
during slow start

In this example, 3 dupACKs during slow
start before reaching initial threshold

24TCP Congestion Control (Simon S. Lam)

f g

26

Example: FR/FR entry and exit

9

Example FR/FR entry and ex t

S 1 2 3 4 5 6 87 1 10 119 timeS

timeR

1 2 3 4 5 6 87 1

Exit FR/FR1 1 1 1 1 1 1

10 11

loss
9

9
4

timeR

cwnd 8
ssthresh

7
4 4

4
4
11 deflate cwnd

4
 Above scenario: Packet 1 is lost, packets 2, 3, and

4 are received; 3 dupACKs with seq. no. 1 returned

ssthresh 4 44

 Fast retransmit
 Retransmit packet 1 upon 3 dupACKs

 Fast recovery (in steps)

26

y (p)
 Inflate cwnd with #dupACKs such that new packets 9,

10, and 11 can be sent while repairing loss
TCP Congestion Control (Simon S. Lam)

27

FR/FR (in more detail)FR/FR (n more deta l)

 Enter FR/FR after 3 dupACKsp
 Set ssthresh ← max(flightsize/2, 2)
 Retransmit lost packet
 Set cwnd ← ssthresh + #dupACKs (window inflation) Set cwnd ← ssthresh + #dupACKs (window inflation)
 Wait till W=min(rwnd, cwnd) is large enough; transmit

new packet(s)
O d ACK (1 RTT l t) s t d ssth sh On non-dup ACK (1 RTT later), set cwnd ← ssthresh
(window deflation)

 Enter Congestion Avoidance

27TCP Congestion Control (Simon S. Lam)

28

Summary: TCP Congestion Control (Reno)Summary TCP Congestion Control (Reno)
 When CongWin is below Threshold, sender in

slow-start phase window grows exponentially (untilslow-start phase, window grows exponentially (until
loss event or exceeding threshold).

 When CongWin is above Threshold, sender is in When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs Threshold When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to Threshold
(also fast retransmit)

 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

TCP Congestion Control (Simon S. Lam) 28

29

Successive TimeoutsSuccess ve T meouts
 When there is another timeout, double the timeout

valuevalue
 Keep doing so for each additional loss-retransmission

 Exponential backoff up to
max timeout value equalmax timeout value equal
to 64 times initial timeout
value

(There are other variations.)

29

Note: red line in figure denotes first timeout
TCP Congestion Control (Simon S. Lam)

30

AIMD in steady state (when no timeout)

multiplicative decrease:
cut CongWin in half
after loss event (3 dup

additive increase:
increase CongWin by
1 MSS every RTT in after loss event (3 dup

acks)
1 MSS every RTT in
the absence of any
loss event: probing

24 Kbytes

congestion
window What limits the average

window size (or throughput)?

16 Kbytes

8 Kbytes

TCP Congestion Control (Simon S. Lam) 30

timeLong-lived TCP connection

31

First approximation
M. Mathis, et al., “The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm,”ACM Computer Communicatons Review, 27(3), 1997.

No slow-start, no timeout, long-lived TCP
c nn cti nconnection

 Independent identically distributed “periods”
 Three dupACKs are received in a round with Three dupACKs are received in a round with

probability p
Ave.

31TCP Congestion Control (Simon S. Lam)

of RTTs

32

Geometric Distribution

d d l l f l h b b lIndependent trials - a trial fails with probability p
Ave. no. of transmissions to get first “failure”

1(1)ib
∞ ∞

  1

1 1

1

(1)

(1)

i
i

i i

i

n ib i p p

p i p

−

= =

∞
−

= = −

= −

 


1

(1)

(1) (1)

i

i i

p i p

d dp p p p
d d

=

∞ ∞

= −

= − − = − −



 
1 0

2

() ()

1 1
1 1

i i
p p p p

dp dp
dp p
dp p p

= =

= − =
− +

 

1 1
1/

dp p p
p

+
=

Ave no of trials to get first “success” is

32

Ave. no. of trials to get first success is
1/(1-p)

TCP Congestion Control (Simon S. Lam)

33

First approximation (cont.)
send rate (in packets/sec)

F rst approx mat on (cont.)
 Average number of
packets delivered in

23
no. of packets/period 8

time per period

W

WRTT
= =

 
 

packets delivered in
one period (area under
one saw-tooth)

time per period
2

1 / 1 3

RTT

p

 
 
 

= =

2 2
21 3

2 2 2 8
W W W   + =   
   

22
3

RTT p
RTT

p

= =
 
 
 

 Average number of
packets sent per period is
1/p

 Equate the two and solve
f W t

33

for W, we get

TCP Congestion Control (Simon S. Lam)

8
3

W
p

=

34

TCP ACK generation [RFC 1122, RFC 2581]TCP ACK generat on [RFC , RFC 58]

Event at Receiver TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACKexpected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other

send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq #

Immediately send duplicate ACK,
indicating seq. # of next expected bytehigher than expect seq. # .

Gap detected

Arrival of segment that
ti ll l t l fill

indicating seq. # of next expected byte

Immediate send ACK, provided that
t t t t l d f

34

partially or completely fills gap segment starts at lower end of gap

TCP Congestion Control (Simon S. Lam)

35

Receiver implements Delayed ACKsmp m D y K
 Receiver sends one ACK for every two packets

received -> each saw-tooth is WxRTT wide
d h 2-> area under a saw-tooth is 23 1

4
W

p
=

 Send rate is 1 / 1 / 1 3
44 / (3)

p p
RTT W RTT pRTT p

= =
⋅ ⋅

 One ACK for every b packets received -> send rate
is

() pp

1 3
2RTT bp

35

p

TCP Congestion Control (Simon S. Lam)

36

Challenges in the futureg f
 TCP average throughput (approximate) in terms of

loss rate, p

1.22 MSS
RTT p

⋅ for b = 1
p

 Example: 1500-byte segments, 100ms RTT, to get
10 Gbps throughput loss rate needs to be very low10 Gbps throughput, loss rate needs to be very low

p = 2x10-10

 New versions of TCP needed for connections with
large delay-bandwidth product
 E g data center networks (local global)

36TCP Congestion Control (Simon S. Lam)

 E.g., data center networks (local, global)

37

A more detailed model

Reference:
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Th h t A Si l M d l d it E i i l V lid ti ”Throughput: A Simple Model and its Empirical Validation,”
Proceedings ACM SIGCOMM, 1998.

TCP Congestion Control (Simon S. Lam) 37

38

Motivation Mot vat on

 Previous formulas not so accurate when Previous formulas not so accurate when
loss rates are high

 TCP traces show that there are more loss
indications due to timeouts (TO) than due ()
to triple dupACKs (TD)

38TCP Congestion Control (Simon S. Lam)

39

AIMD with Timeouts

i l d k

 No slow start
triple dup acks

 b = 1 (no delayed ack)

39TCP Congestion Control (Simon S. Lam)

40

Problem 3 in HW #2

 no triple duplicate Acks
 packet loss (timeout) with probability p

Simplified:

 packet loss (timeout) with probability p
 timeout interval fixed at T0 after each
loss

First success in
next cycle

TCP Congestion Control (Simon S. Lam) 40

41

The EndThe End

41TCP Congestion Control (Simon S. Lam)

