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Reliable data transferf
 important in app., transport, link layers

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Channel AbstractionsChannel Abstract ons

 Lossy FIFO channel Lossy FIFO channel
 delivers a subsequence in FIFO order
 example:  delivery service provided by a p y p y

physical link

L d i d li i (LRD) Lossy, reordering, duplicative (LRD) 
channel
 x mpl : d liv s vic p vid d b IP b example: delivery service provided by IP or by 

UDP protocol
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Sliding Window Protocol
 Consider an infinite array, Source, at the 

sender, and an infinite array, Sink, at the 
receiver.

send windowSource:

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:

P1
Sender

g g

received r + RW – 1
Sink:

next expected

P2
Receiver

0 1 2 r

delivered receive window
d d ( )
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SW  send window size    (s - a ≤ SW)
RW  receive window size



5

Sliding Windows in ActionSl d ng W ndows n Act on
Data unit r has just been received by P2

 Receive window slides forward Receive window slides forward
 P2 sends cumulative ack with sequence 

number it expects to receive next (r+3)number it expects to receive next (r+3)

0 1 2 a–1 a s–1 s

send windowSource:
P1

Sender

unacknowledgedacknowledged
Sender

r+3

0 1 2 r

r + RW – 1
Sink:

P2
Receiver

next expected
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Sliding Windows in ActionSl d ng W ndows n Act on
 P1 has just received cumulative ack with 

3 t t d br+3 as next expected sequence number
 Send window slides forward

0 1 2 a–1 a s–1 s

send windowSource:

P1
Sender

acknowledged

r + RW – 1next expected

0 1 2 r

delivered receive window

r  RW 1
Sink:

P2
Receiver

next expected
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Sliding Window protocol
 Functions provided

 error control (reliable delivery)
 in-order delivery
 flow and congestion control (by varying send 

i d i )window size)
 TCP uses cumulative acks (needed for correctness) 

Oth ki d f kOther kinds of acks (to improve performance)

 selective nack
 selective ack (TCP SACK) selective ack (TCP SACK)
 bit-vector representing entire state of receive 

window (in addition to first sequence number of 
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Sliding Windows for Lossy FIFO Channels
A ll b f bi i k h d f A small number of bits in packet header for 
sequence number

 Necessary and sufficient condition for correct Necessary and sufficient condition for correct 
operation: SW + RW ≤ MaxSeqNum

 Necessity: RW  receive window size
SW send window size

P1
Sender

0 1 2 a–1 a
send windowSource:

SW  send window size

acknowledged unacknowledged

Sink: next expected

P2
Receiver

0 1 2

delivered

Sink: next expected

receive window

TCP Congestion Control (Simon S. Lam) 8



9

Sliding Windows for Lossy FIFO 
Ch lChannels
 Sufficiency can only be  Interesting special casesy y

demonstrated by using a 
formal method to prove 
that the protocol

g p
 SW = RW = 1

alternating-bit 
lthat the protocol 

provides reliable in-
order delivery. See 
Sh k d L ACM

protocol
 SW = 7, RW = 1

out of order arrivalsShankar and Lam, ACM 
TOPLAS, Vol. 14, No. 3, 
July 1992.

out-of-order arrivals 
not accepted, e.g., 
HDLCy

 SW = RW
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Sliding Windows for LRD ChannelsSl d ng W ndows for LRD Channels

Assumption: Packets have bounded lifetime LAssumption: Packets have bounded lifetime L
 Be careful how fast sequence numbers are 

consumed (i.e., by arrival of data to be sent  m ( , y f
into network)

(send rate)× L < MaxSeqNum
 TCP

 32-bit sequence numbers
 counts bytes
 assumes that datagrams will be discarded by IP 

if too old
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Window Size Controls Sending RateW g

RTTRTT 

timeSource 1 2 W 1 2 W

data ACKs

time
Destination 1 2 W 1 2 W

 ~ W packets per RTT when no loss
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Throughput Throughput
 Limit the number of unacked transmitted 

k ts i th t k t i d si Wpackets in the network to window size W

M th h t k t /
W

Max. throughput                  packets/sec
RTT



W MSS×
=                bytes/sec

(assuming no loss, MSS denotes maximum segment size)

W MSS
RTT
×

(assuming no loss, MSS denotes maximum segment size)

Where did we apply Little’s Law?
Answer : Consider the TCP send buffer

12

Answer : Consider the TCP send buffer 
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Throughput or send rate? 
 Previous formula actually provides an upper bound

 Average number in the send buffer is less than W unless g m ff
packet arrival rate to send buffer is infinite 

 If a packet is lost in the network with probability p, then 
the average time in send buffer is   (1 ) Op RTT p T− × + ×g ff
Since TO > RTT, actual throughput is smaller.

 Th th hp t f h st’s TCP s nd b ff is th

(1 ) Op RTT p T× + ×

 The throughput of a host s TCP send buffer is the 
host’s send rate into the network (including 
original transmissions and retransmissions)

13TCP Congestion Control (Simon S. Lam)
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Fast  Retransmit
 Time-out period  often 

relatively long:
 If sender receives 3 

duplicate ACKs forrelatively long
 long delay before 

resending lost packet
 Detect lost segments

duplicate ACKs for 
the same data, it 
supposes that Detect lost segments 

via duplicate ACKs
 Sender often sends 

supposes that 
segment after 
ACKed data was 

many segments back-to-
back

 If segment is lost, 
h ll l k l

lost:
 fast retransmit:

resend se mentthere will likely be many 
duplicate ACKs.

resend segment 
before timer expires

TCP Congestion Control (Simon S. Lam) 14
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Host A Host B

X

eg
m

en
t X

r 
2n

d
se

eo
ut

 f
or

ti
m

e

time
R di t ft t i l d li t ACK
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Resending a segment after triple duplicate ACK 
without waiting for timeout
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TCP Flow ControlF
receiver: explicitly informs 

sender of (dynamically sender won’t overrun
flow control

y y
changing) amount of 
free buffer space 
 RcvWindow field in 

receiver’s buffers by
transmitting too much,

too fast
TCP segment header

sender: keeps amount of sender keeps amount of
transmitted, unACKed 
data less than most 
recently received y
RcvWindow value

buffer at receive side of a TCP connection

TCP Congestion Control (Simon S. Lam) 16
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Causes/costs of congestion: scenario
 four senders
 multi-hop paths λ

in
Q: what happens as      and      

increase at many
λ'in

 Timeout & retransmit
increase at many 
senders?

Host A λin : original data

positive feedback 
 instability

finite shared output 
li k b ff

in g
λ'in : original data plus 

retransmitted data

link buffers

Host B λout

TCP Congestion Control (Simon S. Lam) 17
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Effect of CongestionEffect of Congest on
 W too big for many flows -> congestion
 Packet loss -> transmissions on links a packet has Packet loss -> transmissions on links a packet has 

traversed prior to loss are wasted
 Congestion collapse due to too many retransmissions 

and too much wasted transmission capacity
 October 1986, Internet had its first congestion 

collapsecollapse
goodput

upper boundupper bound

collapse
desired

18
load (aggregate send rate)

TCP Congestion Control (Simon S. Lam)
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TCP Window ControlTCP W ndow Control

 Receiver flow control Receiver flow control
 Avoid overloading receiver
 rcvwindow:  receiver’s advertised window  (also rwnd)
 Receiver sends rcvwindow to sender Receiver sends rcvwindow to sender

 Network congestion control
 Sender tries to avoid overloading network
 It infers network congestion from “loss indications”
 congwin: congestion window (also cwnd)

 Sender sets W = min (congwin, rcvwindow)

19TCP Congestion Control (Simon S. Lam)
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TCP Congestion Control
 end-to-end control (no network 

assistance)
 sender limits transmission:

How does  sender 
determine CongWin?

 loss event = timeout or sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

 Roughly the send buffer’s

 loss event  timeout or
3 duplicate acks

 TCP sender reduces 
CongWin after a loss Roughly, the send buffer s CongWin after a loss 
event

three mechanisms:
lh h CongWin

/

where CongWin is in bytes

 slow start
 reduce to 1 segment 

after timeout event
AIMD ( ddi i i

throughput  ≤ CongWin
RTT bytes/sec

 AIMD (additive increase 
multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is 
l t C Wi

TCP Congestion Control (Simon S. Lam) 20
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TCP Slow StartTCP Slow Start

 Probing for usable bandwidth Probing for usable bandwidth

When connection begins CongWin = 1 MSSWhen connection begins, CongWin = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 2500 bytes/sec = 20 kbpsy p

 available bandwidth may be >> MSS/RTTy
 desirable to quickly ramp up to a higher rate

TCP Congestion Control (Simon S. Lam) 21
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TCP Slow Start (more)
 When connection 

begins, increase rate 
exponentially until

Host A Host B
exponentially until 
first loss event or 
“threshold”

d bl i

RT
T

 double CongWin every 
RTT

 done by incrementing 
CongWin by 1 MSS forCongWin by 1 MSS for 
every ACK received

 Summary: initial rate 
is slow but ramps upis slow but ramps up 
exponentially fast time

TCP Congestion Control (Simon S. Lam) 22
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Congestion avoidance state & 
responses to loss eventsresponses to loss events

Q: If no loss, when should 
the exponential increase 
switch to linear? 12

14

w
 s

iz
e 

TCP
Reno

3 dup ACKs

switch to linear? 
A: When CongWin gets to 

current value of 
threshold 6

8

10

n 
w

in
do

w
eg

m
en

ts
)

Reno

Implementation:
 For initial slow start, 

h h ld l 0

2

4

ng
es

tio
n (s
e

threshold
TCP

Tahoe
threshold is set to a large 
value (e.g., 64 Kbytes)

 Subsequently, threshold is 
bl

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round
co

variable
 At a loss event, threshold is 

set to 1/2 of CongWin just 
b f l

Tahoe Reno

Note: For simplicity, CongWin is in number 
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before loss event
p y g

of segments in the above graph. 
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Rationale for Reno’s Fast Recoveryf F y
 After 3 dup ACKs:

 CongWin is cut in half  3 dup ACKs indicate g f
(multiplicative decrease)

 window then grows linearly 
(additive increase)

 3 dup ACKs indicate
network capable of 
delivering some segments (add t ve ncrease)

 But after timeout event:
 CongWin is set to 1 MSS 

instead;
 timeout occurring 
before 3 dup ACKs is instead; 

 window then grows 
exponentially to threshold, 
then grows linearly

before 3 dup ACKs is 
“more alarming”

then grows linearly

Additive Increase Multiplicative Decrease (AIMD)

TCP Congestion Control (Simon S. Lam) 24
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TCP Reno (example scenario) ( mp )

CongWin Timeout

3 dupACKs

halved

th sh ld h dInitial slow start t
threshold reached 
during slow start

In this example, 3 dupACKs during slow
start before reaching initial threshold

24TCP Congestion Control (Simon S. Lam)
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Example: FR/FR entry and exit

9

Example FR/FR entry and ex t

S 1 2 3 4 5 6 87 1 10 119 timeS

timeR

1 2 3 4 5 6 87 1

Exit FR/FR1     1    1 1    1   1   1         

10 11

loss
9

9
4

timeR

cwnd 8
ssthresh

7
4 4

4
4
11 deflate cwnd

4
 Above scenario: Packet 1 is lost, packets 2, 3, and 

4 are received; 3 dupACKs with seq. no. 1 returned

ssthresh 4 44

 Fast retransmit
 Retransmit packet 1 upon 3 dupACKs

 Fast recovery (in steps)

26

y ( p )
 Inflate cwnd with #dupACKs such that new packets 9, 

10, and 11 can be sent while repairing loss
TCP Congestion Control (Simon S. Lam)
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FR/FR (in more detail)FR/FR ( n more deta l)

 Enter FR/FR after 3 dupACKsp
 Set ssthresh ← max(flightsize/2, 2)
 Retransmit lost packet
 Set cwnd ← ssthresh + #dupACKs (window inflation) Set cwnd ← ssthresh + #dupACKs (window inflation)
 Wait till W=min(rwnd, cwnd) is large enough; transmit 

new packet(s)
O d ACK (1 RTT l t ) s t d ssth sh On non-dup ACK (1 RTT later), set cwnd ← ssthresh
(window deflation)

 Enter Congestion Avoidance

27TCP Congestion Control (Simon S. Lam)
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Summary: TCP Congestion Control (Reno)Summary  TCP Congestion Control (Reno)
 When CongWin is below Threshold, sender in 

slow-start phase window grows exponentially (untilslow-start phase, window grows exponentially (until 
loss event or exceeding threshold).

 When CongWin is above Threshold, sender is in When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs Threshold When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to Threshold
(also fast retransmit)

 When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.

TCP Congestion Control (Simon S. Lam) 28



29

Successive TimeoutsSuccess ve T meouts
 When there is another timeout, double the timeout 

valuevalue 
 Keep doing so for each additional loss-retransmission

 Exponential backoff up to 
max timeout value equalmax timeout value equal 
to 64 times initial timeout 
value

(There are other variations.)

29

Note: red line in figure denotes first timeout
TCP Congestion Control (Simon S. Lam)
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AIMD in steady state (when no timeout)

multiplicative decrease:
cut CongWin in half 
after loss event (3 dup

additive increase:
increase  CongWin by 
1 MSS every RTT in after loss event (3 dup 

acks)
1 MSS every RTT in 
the absence of any 
loss event: probing

24 Kbytes

congestion
window What limits the average 

window size (or throughput)?

16 Kbytes

8 Kbytes

TCP Congestion Control (Simon S. Lam) 30
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First approximation
M. Mathis, et al., “The Macroscopic Behavior of the TCP Congestion 
Avoidance Algorithm,”ACM Computer Communicatons Review, 27(3), 1997.

No slow-start, no timeout, long-lived TCP 
c nn cti nconnection

 Independent identically distributed “periods”
 Three dupACKs are received in a round with Three dupACKs are received in a round with 

probability p
Ave.

31TCP Congestion Control (Simon S. Lam)
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Geometric Distribution

d d l l f l h b b lIndependent trials - a trial fails with probability p 
Ave. no. of transmissions to get first “failure”

1(1 )ib
∞ ∞

  1

1 1

1

(1 )

(1 )

i
i

i i

i

n ib i p p

p i p

−

= =

∞
−

= = −

= −

 


1

(1 )

(1 ) (1 )

i

i i

p i p

d dp p p p
d d

=

∞ ∞

= −

= − − = − −



 
1 0

2

( ) ( )

1 1
1 1

i i
p p p p

dp dp
dp p
dp p p

= =

= − =
− +

 

1 1
1/

dp p p
p

+
=

Ave no of trials to get first “success” is

32

Ave. no. of trials to get first success is 
1/(1-p)
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First approximation (cont.)
send rate (in packets/sec)

F rst approx mat on (cont.)
 Average number of 
packets delivered in

23
no. of packets/period 8

time per period

W

WRTT
= =

 
 

packets delivered in 
one period (area under 
one saw-tooth)

time per period
2

1 / 1 3

RTT

p

 
 
 

= =

2 2
21 3

2 2 2 8
W W W   + =   
   

22
3

RTT p
RTT

p

= =
 
 
 

 Average number of 
packets sent per period is 
1/p

 Equate the two and solve 
f W t

33

for W, we get

TCP Congestion Control (Simon S. Lam)
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TCP ACK generation [RFC 1122, RFC 2581]TCP ACK generat on [RFC , RFC 58 ]

Event at Receiver TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACKexpected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 

send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq #

Immediately send duplicate ACK, 
indicating seq. # of next expected bytehigher than expect seq. # .

Gap detected

Arrival of segment that 
ti ll l t l fill

indicating seq. # of next expected byte

Immediate send ACK, provided that
t t t t l d f

34

partially or completely fills gap segment starts at lower end of gap

TCP Congestion Control (Simon S. Lam)
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Receiver implements Delayed ACKsmp m D y K
 Receiver sends one ACK for every two packets 

received -> each  saw-tooth is WxRTT wide 
d h 2-> area under a saw-tooth is 23 1

4
W

p
=

 Send rate is 1 / 1 / 1 3
44 / (3 )

p p
RTT W RTT pRTT p

= =
⋅ ⋅

 One ACK for every b packets received -> send rate 
is

( ) pp

1 3
2RTT bp

35

p
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Challenges in the futureg f
 TCP average throughput (approximate) in terms of 

loss rate, p

1.22 MSS
RTT p

⋅ for b = 1
p

 Example: 1500-byte segments, 100ms RTT, to get 
10 Gbps throughput loss rate needs to be very low10 Gbps throughput, loss rate needs to be very low

p = 2x10-10

 New versions of TCP needed for connections with 
large delay-bandwidth product
 E g data center networks (local global)

36TCP Congestion Control (Simon S. Lam)
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A more detailed model

Reference:
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Th h t A Si l M d l d it E i i l V lid ti ”Throughput: A Simple Model and its Empirical Validation,”
Proceedings ACM SIGCOMM, 1998.
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Motivation Mot vat on

 Previous formulas not so accurate when Previous formulas not so accurate when 
loss rates are high

 TCP traces show that there are more loss 
indications due to timeouts (TO) than due ( )
to triple dupACKs (TD)

38TCP Congestion Control (Simon S. Lam)
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AIMD with Timeouts 

i l d k

 No slow start
triple dup acks

 b = 1  (no delayed ack)

39TCP Congestion Control (Simon S. Lam)
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Problem 3 in HW #2

 no triple duplicate Acks
 packet loss (timeout) with probability p

Simplified:

 packet loss (timeout) with probability p
 timeout interval fixed at T0 after each 
loss

First success in 
next cycle

TCP Congestion Control (Simon S. Lam) 40
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The EndThe End

41TCP Congestion Control (Simon S. Lam)


