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Reliable data transferf
 important in app., transport, link layers

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Channel AbstractionsChannel Abstract ons

 Lossy FIFO channel Lossy FIFO channel
 delivers a subsequence in FIFO order
 example:  delivery service provided by a p y p y

physical link

L d i d li i (LRD) Lossy, reordering, duplicative (LRD) 
channel
 x mpl : d liv s vic p vid d b IP b example: delivery service provided by IP or by 

UDP protocol
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Sliding Window Protocol
 Consider an infinite array, Source, at the 

sender, and an infinite array, Sink, at the 
receiver.

send windowSource:

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:

P1
Sender

g g

received r + RW – 1
Sink:

next expected

P2
Receiver

0 1 2 r

delivered receive window
d d ( )
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SW  send window size    (s - a ≤ SW)
RW  receive window size



5

Sliding Windows in ActionSl d ng W ndows n Act on
Data unit r has just been received by P2

 Receive window slides forward Receive window slides forward
 P2 sends cumulative ack with sequence 

number it expects to receive next (r+3)number it expects to receive next (r+3)

0 1 2 a–1 a s–1 s

send windowSource:
P1

Sender

unacknowledgedacknowledged
Sender

r+3

0 1 2 r

r + RW – 1
Sink:

P2
Receiver

next expected
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Sliding Windows in ActionSl d ng W ndows n Act on
 P1 has just received cumulative ack with 

3 t t d br+3 as next expected sequence number
 Send window slides forward

0 1 2 a–1 a s–1 s

send windowSource:

P1
Sender

acknowledged

r + RW – 1next expected

0 1 2 r

delivered receive window

r  RW 1
Sink:

P2
Receiver

next expected
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Sliding Window protocol
 Functions provided

 error control (reliable delivery)
 in-order delivery
 flow and congestion control (by varying send 

i d i )window size)
 TCP uses cumulative acks (needed for correctness) 

Oth ki d f kOther kinds of acks (to improve performance)

 selective nack
 selective ack (TCP SACK) selective ack (TCP SACK)
 bit-vector representing entire state of receive 

window (in addition to first sequence number of 
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Sliding Windows for Lossy FIFO Channels
A ll b f bi i k h d f A small number of bits in packet header for 
sequence number

 Necessary and sufficient condition for correct Necessary and sufficient condition for correct 
operation: SW + RW ≤ MaxSeqNum

 Necessity: RW  receive window size
SW send window size

P1
Sender

0 1 2 a–1 a
send windowSource:

SW  send window size

acknowledged unacknowledged

Sink: next expected

P2
Receiver

0 1 2

delivered

Sink: next expected

receive window
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Sliding Windows for Lossy FIFO 
Ch lChannels
 Sufficiency can only be  Interesting special casesy y

demonstrated by using a 
formal method to prove 
that the protocol

g p
 SW = RW = 1

alternating-bit 
lthat the protocol 

provides reliable in-
order delivery. See 
Sh k d L ACM

protocol
 SW = 7, RW = 1

out of order arrivalsShankar and Lam, ACM 
TOPLAS, Vol. 14, No. 3, 
July 1992.

out-of-order arrivals 
not accepted, e.g., 
HDLCy

 SW = RW
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Sliding Windows for LRD ChannelsSl d ng W ndows for LRD Channels

Assumption: Packets have bounded lifetime LAssumption: Packets have bounded lifetime L
 Be careful how fast sequence numbers are 

consumed (i.e., by arrival of data to be sent  m ( , y f
into network)

(send rate)× L < MaxSeqNum
 TCP

 32-bit sequence numbers
 counts bytes
 assumes that datagrams will be discarded by IP 

if too old

TCP Congestion Control (Simon S. Lam) 10
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Window Size Controls Sending RateW g

RTTRTT 

timeSource 1 2 W 1 2 W

data ACKs

time
Destination 1 2 W 1 2 W

 ~ W packets per RTT when no loss
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Throughput Throughput
 Limit the number of unacked transmitted 

k ts i th t k t i d si Wpackets in the network to window size W

M th h t k t /
W

Max. throughput                  packets/sec
RTT



W MSS×
=                bytes/sec

(assuming no loss, MSS denotes maximum segment size)

W MSS
RTT
×

(assuming no loss, MSS denotes maximum segment size)

Where did we apply Little’s Law?
Answer : Consider the TCP send buffer

12

Answer : Consider the TCP send buffer 
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Throughput or send rate? 
 Previous formula actually provides an upper bound

 Average number in the send buffer is less than W unless g m ff
packet arrival rate to send buffer is infinite 

 If a packet is lost in the network with probability p, then 
the average time in send buffer is   (1 ) Op RTT p T− × + ×g ff
Since TO > RTT, actual throughput is smaller.

 Th th hp t f h st’s TCP s nd b ff is th

(1 ) Op RTT p T× + ×

 The throughput of a host s TCP send buffer is the 
host’s send rate into the network (including 
original transmissions and retransmissions)

13TCP Congestion Control (Simon S. Lam)
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Fast  Retransmit
 Time-out period  often 

relatively long:
 If sender receives 3 

duplicate ACKs forrelatively long
 long delay before 

resending lost packet
 Detect lost segments

duplicate ACKs for 
the same data, it 
supposes that Detect lost segments 

via duplicate ACKs
 Sender often sends 

supposes that 
segment after 
ACKed data was 

many segments back-to-
back

 If segment is lost, 
h ll l k l

lost:
 fast retransmit:

resend se mentthere will likely be many 
duplicate ACKs.

resend segment 
before timer expires

TCP Congestion Control (Simon S. Lam) 14



15

Host A Host B

X

eg
m

en
t X

r 
2n

d
se

eo
ut

 f
or

ti
m

e

time
R di t ft t i l d li t ACK

TCP Congestion Control (Simon S. Lam) 15

Resending a segment after triple duplicate ACK 
without waiting for timeout
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TCP Flow ControlF
receiver: explicitly informs 

sender of (dynamically sender won’t overrun
flow control

y y
changing) amount of 
free buffer space 
 RcvWindow field in 

receiver’s buffers by
transmitting too much,

too fast
TCP segment header

sender: keeps amount of sender keeps amount of
transmitted, unACKed 
data less than most 
recently received y
RcvWindow value

buffer at receive side of a TCP connection

TCP Congestion Control (Simon S. Lam) 16
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Causes/costs of congestion: scenario
 four senders
 multi-hop paths λ

in
Q: what happens as      and      

increase at many
λ'in

 Timeout & retransmit
increase at many 
senders?

Host A λin : original data

positive feedback 
 instability

finite shared output 
li k b ff

in g
λ'in : original data plus 

retransmitted data

link buffers

Host B λout

TCP Congestion Control (Simon S. Lam) 17
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Effect of CongestionEffect of Congest on
 W too big for many flows -> congestion
 Packet loss -> transmissions on links a packet has Packet loss -> transmissions on links a packet has 

traversed prior to loss are wasted
 Congestion collapse due to too many retransmissions 

and too much wasted transmission capacity
 October 1986, Internet had its first congestion 

collapsecollapse
goodput

upper boundupper bound

collapse
desired

18
load (aggregate send rate)
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TCP Window ControlTCP W ndow Control

 Receiver flow control Receiver flow control
 Avoid overloading receiver
 rcvwindow:  receiver’s advertised window  (also rwnd)
 Receiver sends rcvwindow to sender Receiver sends rcvwindow to sender

 Network congestion control
 Sender tries to avoid overloading network
 It infers network congestion from “loss indications”
 congwin: congestion window (also cwnd)

 Sender sets W = min (congwin, rcvwindow)

19TCP Congestion Control (Simon S. Lam)
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TCP Congestion Control
 end-to-end control (no network 

assistance)
 sender limits transmission:

How does  sender 
determine CongWin?

 loss event = timeout or sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

 Roughly the send buffer’s

 loss event  timeout or
3 duplicate acks

 TCP sender reduces 
CongWin after a loss Roughly, the send buffer s CongWin after a loss 
event

three mechanisms:
lh h CongWin

/

where CongWin is in bytes

 slow start
 reduce to 1 segment 

after timeout event
AIMD ( ddi i i

throughput  ≤ CongWin
RTT bytes/sec

 AIMD (additive increase 
multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is 
l t C Wi

TCP Congestion Control (Simon S. Lam) 20
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TCP Slow StartTCP Slow Start

 Probing for usable bandwidth Probing for usable bandwidth

When connection begins CongWin = 1 MSSWhen connection begins, CongWin = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 2500 bytes/sec = 20 kbpsy p

 available bandwidth may be >> MSS/RTTy
 desirable to quickly ramp up to a higher rate

TCP Congestion Control (Simon S. Lam) 21
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TCP Slow Start (more)
 When connection 

begins, increase rate 
exponentially until

Host A Host B
exponentially until 
first loss event or 
“threshold”

d bl i

RT
T

 double CongWin every 
RTT

 done by incrementing 
CongWin by 1 MSS forCongWin by 1 MSS for 
every ACK received

 Summary: initial rate 
is slow but ramps upis slow but ramps up 
exponentially fast time

TCP Congestion Control (Simon S. Lam) 22
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Congestion avoidance state & 
responses to loss eventsresponses to loss events

Q: If no loss, when should 
the exponential increase 
switch to linear? 12

14

w
 s

iz
e 

TCP
Reno

3 dup ACKs

switch to linear? 
A: When CongWin gets to 

current value of 
threshold 6

8

10

n 
w

in
do

w
eg

m
en

ts
)

Reno

Implementation:
 For initial slow start, 

h h ld l 0

2

4

ng
es

tio
n (s
e

threshold
TCP

Tahoe
threshold is set to a large 
value (e.g., 64 Kbytes)

 Subsequently, threshold is 
bl

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round
co

variable
 At a loss event, threshold is 

set to 1/2 of CongWin just 
b f l

Tahoe Reno

Note: For simplicity, CongWin is in number 
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before loss event
p y g

of segments in the above graph. 
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Rationale for Reno’s Fast Recoveryf F y
 After 3 dup ACKs:

 CongWin is cut in half  3 dup ACKs indicate g f
(multiplicative decrease)

 window then grows linearly 
(additive increase)

 3 dup ACKs indicate
network capable of 
delivering some segments (add t ve ncrease)

 But after timeout event:
 CongWin is set to 1 MSS 

instead;
 timeout occurring 
before 3 dup ACKs is instead; 

 window then grows 
exponentially to threshold, 
then grows linearly

before 3 dup ACKs is 
“more alarming”

then grows linearly

Additive Increase Multiplicative Decrease (AIMD)

TCP Congestion Control (Simon S. Lam) 24
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TCP Reno (example scenario) ( mp )

CongWin Timeout

3 dupACKs

halved

th sh ld h dInitial slow start t
threshold reached 
during slow start

In this example, 3 dupACKs during slow
start before reaching initial threshold

24TCP Congestion Control (Simon S. Lam)
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Example: FR/FR entry and exit

9

Example FR/FR entry and ex t

S 1 2 3 4 5 6 87 1 10 119 timeS

timeR

1 2 3 4 5 6 87 1

Exit FR/FR1     1    1 1    1   1   1         

10 11

loss
9

9
4

timeR

cwnd 8
ssthresh

7
4 4

4
4
11 deflate cwnd

4
 Above scenario: Packet 1 is lost, packets 2, 3, and 

4 are received; 3 dupACKs with seq. no. 1 returned

ssthresh 4 44

 Fast retransmit
 Retransmit packet 1 upon 3 dupACKs

 Fast recovery (in steps)

26

y ( p )
 Inflate cwnd with #dupACKs such that new packets 9, 

10, and 11 can be sent while repairing loss
TCP Congestion Control (Simon S. Lam)
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FR/FR (in more detail)FR/FR ( n more deta l)

 Enter FR/FR after 3 dupACKsp
 Set ssthresh ← max(flightsize/2, 2)
 Retransmit lost packet
 Set cwnd ← ssthresh + #dupACKs (window inflation) Set cwnd ← ssthresh + #dupACKs (window inflation)
 Wait till W=min(rwnd, cwnd) is large enough; transmit 

new packet(s)
O d ACK (1 RTT l t ) s t d ssth sh On non-dup ACK (1 RTT later), set cwnd ← ssthresh
(window deflation)

 Enter Congestion Avoidance

27TCP Congestion Control (Simon S. Lam)
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Summary: TCP Congestion Control (Reno)Summary  TCP Congestion Control (Reno)
 When CongWin is below Threshold, sender in 

slow-start phase window grows exponentially (untilslow-start phase, window grows exponentially (until 
loss event or exceeding threshold).

 When CongWin is above Threshold, sender is in When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs Threshold When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to Threshold
(also fast retransmit)

 When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.

TCP Congestion Control (Simon S. Lam) 28
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Successive TimeoutsSuccess ve T meouts
 When there is another timeout, double the timeout 

valuevalue 
 Keep doing so for each additional loss-retransmission

 Exponential backoff up to 
max timeout value equalmax timeout value equal 
to 64 times initial timeout 
value

(There are other variations.)

29

Note: red line in figure denotes first timeout
TCP Congestion Control (Simon S. Lam)
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AIMD in steady state (when no timeout)

multiplicative decrease:
cut CongWin in half 
after loss event (3 dup

additive increase:
increase  CongWin by 
1 MSS every RTT in after loss event (3 dup 

acks)
1 MSS every RTT in 
the absence of any 
loss event: probing

24 Kbytes

congestion
window What limits the average 

window size (or throughput)?

16 Kbytes

8 Kbytes

TCP Congestion Control (Simon S. Lam) 30
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First approximation
M. Mathis, et al., “The Macroscopic Behavior of the TCP Congestion 
Avoidance Algorithm,”ACM Computer Communicatons Review, 27(3), 1997.

No slow-start, no timeout, long-lived TCP 
c nn cti nconnection

 Independent identically distributed “periods”
 Three dupACKs are received in a round with Three dupACKs are received in a round with 

probability p
Ave.

31TCP Congestion Control (Simon S. Lam)
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Geometric Distribution

d d l l f l h b b lIndependent trials - a trial fails with probability p 
Ave. no. of transmissions to get first “failure”

1(1 )ib
∞ ∞
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1 1

1

(1 )

(1 )

i
i

i i

i
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p i p
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Ave no of trials to get first “success” is
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Ave. no. of trials to get first success is 
1/(1-p)
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First approximation (cont.)
send rate (in packets/sec)

F rst approx mat on (cont.)
 Average number of 
packets delivered in

23
no. of packets/period 8

time per period

W

WRTT
= =

 
 

packets delivered in 
one period (area under 
one saw-tooth)

time per period
2

1 / 1 3

RTT

p

 
 
 

= =

2 2
21 3

2 2 2 8
W W W   + =   
   

22
3

RTT p
RTT

p

= =
 
 
 

 Average number of 
packets sent per period is 
1/p

 Equate the two and solve 
f W t

33

for W, we get
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TCP ACK generation [RFC 1122, RFC 2581]TCP ACK generat on [RFC , RFC 58 ]

Event at Receiver TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACKexpected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 

send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq #

Immediately send duplicate ACK, 
indicating seq. # of next expected bytehigher than expect seq. # .

Gap detected

Arrival of segment that 
ti ll l t l fill

indicating seq. # of next expected byte

Immediate send ACK, provided that
t t t t l d f

34

partially or completely fills gap segment starts at lower end of gap

TCP Congestion Control (Simon S. Lam)
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Receiver implements Delayed ACKsmp m D y K
 Receiver sends one ACK for every two packets 

received -> each  saw-tooth is WxRTT wide 
d h 2-> area under a saw-tooth is 23 1

4
W

p
=

 Send rate is 1 / 1 / 1 3
44 / (3 )

p p
RTT W RTT pRTT p

= =
⋅ ⋅

 One ACK for every b packets received -> send rate 
is

( ) pp

1 3
2RTT bp

35

p
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Challenges in the futureg f
 TCP average throughput (approximate) in terms of 

loss rate, p

1.22 MSS
RTT p

⋅ for b = 1
p

 Example: 1500-byte segments, 100ms RTT, to get 
10 Gbps throughput loss rate needs to be very low10 Gbps throughput, loss rate needs to be very low

p = 2x10-10

 New versions of TCP needed for connections with 
large delay-bandwidth product
 E g data center networks (local global)

36TCP Congestion Control (Simon S. Lam)
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A more detailed model

Reference:
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Th h t A Si l M d l d it E i i l V lid ti ”Throughput: A Simple Model and its Empirical Validation,”
Proceedings ACM SIGCOMM, 1998.
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Motivation Mot vat on

 Previous formulas not so accurate when Previous formulas not so accurate when 
loss rates are high

 TCP traces show that there are more loss 
indications due to timeouts (TO) than due ( )
to triple dupACKs (TD)

38TCP Congestion Control (Simon S. Lam)
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AIMD with Timeouts 

i l d k

 No slow start
triple dup acks

 b = 1  (no delayed ack)

39TCP Congestion Control (Simon S. Lam)
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Problem 3 in HW #2

 no triple duplicate Acks
 packet loss (timeout) with probability p

Simplified:

 packet loss (timeout) with probability p
 timeout interval fixed at T0 after each 
loss

First success in 
next cycle

TCP Congestion Control (Simon S. Lam) 40
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The EndThe End
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