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Abstract—We present the architecture and protocols of ROME,
a layer-2 network designed to be backwards compatible with
Ethernet and scalable to tens of thousands of switches and
millions of end hosts. Such large-scale networks are needed
for emerging applications including data center networks,wide
area networks, and metro Ethernet. ROME is based upon
a recently developed greedy routing protocol, greedy distance
vector (GDV). Protocol design innovations in ROME include
a stateless multicast protocol, a Delaunay DHT, as well as
routing and host discovery protocols for a hierarchical network.
ROME protocols do not use broadcast and provide both control-
plane and data-plane scalability. Extensive experimentalresults
from a packet-level event-driven simulator, in which ROME
protocols are implemented in detail, show that ROME protocols
are efficient and scalable to metropolitan size. Furthermore,
ROME protocols are highly resilient to network dynamics. The
routing latency of ROME is only slightly higher than shortest-
path latency. To demonstrate scalability, we provide simulation
performance results for ROME networks with up to 25,000
switches and 1.25 million hosts.

I. I NTRODUCTION

Layer-2 networks,each scalable to tens of thousands of
switches/routers and connecting millions of end hosts, are
needed for important future and current applications and
services including: data center networks [13], metro Ethernet
[1], [4], [14], [16], wide area networks [5], [18], [15], as well
as enterprise and provider networks. As an example, Google’s
globally-distributed database scales up to millions of machines
across hundreds of data centers [9].

Ethernet offers plug-and-play functionality and a flat MAC
address space. Ethernet MAC addresses, being permanent
and location independent, support host mobility and facilitate
management functions, such as trouble shooting and access
control. For these reasons, Ethernet is easy to manage. How-
ever Ethernet is not scalable to a large network because it uses
a spanning tree routing protocol that is highly inefficient and
not resilient to failures. Also, after a cache miss, it relies on
network-wide flooding for host discovery and packet delivery.

Today’s metropolitan and wide area Ethernet services pro-
vided by network operators are based upon a network of
IP (layer-3) and MPLS routers which interconnect relatively
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small Ethernet LANs [14]. Adding the IP layer to perform end-
to-end routing in these networks nullifies Ethernet’s desirable
properties. IP routing protocols (such as, RIP, OSPF, and
IS-IS) provide shortest paths and are much more efficient
than Ethernet’s spanning tree protocol. However these routing
protocols still introducescalability problems in both control
and data planesas follows: In networks that use IP routing
protocols in the control plane, routers need to either perform
link-state broadcasts or exchangeO(N) distance vectors, both
of which are not scalable. More importantly, large IP networks
require massive efforts by human operators to configure and
manage, especially for enterprise and data center networks
where host mobility and VM migrations are ubiquitous. Net-
works that use shortest-path routing on flat addresses in layer
2, on the other hand, require a large amount ofdata-plane
state (forwarding table entries) to reach every destination in
the network. Furthermore, when multicast and VLAN are used,
each switch has to store a lot more state information. Such data
plane scalability is challenging because high-speed memory is
both expensive and power hungry [42].

Besides scalability, resiliency is also an important require-
ment of large layer-2 networks. According to a recent study
by Cisco [3], availability and resilience are the most important
network performance metrics for distributed data processing,
such as Hadoop, in large data centers. Without effective fail-
ure recovery techniques, job completion will be significantly
delayed.

Therefore, it is desirable to have ascalable and resilient
layer-2 network that is backwards compatible with Ethernet,
i.e., its switches interact with hosts by Ethernet frames using
conventional Ethernet format and semantics. Ethernet compati-
bility provides plug-and-play functionality and ease of network
management. Hosts can still use IP addresses as identifiers but
the network does not use IP addresses for routing.

In this paper, we present the architecture and protocols of a
scalable and resilient layer-2 network, named ROME.1 ROME
is fully decentralized and self-organizing without any central
controller or special nodes. All switches execute the same
distributed algorithms in the control plane.ROME uses greedy
routing instead of spanning-tree or shortest-path routingto
achieve scalability and resiliency.ROME provides control-
plane scalability by eliminating network broadcast and limiting
control message propagation within a local area. ROME pro-
vides data-plane scalability because each switch stores small
routing and multicast states.

1acronym for Routing On Metropolitan-scale Ethernet



2

ROME protocols utilize some recent advances in greedy
routing, namely, GDV on VPoD [32] and MDT [23], [24].
Unlike greedy routing in wireless sensor and ad hoc networks,
switches in ROME do not need any location information.
For routing in ROME, a virtual space is first specified, such
as, a rectangular area in 2D.2 Each switch uses the VPoD
protocol to compute a position in the virtual space such that
the Euclidean distance between two switches in the space is
proportional to the routing cost between them. This property
enables ROME to provide routing latency only slightly higher
than shortest-path latency. Switches construct and maintain
a multi-hop Delaunay triangulation (MDT) which guarantees
that GDV routing finds the switch closest to a given destination
location [32], [24].

A. Contributions and paper outline

Protocol design innovations in this paper include the fol-
lowing: (i) a stateless multicast protocol to support VLAN
and other multicast applications; (ii) protocols for host and
service discovery using a new method, called Delaunay DHT
(D2HT); (iii) new routing and host discovery protocols for a
hierarchical network.

We compare ROME with a recently proposed scalable layer-
2 network, SEATTLE [20]. ROME and SEATTLE were evalu-
ated and compared using a packet-level event-driven simulator
in which ROME protocols (including GDV, MDT, and VPoD)
and SEATTLE protocols are implemented in detail. Every
protocol message is routed and processed by switches hop
by hop from source to destination. Experimental results show
that ROME performed better than SEATTLE by an order of
magnitude with respect to each of the following performance
metrics: switch storage, control message overhead during
initialization and in steady state, and routing failure rate during
network dynamics.

The routing latency of ROME is only slightly higher than
the shortest-path latency. ROME protocols are highly resilient
to network dynamics and switches quickly recover after a peri-
od of churn. To demonstrate scalability, we provide simulation
performance results for ROME networks with up to 25,000
switches and 1.25 million hosts.

The balance of this paper is organized as follows. In Section
II, we discuss related work including protocol services from
our prior work used by ROME. In Section III, we present
location hashingin a virtual space and stateless multicast. In
Section IV, we present Delaunay DHT and its application to
host discovery, i.e., address and location resolution. In Section
V, we present ROME’s architecture and routing protocols for
hierarchical networks. In Section VI, we present performance
evaluation and comparison of ROME and SEATTLE. We
conclude in Section VII.

II. RELATED WORK

A. Scalable Ethernet

Towards the goal of scalability, Myers et al. [30] proposed
replacing Ethernet broadcast for host discovery by a layer-
2 distributed directory service. In 2007, replacing Ethernet

22D, 3D, or a higher dimension can be used [24].

broadcast by a distributed hash table (DHT) was proposed
independently by Kim and Rexford [21] and Ray et al. [37].
In 2008, Kim et al. presented SEATTLE [20] which uses link-
state routing, a one-hop DHT (based on link-state routing) for
host discovery, and multicast trees for broadcasting to VLANs.
Scalability of SEATTLE is limited by link-state broadcast as
well as a large amount of data plane state needed to reach every
switch in the network [42]. In 2010, AIR [39] was proposed to
replace link-state routing in SEATTLE. However, its latency
was found to be larger than the latency of SEATTLE by 1.5
orders of magnitude. In 2011, VIRO [17] was proposed to
replace link-state routing. To construct a rooted virtual binary
tree for routing, a centralized algorithm was used for large
networks (e.g., enterprise and campus networks).

To increase the throughput and scalability of Ethernet for
data center networks, SPAIN [29] and PAST [41] proposed the
use of many spanning trees for routing. In SPAIN, an offline
network controller first pre-computes a set of paths that exploit
redundancy in a given network topology. The controller then
merges these paths into a set of trees and maps each tree
onto a separate VLAN. SPAIN requires modification to end
hosts. PAST does not requires end-host modification; instead,
a spanning tree is installed in network switches for every host.
The important issue of data plane scalability was not addressed
in both papers.

In four of the five papers with simulation results to show
network performance [20], [39], [17], [41], scalability was
demonstrated for networks of several hundred switches. In
SPAIN [29], simulation experiments were performed for spe-
cial data center network topologies (e.g., FatTree) of up to
2,880 switches. In this paper, we demonstrate scalability of
ROME from experiments that ran on a packet-level event-
driven simulator for up to 25,000 switches and 1.25 million
hosts.

B. Greedy routing and virtual coordinates

Many greedy geographic routing protocols have been de-
signed for wireless sensor and ad hoc networks. Two of the
earliest protocols, GFG [7] and GPSR [19], use face routing to
move packets out of local minima. They require the network
topology to be a planar graph in 2D to avoid routing failures.
Kim et al. [22] proposed CLDP which, given any connectivity
graph, produces a subgraph in which face routing would
not cause routing failures. Leong et al. proposed GDSTR
[26] for greedy routing without the planar graph assumption
by maintaining a hull tree. Lam and Qian proposed MDT
[23], [24] for any connectivity graph of nodes with arbitrary
coordinates in ad-dimensional Euclidean space (d≥ 2). From
simulation experiments in which GFG/GPSR, CLDP, GDSTR,
and MDT-greedy ran on the same networks, it is shown
that MDT-greedy provides the lowest routing stretch and the
highest routing success rate (1.0) [24].

Many virtual coordinate schemes have been proposed for
wireless networks when node location information is unavail-
able (e.g., [34], [11], and [8]). In each scheme, the main
objective is to improve greedy routing success rate. VPoD [32]
is the only virtual coordinate protocol designed to predictand
minimize the routing cost between nodes.
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C. Services provided by MDT, VPoD, and GDV

ROME uses greedy routing to provide scalability and re-
siliency. The protocol used by ROME switches is GDV routing
which uses services provided by VPoD and MDT protocols
[32], [24]. We next provide a brief overview of these three
protocols.

A Delaunay triangulation (DT) is a graph that can be
computed from a set of node locations in a Euclidean space
[12]. In a DT, two nodes sharing an edge are said to be DT
neighbors. For 2D, Bose and Morin [6] proved that greedy
forwarding in a DT guarantees to find the destination node.
For 2D, 3D, and higher dimensional Euclidean spaces, Lee
and Lam [25] generalized their result and proved that greedy
forwarding in a DT guarantees to find the node closest to a
destinationlocation. Since two neighbors in a DT graph may
not be directly-connected, nodes maintain forwarding tables
for communication between DT neighbors multiple hops apart
(hence the name, multi-hop DT [24]).

At network initialization, each ROME switch assigns itselfa
random location in the virtual space and discovers its directly-
connected neighbors. Each pair of directly-connected switches
exchange their unique identifiers (e.g., MAC addresses) and
self-assigned locations. Then, the switches have enough in-
formation to construct and maintain a multi-hop Delaunay
triangulation using MDT protocols [24].

ROME switches then repeatedly exchange messages with
their neighbors, including multi-hop DT neighbors, and change
their positions. Using the VPoD protocol [32], each switch
moves its location in the virtual space by comparing, for each
neighbor, the Euclidean distance with the routing cost between
them. (Routing cost can be in any additive metric.) A switch
stops running VPoD when the amount of location change has
converged to less than a threshold value. When all switches
finish, the distance between two switches in the virtual space
approximates the routing cost between them. Then switches
use their updated locations to construct a new multi-hop DT
to be used by GDV routing [32].

GDV routing . Let y denote a neighbor of switchu. For a
packet with destination locationt, the estimated routing cost
from u to t via y is Ry = c(u,y) + D̃(y, t), where c(u,y) is
the routing cost fromu to y and D̃(y, t) is the distance from
y to t computed byu from the locations ofy and t in the
virtual space. Switchu selects the neighborv such thatRv

minimizes{Ry,y∈ set of directly-connected and DT neighbors
of u}. If Rv < D̃(u,t), u sends the packet to v; else, the packet
is marked. Every packet when first created is unmarked. A
switch, such asu in the above example, forwards a marked
packet by MDT-greedy using node locations in the virtual
space without considering routing costs from the switch to its
neighbors. Therefore, GDV guarantees to route every packet
to the switch that is closest to the packet’s destination location
[24], [32].

It has been shown that the VPoD protocol is very effective
such that GDV’s routing cost is not much higher than that of
shortest-path routing. Lastly, MDT and VPOD protocols do
not use broadcast. In particular, MDT has a very efficient and
effective search method for each switch to find its multi-hop

DT neighbors. As a result, a multi-hop DT has been shown to
be highly resilient to rapid topology changes [24], [32].

III. ROUTING IN ROME

A. Virtual space for switches

Consider a network of switches with an arbitrary topology
(any connected graph). Each switch selects one of its MAC ad-
dresses to be its identifier. End hosts are connected to switches
which provide frame delivery between hosts. Ethernet frames
for delivery are encapsulated in ROME packets. Switches
interact with hosts by Ethernet frames using conventional
Ethernet format and semantics. ROME protocols run only in
switches. Link-level delivery is assumed to be reliable.

A Euclidean space (2D, 3D, or a higher dimension) is
chosen as the virtual space. The number of dimensions and the
minimum and maximum coordinate values of each dimension
are known to all switches. Each switch determines for itselfa
location in the space represented by a set of coordinates.

Location hashing. To start ROME protocols, each switch
boots up and assigns itself an initial location randomly by
hashing its identifier,IDS, using a globally-known hash func-
tion H. The hash value is a binary number which is converted
to a set of coordinates. Our protocol implementation uses the
hash function MD5 [38], which outputs a 16-byte binary value.
4 bytes are used for each dimension. Thus locations can be in
2D, 3D, or 4D.3

Consider, for example, a network that uses a 2D virtual
space. For 2D, the last 8 bytes ofH(IDS) are converted to two
4-byte binary numbers,x and y. Let MAX be the maximum
4-byte binary value, that is, 232−1. Also let mink and maxk
be the minimum and maximum coordinate values for thekth
dimension. Then the location in 2D obtained from the hash val-
ue is(min1 + x

MAX(max1−min1), min2 + y
MAX(max2−min2)),

where each coordinate is a real number. The location can be
stored in decimal format, using 4 bytes per dimension. Here-
after, for any identifier, ID, we will useH(ID) to represent
its location in the virtual space and refer toH(ID) as the
identifier’s location hashor, simply, location.

Switches discover their directly-connected neighbors and,
using their initial locations, proceed to construct a multi-hop
DT [23]. Switches then update their locations using VPoD and
construct a new multi-hop DT as described in subsection II-C.

Unicast routing. Unicast packet delivery in ROME is
provided by GDV routing in the multi-hop DT maintained by
switches. In a correct multi-hop DT,GDV routing of a packet
guarantees to find the switch that is closest to the destination
location of the packet[24], [32] assuming reliable link-level
delivery and no packet drop due to congestion.

As in most prior work [20], [42], [39], [17], the issue of
multi-path routing and traffic engineering is not addressed
herein and will be an interesting problem for future work.

3Conceptually, a higher dimensional space gives VPoD more flexibility but
requires more storage space and control overhead. Our experimental results
show that VPoD’s performance in 2D is already very good.
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Fig. 1. Example of stateless multicast

B. Hosts

Hosts have IP and MAC addresses. Each host is directly
connected to a switch called itsaccess switch. An access
switch knows the IP and MAC addresses of every host
connected to it. The routable address of each host is the
location of its access switch in the virtual space, also called the
host’s location. Hosts are not aware of ROME protocols and
run ARP [31], DHCP [10], and Ethernet protocols in the same
way as when they are connected to a conventional Ethernet.

C. Stateless multicast and its applications

To provide the same services as conventional Ethernet,
ROME needs to support group-wide broadcast or multicast,
for applications, such as, VLAN, teleconferencing, television,
replicated storage/update in data centers, etc.

A straightforward way to deliver messages to a group
is by using a multicast tree similar to IP multicast [20].
All broadcast packets within a group are delivered through
a multicast tree sourced at a dedicated switch, namely a
broadcast root, of the group. When a switch detects that one of
its hosts is a member of a group, the switch joins the group’s
multicast tree and stores some multicast state for this group.
When there are many groups with many hosts in each group,
the amount of multicast state stored in switches can become
a scalability problem.

We present astateless multicastprotocol for group-wide
broadcast in ROME. A group message is delivered using the
locations of its receivers without construction of any multicast
tree. Switches do not store any state for delivering group
messages.

The membership information of stateless multicast is main-
tained at arendezvous point(RP) for each group. The RP of
a group is determined by the location hashH(IDG), where
IDG is the group’s ID. The switch whose location is closest
to H(IDG) serves as the group’s RP. The access switch of the
sender of a group message sends the message to the RP by
unicast. GDV routing guarantees to find the switch closest to
H(IDG).

The RP then forwards the message to other group members
(receivers) as follows: The RP partitions the entire virtual
space into multiple regions. To each region with one or more
receivers, the RP sends a copy of the group message with
the region’s receivers (their locations) in the message header

(actually the ROME packet header). The destination of the
group message for each region is a location, calledsplit
position (SP), which is either (i) the closest receiver location
in that region, or (ii) the mid-point of the two closest receiver
locations in the region. By GDV routing, the group message
will be routed to a switch closest to the SP. This switch will in
turn partition its region into multiple sub-regions and send a
copy of the group message to the SP of each sub-region. Thus
a multicast tree rooted at the RP grows recursively until it
reaches all receivers. The tree structure is not stored anywhere.
At each step of the tree growth, a switch computes SP’s for
the next step based on receiver locations in the group message
it is to forward.

We present an example of stateless multicast in Figure 1(a).
The group consists of 7 hostsa,b,c,d,e, f ,g, connected to
different switches with locations in a 2D virtual space as
shown. SwitchS1 serves as the RP. Hosta sends a message to
the group by first sending it toS1. Upon receiving the message,
S1 realizes that it is the RP.S1 partitions the entire virtual space
into four quadrants and sends a copy of the message by unicast
to each of the 3 quadrants with at least one receiver. The
message to the northeast quadrant with four receivers (d,e, f ,
and g) is sent to a split position,SP1, which is the midpoint
between the locations ofd ande, the two receivers closest to
S1. The message will then be routed by GDV toS2, the switch
closest toSP1.

Subsequently,S2 partitions the space into four quadrants and
sends a copy of the message to each of the three quadrants
with one or more receivers (see Figure 1(b)). For the northeast
quadrant that has two receivers, the message is sent to the split
position,SP2, which is the midpoint between the locations of
f andg. The message toSP2 will be routed by GDV toS3, the
switch closest toSP2, which will unicast copies of the message
to f andg.

At any time during the multicast, when a switch realizes
that a receiver is a directly-connected host, it can transmit the
message directly to the host and removes the host from the
set of receivers in the message to be forwarded.

In ROME, for each group, its group membership infor-
mation is stored in only one switch, the group’s RP. For
this group, no multicast state is stored in any other switch.
This is a major step towards scalability. The tradeoff for
this gain is an increase in communication overhead from
storing a set of receivers in the ROME header of each group
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message. Experimental results in subsection VI-F show that
this communication overhead is small. This is because when
the group message is forwarded by the RP and other switches,
the receiver set is partitioned into smaller and smaller subsets.

The implementation of stateless multicast, as described, is
not limited to the use of a 2D space. Also, partitioning of
a 2D space at the RP, or at a switch closest to a SP, is not
limited to four quadrants. The virtual space can be partitioned
into any number of regions evenly or unevenly. A study of
other virtual spaces and partitioning methods for implementing
stateless multicast will be future work.

Stateless multicast for VLAN. Members of a VLAN
are in a logical broadcast domain; their locations may be
widely distributed in a large-scale Ethernet. ROME’s stateless
multicast protocol is used to support VLAN broadcast. When a
switch detects that one of its hosts belongs to a VLAN, it sends
a Join message to locationH(IDV), whereIDV is the VLAN
ID. By GDV, The Join message is routed to the switch closest
to H(IDV), which is the RP of the VLAN. The RP then adds
the host to the VLAN membership. The protocol for a host to
leave a VLAN is similar. VLAN protocols in ROME are much
more efficient than the current VLAN Trunking Protocol used
in conventional Ethernet [2]. The number of global VLANs
is restricted to 4094 in conventional Ethernet [14]. There is
no such restriction in ROME because stateless multicast does
not require switches to store VLAN information to perform
forwarding.

IV. H OST AND SERVICE DISCOVERY IN ROME

Suppose a host knows the IP address of a destination host
from some upper-layer service. To route a packet from its
source host to its destination host, switches need to know the
MAC address of the destination host as well as its location,
i.e., location of its access switch. Such address and location
resolution are together referred to ashost discovery.

A. Delaunay distributed hash table

The benefits of using a DHT for host discovery include
the following: (i) uniformly distributing the storage costof
host information over all network switches, and (ii) enabling
information retrieval by unicast rather than flooding. The
one-hop DHT in SEATTLE [20] usesconsistent hashingof
identifiers into a circular location space and requires thatevery
switch knowsall other switches. Such global knowledge is
made possible by link-statebroadcast, which limits scalability.

In ROME, the Delaunay DHT (or D2HT) uses location
hashingof identifiers into a Euclidean space (2D, 3D, or a
higher dimension) as described in subsection III-A. D2HT uses
greedy routing (GDV) in a multi-hop DT where every switch
only needs to know its directly-connected neighbors and its
neighbors in the DT graph. Furthermore, each switch uses a
very efficient search method to find its multi-hop DT neighbors
without broadcast [24].

In D2HT, information about hosti is stored as a key-value
tuple, ti =< ki , vi >, where the keyki may be the IP (or
MAC) address ofi, and vi is host information, such as its
MAC address, location, etc. The access switch of hosti is the

Location 

H(kb)

Sa

2. S’: closest to 

H(kb), stores 

the tuple

Sb

a

b

3. Message to b

4. Sending the 

query to H(kb)

1. Publishing <kb, vb>

to H(kb)

5. Replying <kb, vb>

to Sa

S’

Fig. 2. Sb publishes a tuple ofb. Sa performs a lookup ofb

publisherof i’s tuples. A switch that stores< ki , vi > is called
a resolverof key ki . The tuples are stored assoft state.

To publish a tuple,ti =< ki , vi >, the publisher computes
its location H(ki) and sends a publish message ofti to
H(ki). Location hashes are randomly distributed over the entire
virtual space. It is possible but unlikely that a switch exists
at the exact locationH(ki). The publish message is routed
by GDV to the switch whose location is closest toH(ki),
which then becomes a resolver ofki . When some other switch
needs hosti’s information, it sends a lookup request message
to locationH(ki). The lookup message is routed by GDV to
the resolver ofki , which sends the tuple< ki , vi > to the
requester. A publish-lookup example is illustrated in Figure 2.

Comparison with GHT. At a high level of abstraction, D2HT
bears some similarity to Geographic Hash Table (GHT) [36].
However, D2HT was designed for a network of switches
with no physical location information. On the other hand,
GHT was designed for a network of sensors in the physical
world with the assumption that sensors know their geographic
locations through use of GPS or some other localization
technique. Also, for greedy routing, GHT uses GPSR which
provides delivery of a packet to its destination under the highly
restrictive assumption that the network connectivity graph can
be planarized [19]. Thus protocols of D2HT and GHT are
very different and the network environments of their intended
applications are also different.

Comparison with CAN. Both D2HT and Content Address-
able Network (CAN) [35] are DHTs and both use ad-
dimensional virtual space. However, this is the extent of their
similarity. D2HT and CAN are very different in design. In
CAN, the entire virtual space is dynamically partitioned into
zones each of which is owned by a node. Nodes in a CAN
self-organize into an overlay network that depends on the
underlying IP network for packet delivery. D2HT, on the other
hand, is designed for a layer-2 network without IP routing.
D2HT does not have the concepts of zone and zone ownership.
Instead, switches find their locations in a virtual space using
location hashing described in Section III-A. Each switch in
D2HT only knows its directly-connected neighbors and DT
neighbors and their virtual locations.
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B. Host discovery using D2HT

In ROME, the routable address of hosti is i’s location ci ,
which is the location of its access switch. There are two key-
value tuples for each host, for its IP-to-MAC and MAC-to-
location mappings.

In a tuple for hosti, the key ki may be its IP or MAC
address. Ifki is the MAC address, valuevi includes location
ci and the unique ID,Si , of i’s access switch. Ifki is the IP
address, the valuevi includes the MAC address,MACi , as well
as ci and Si . Note that the host location is included in both
tuples for each host.

After a host i is plugged into its access switchSi with
locationci , the switch learns the host’s IP and MAC addresses,
IPi and MACi , respectively.Si then constructs two tuples:
< MACi , ci , Si > and< IPi, MACi , ci , Si >, and stores them
in local memory.Si then sends publish messages of the two
tuples toH(IPi) andH(MACi).

Note that each switch stores two kinds of tuples. For a tuple
with key ki stored by switchS, if S is i’s access switch, the
tuple is alocal tuple of S. Otherwise, the tuple is published
by another switch and is anexternal tupleof S. Switches store
key-value tuples assoft state.

Each switch interacts with directly-connected hosts using
frames with conventional Ethernet format and semantics.
When a host j sends its access switchSj an ARP query
frame with destination IP addressIPi and the broadcast MAC
address,Sj sends a lookup request to locationH(IPi), which is
routed by GDV to a resolver ofIPi. The resolver sends back to
Sj the tuple< IPi, MACi , ci , Si >. After receiving the tuple, the
access switchSj caches the tuple and transmits a conventional
ARP reply frame to hostj. When j sends an Ethernet frame
with destinationMACi , the access switchSj retrieves location
ci from its local memory and sends the Ethernet frame toci .
If Sj cannot find the location ofMACi in its local memory
because, for instance, the cached tuple has been overwritten,
it sends a lookup request which is routed by GDV toH(MACi)
to get the MAC-to-location mapping of hosti.

All publish and lookup messages are unicast messages.
Host discovery in ROME is accomplishedon demandand is
flooding-free.

C. Reducing lookup latency

We designed and evaluated several techniques to speed up
key-value lookup for host discovery, namely: (i) using multiple
independent hash functions to publish each key-value tupleat
multiple locations, (ii) hashing to a smaller region in the virtual
space, (iii) caching key-value tuples for popular hosts as well
as other shortcuts for faster responses. These latency reduction
techniques are described in more detail in the Appendix.

D. Maintaining consistent key-value tuples

A key-value tuple< ki ,vi > stored as an external tuple in a
switch isconsistentiff (i) the switch is closest to the location
H(ki) among all switches in the virtual space, and (ii)ci is
the correct location ofi’s access switch. At any time, some
key-value tuples may become inconsistent as a result of host
or network dynamics.

Host dynamics.A host may change its IP or MAC address,
or both. A host may change its access switch, such as, when
a mobile node moves to a new physical location or a virtual
machine migrates to a new system.

Network dynamics. These include the addition of new
switches or links to the network as well as deletion/failureof
existing switches and links. MDT and VPoD protocols have
been shown to be highly resilient to network dynamics (churn)
[23], [32]. Switch states of the multi-hop DT as well as switch
locations in the virtual space recover quickly to correct values
after churn. The following discussion is limited to how host
and network dynamics are handled by switches in the role of
publisher and in the role of resolver in D2HT.

As a publisher, each switch ensures that local tuples of its
hosts are correct when there are host dynamics. For example,
if a host has changed its IP or MAC address, the host’s tuples
are updated accordingly. If a new host is plugged into the
switch, it creates tuples for the new host. New as well as
updated tuples are published to the network. In addition to
these reactions to host dynamics, switches also periodically
refresh tuples they previously published. For every local tuple
< ki , vi >, S sends a refresh message everyTr second to its
locationH(ki). The purpose of a refresh message is twofold: (i)
If the switch closest to locationH(ki) is the current resolver,
timer of the soft-state tuple in the resolver is refreshed. (ii)
If the switch closest toH(ki) is different from the current
resolver, the refresh message notifies the switch to become a
resolver.

As a resolver, each switch sets a timer for every external
tuple stored in local memory. The timer is reset by a request
or refresh message for the tuple. If a timer has not been reset
for Te time, timeout occurs and the tuple will be deleted by
the resolver.Te is set to a value several times that ofTr .

For faster recovery from network dynamics, we designed
and implemented a technique, calledexternal tuple handoff.
When a switch detects topology or location changes in the
multi-hop DT, it checks the locationH(ki) of every external
tuple< ki , vi >. If the switch finds a physical or DT neighbor
closer toH(ki) than itself, it sends ahandoff messageincluding
the tuple to the closer neighbor. The handoff message will be
forwarded by GDV until it reaches the switch closest toH(ki),
which then becomes the tuple’s new resolver.

E. DHCP server discovery using D2HT

In a conventional Ethernet, a new host broadcasts a Dynamic
Host Configuration Protocol (DHCP) discover message to find
a DHCP server. Each DHCP server that has received the
discover message allocates an IP address and broadcasts a
DHCP offer message to the host. The host broadcasts a DHCP
request to accept an offer. The selected server broadcasts a
DHCP ACK message. Other DHCP servers, if any, withdraw
their offers.

In ROME, the access switch of each DHCP server publishes
the server’s information to a location using a key known by all
switches, such as, “DHCPSERVER1”. When the access switch
of a host receives a DHCP discover message, the message is
routed by GDV to the location of a DHCP server, without
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use of flooding. There is no duplicate DHCP offer. To be
compatible with a conventional Ethernet, the access switch
replies to the host with a DHCP offer and later transmits a
DHCP ACK in response to the host’s DHCP request.

V. ROME FOR A HIERARCHICAL NETWORK

A metropolitan or wide area Ethernet spanning across a
large geographic area typically has a hierarchical structure
comprising manyaccess networksinterconnected by acore
network [16]. Each access network has one or moreborder
switches. The border switches of all access networks form the
core network. Consider a hierarchical network consisting of
500 access networks each of which has 2000 switches. The
total number of switches is 1 million. At 100 hosts per switch,
the total number of hosts is 100 millions. We believe that
a 2-level hierarchy is adequate for metropolitan scale in the
foreseeable future.

A. Routing in a hierarchical network

For hierarchical routing in ROME, separate virtual spaces
are specified for the core network and each of the access
networks, calledregions. Every switch knows the virtual space
of its region (i.e., dimensionality as well as maximum and
minimum coordinate values of each dimension). Every border
switch knows two virtual spaces, the virtual space of its region
and the virtual space of the core network, calledbackbone.

The switches in a region first discover their directly-
connected neighbors. They then use MDT and VPoD protocols
to determine their locations in the region’s virtual space
(regional locations) and construct a multi-hop DT for the
access network. Similarly, the border switches use MDT and
VPoD protocols to determine their locations in the virtual
space of the backbone (backbone locations) and construct a
multi-hop DT for the core network. Each border switch sends
its information (unique ID, regional and backbone locations)
to all switches in its region.

The Delaunay DHT requires the following extension for
hierarchical routing: Each key-value tuple< ki ,vi > of host i
stored at a resolver includes additional information,Bi , which
specifies the IDs and backbone locations of the border switches
in host i’s region.

When a host sends an Ethernet frame to another host, its
access switch obtains, from its cache or using host discovery,
the destination host’s key-value tuple, which includes border
switch information of the destination region. This information
allows the access switch to determine whether to route the
frame to its destination usingintra-region routing or inter-
region routing.

Intra-region routing. The sender’s access switch indicates
in the ROME packet header that this is an intra-region packet.
The routable address is the regional location of the access
switch of the receiver. The packet will be routed by GDV to
the access switch of the receiver as previously described. In
the example of Figure 3, an intra-region packet is routed by
GDV from access switchS1 to destination host’s access switch
S2 in the same regional virtual space.

virtual spaces of 
access networks

virtual space of the 
core network

Inter-region 
routing

Intra-region 
routing

use regional 
location

1. use regional 
location

2. use backbone 
location

3. use regional 
location

S1

S2

S3 S4

S5

S6

S7

S8

virtual space 
of the access 

network

Fig. 3. Routing in a hierarchical network

Inter-region routing. For a destination host in a different
region, an access switch learns, from the host’s key-value
tuple, information about the host’s border switches and their
backbone locations. This information is included in the ROME
header encapsulating every Ethernet frame destined for that
host. We describe inter-region routing of a ROME packet as
illustrated in Figure 3. The origin switchS1 computes its
distances in the regional virtual space to the region’s border
switches,S3 andS4. S1 choosesS3 which is closer toS1 than
S4. The packet is routed by GDV toS3 in the regional virtual
space.

S3 learns from the ROME packet header,S5 and S8, bor-
der switches in the destination’s region.S3 computes their
distances to destinationS7 in the destination region’s virtual
space.S3 choosesS5 because it is closer to the destination loca-
tion. The packet is then routed by GDV in the backbone virtual
space toS5. Lastly, the packet is routed, in the destination
region’s virtual space, by GDV fromS5 to S7, which extracts
the Ethernet frame from the ROME packet and transmits the
frame to the destination host.

Note that at the border switchS3, it has a choice of
minimizing the distance traveled by the ROME packet in the
backbone virtual space or in the destination region’s virtual
space. In our current ROME implementation, the distance
in the destination region’s virtual space is minimized. This
is based upon our current assumption that the number of
switches in an access network is larger than the number of
switches in the core network. This choice at a border switch
is programmable and can be easily reversed. Lastly, it is not
advisable to use the sum of distances in two different virtual
spaces (specified independently) to determine routing because
they are not comparable. This restriction may be relaxed but
it is beyond the scope of this paper.

B. Host discovery in a hierarchical network

As illustrated in Figure 4, the key-value tuple< ki ,vi >

of host i is published to two resolvers in the entire network,
namely: aregional resolverand aglobal resolver. The regional
resolver is the switch closest to locationH(ki) in the same
region as hosti; it is labeled bySr1 in the figure. The publish
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Fig. 4. Tuple publishing and lookup in a hierarchical Ethernet

and lookup protocols are the same as the ones presented in
subsection IV-B. To find a tuple with keyki , a switch sends a
lookup message to positionH(ki) in its own region. A regional
resolver provides fast responses to queries needed for intra-
region communications.

Publish to a global resolver. Switches outside of hosti’s
region cannot find its regional resolver. Therefore, the key-
value tuple< ki ,vi > of hosti is also stored in a global resolver
to respond to host discovery for inter-region communications.
The global resolver can be found by any switch in the entire
network. As shown in Figure 4, to publish a tuple< ki ,vi >

to its global resolver, the publish message is first routed by
GDV to the regional location of one of the border switches in
the region, labeled bySB1 in the figure.SB1 computes location
H(ki) in the backbone virtual space and includes it with the
publish message which is routed by GDV to the border switch
closest to backbone locationH(ki) in the core network, labeled
by SB2 in the figure.

Switch SB2 serves as the global resolver of hosti if it has
enough memory space. SwitchSB2 can optionally send the tu-
ple to a switch in its region such that all switches in the region
share the storage cost of the global resolver function (called
two-level location hashing). In two-level location hashing, the
publish message of tuple< ki ,vi > sent bySB2 is routed by
GDV to a switch closest to the regional locationH(ki) (labeled
by Sr2 in the figure) insideSB2’s access network.Sr2 then
becomes a global resolver of hosti.

Lookup in a hierarchical network . To discover the key-
value tuple< ki ,vi > of hosti, a switchSj first sends a lookup
message to locationH(ki) in its region. As illustrated in Figure
4 (upper left), the lookup message arrives at a switchSu closest
to H(ki). If Sj and hosti were in the same region,Su would be
the regional resolver ofi and it would reply toSj with the key-
value tuple of hosti. Given thatSj and hosti are in different
regions, it is very unlikely thatSu happens to be a global
resolver of hosti (however the probability is nonzero). IfSu

cannot find hosti’s tuple in its local memory, it forwards the
lookup message to one of the border switches in its region,SB3

in Figure 4. ThenSB3 computes locationH(ki) in the backbone
virtual space and includes it with the lookup message, which
is routed by GDV to the border switchSB2 closest toH(ki).

In the scenario illustrated in Figure 4,SB2 is not hosti’s

global resolver and it forwards the lookup message to switch
Sr2 closest to the regional locationH(ki), which is the global
resolver of hosti.

Hash functions. In the above examples, the core and access
networks use different virtual spaces but they all use the same
hash functionH. We note that different hash functions can
be used in different networks. It is sufficient that all switches
in the same network (access or core) agree on the same hash
function, just like they must agree on the same virtual space.

VI. PERFORMANCEEVALUATION

A. Methodology

The ROME architecture and protocols were designed with
the objectives ofscalability, efficiency, andreliability. ROME
was evaluated using a packet-level event-driven simulatorin
which ROME protocols as well as the protocols, GDV, VPoD,
and MDT [23], [32] used by ROME are implemented in detail.
Every protocol message is routed and processed by switches
hop by hop from source to destination. Since our focus is on
routing protocol design, queueing delays at switches were not
simulated. Packet delays from one switch to another on an
Ethernet link are sampled from a uniform distribution in the
interval [50 µs,150 µs] with an average value of 100µs. This
abstraction speeds up simulation runs and allows performance
evaluation and comparison of routing protocols unaffected
by congestion issues. The same abstraction was used in the
packet-level simulator of SEATTLE [20].

For comparison with ROME, we implemented SEATTLE
protocols in detail in our simulator. We conducted extensive
simulations to evaluate ROME and SEATTLE in large net-
works and dynamic networks with reproducible topologies.
For the link-state protocol used by SEATTLE, we use OSPF
[28] in our simulator. The default OSPF link state broadcast
frequency is once every 30 seconds. Therefore, in ROME,
each switch runs the MDT maintenance protocol once every
30 seconds.

In ROME, a host’s key-value tuple may be published using
one location hash or two location hashes. In the case of
publishing two location hashes for each tuple, the area of the
second hash region is 1/4 of the entire virtual space.

Performance criteria. Storage costis measured by the
average number of entries stored per switch. These entries
include forwarding table entries and host information entries
(key-value tuples).

Control overheadis communication cost measured by the
average number of control message transmissions, for three
cases: (i) network initialization, (ii) network in steady state,
and (iii) network under churn. Control overhead of ROME
for initialization includes those used by switches to determine
virtual locations using VPoD, construct a multi-hop DT using
MDT protocols, and populate the D2HT with host information
for all hosts. Control overhead of SEATTLE for initialization
includes those used by switches for link-state broadcast and to
populate the one-hop DHT with host information for all hosts.
During steady state (also during churn), switches in SEATTLE
and ROME use control messages (i) to detect inconsistencies
in forwarding tables and key-value tuples stored locally and
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Fig. 5. Performance comparison by varying the number of hosts
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Fig. 6. Performance comparison by varying the number of switches

externally, as well as (ii) to repair inconsistencies in forward-
ing tables and key-value tuples.

We measure two kinds oflatencies to deliver ROME pack-
ets: (i) latency of the first packet to an unknown host, which
includes the latency for host discovery, and (ii) latency ofa
packet to a discovered host.

To evaluate ROME’s (also SEATTLE’s) resilience under
churn, we show therouting failure ratesof first packets to
unknown hosts and packets to discovered hosts. Successful
routing of the first packet to an unknown host requires suc-
cessful host discovery as well as successful packet delivery by
switches from source to destination.

Network topologies used.The first set of experiments used
the AS-6461 topology with 654 routers from Rocketfuel data
[40] where each router is modeled as a switch. To evaluate the
performance of ROME as the number of switches increases,
synthetic topologies generated by BRITE with the Waxman
model [27] at the router level were used. Every data point
plotted in Figures 6, 7, and 9 is the average of 20 runs from
different topologies generated by BRITE.Upper and lower
bars in the figure show maximum and minimum values of each
data point(these bars are omitted in Figure 7(c) for clarity).
Most of the differences between maximum and minimum
values in these figures are very small (many not noticeable)
with the exception of latency values in Figures 7(a) and (b).

B. Varying the number of hosts

For a network withn switches andm hosts, a conventional
Ethernet requiresO(nm) storage per switch while SEATTLE
requiresO(m) storage per switch. We found that ROME also
requiresO(m) storage per switch with a much smaller abso-
lute value than that of SEATTLE. We performed simulation
experiments for a fixed topology (AS-6461) with 654 switches.
The number of hosts at each switch varies. The total number

of hosts of the entire network varies from 5,000 to 50,000.
We found that the storage costs of ROME and SEATTLE
for forwarding tables are constant, while their storage costs
for host information increase linearly as the number of hosts
increases. In Figure 5(a), the difference between the storage
costs of ROME and SEATTLE is the difference in their
forwarding table storage costs per switch. The host information
storage cost of ROME using two (location) hashes is close to,
but not larger than, twice the storage cost of ROME using one
hash.

Figures 5(b) and 5(c) show the control overheads of ROME
and SEATTLE, for initialization and in steady state. We
found that the control overheads for constructing and updating
SEATTLE’s one-hop DHT and ROME’s D2HT both increase
linearly with m and they are about the same. However, the
figures show that ROME’s overall control overhead is much
smaller than that of SEATTLE. This is because ROME’s
forwarding table construction and maintenance are flooding-
free and thus much more efficient.

C. Varying the number of switches

In this set of experiments the numbern of switches increases
from 300 to 2,400 while the average number of hosts per
switch is fixed at 20. Thus the total number of hosts of the
network also increases linearly from 6,000 to 48,000. The
results are shown in Figure 6. Note that eachy-axis is in
logarithmic scale.

Figure 6(a) shows storage cost versusn. Note that while the
storage cost of SEATTLE increases withn, ROME’s storage
cost is almost flat versusn. At n= 2400, ROME’s storage cost
is less than 1/20 of the storage of SEATTLE.

Figures 6(b) and (c) show that the control overheads of
ROME for initialization and in steady state are both substan-
tially lower than those of SEATTLE. These control overheads
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Fig. 8. Performance under network dynamics

of ROME increase slightly withn. This is because the paths
from publishers to resolvers in a larger network are longer.

D. Routing latencies

These experiments were performed using the same network
topologies (with 20 hosts per switch on average) as in subsec-
tion VI-C. Figure 7(a) shows the latency (in average number
of hops) of packets to discovered hosts. Note that ROME’s
latency is not much higher than the shortest-path latency of
SEATTLE.

Figure 7(b) shows the latency of first packets to unknown
hosts for SEATTLE and for ROME using one and two hashes.
This latency includes the round-trip delay between sender
and resolver, and the subsequent latency from sender to
destination. By using two hashes instead of one, the latency
of ROME improves and becomes very close to the latency
of SEATTLE. At n = 300, the latency of ROME (2-hash) is
actually smaller than the latency of SEATTLE.

We also performed experiments to evaluate ROME and
SEATTLE latencies in hybrid networks, where 20% of the
switches are replaced by wireless switches. The packet delay
of a wireless hop is sampled uniformly from[5 ms,15 ms]
with an average value of 10ms, much higher than 100µs for
a wired connection. Figure 7(c) shows that SEATTLE still has
the lowest latency, but the difference between SEATTLE and
ROME is negligible.

E. Resilience to network dynamics
We performed experiments to evaluate the resilience of

ROME using two hashes and SEATTLE under network dy-
namics for networks with 1,000 switches and 20,000 hosts.
Before starting each experiment, consistent forwarding tables
and DHTs were first constructed. During the period of 0-
60 seconds, new switches joined the network and existing
switches failed. The rate at which switches join, equal to the

rate at which switches fail, is called the churn rate. Figure
8(a) shows the routing failure rates to discovered hosts as a
function of time for ROME and SEATTLE. Different curves
correspond to churn rates of 20, 60, and 100 switches per
minute. At these very high churn rates, the routing failure
rate of ROME is close to zero. The routing failure rate of
SEATTLE is relatively high but it converged to zero after 100
seconds (40 seconds after churn stopped).

Figure 8(b) shows routing failure rates to unknown hosts
versus time. Both SEATTLE and ROME experienced many
more routing failures which include host discovery failures.
The routing failure rate of ROME at the churn rate of 100
switches/minute is still less than that of SEATTLE at the churn
rate of 20 switches/minute.

Figure 8(c) shows the control overhead (per switch per
second) during a churn and recovery period versus churn
rate during the period. The control overhead of SEATTLE is
very high due to link-state broadcast. The control overheadof
ROME is about two orders of magnitude smaller than that of
SEATTLE.

ROME has much smaller routing failure rates and control
overhead because each switch (using the MDT maintenance
protocol) can find all its neighbors in the multi-hop DT of
switches very efficiently without broadcast.

F. Performance of multicast

Both SEATTLE and ROME provide multicast support for
services like VLAN. SEATTLE uses a multicast tree for
each group which requires switches in the tree to store some
multicast state. ROME uses the stateless multicast protocol
described in subsection III-C. We performed experiments
using the same network topologies (with 20 hosts per switch
on average) as in subsection VI-C. The average multicast
group size is 50 or 250 in an experiment. The number of
groups is 1/10 of the number of hosts.
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Figure 9(a) shows the average number of transmissions used
to deliver a group message versus the numbern of switches.
For multicast using a tree, this is equal to the number of links
in the tree. SEATTLE used few transmissions than ROME in
experiments for average group size 250. ROME used fewer
transmissions in experiments for average group size 50.

Figure 9(b) shows the amount of multicast state (average
number of groups) per switch in SEATTLE versusn, the
number of switches. (ROME’s multicast is stateless.) Each
switch in SEATTLE stores multicast state for a large number
of groups, i.e., thousands in these experiments. (Group mem-
bership information stored at rendezvous points is not included
because it is needed by both ROME and SEATTLE.) On the
other hand, ROME requires the packet header of each group
message to store a subset of hosts in the group. (SEATTLE
does not have this overhead.) Figure 9(c) shows the average
number of hosts in a ROME packet header. For experiments
in which average group size is 50, the number is around 3. For
experiments in which average group size is 250, the number
is about 6.

G. Performance of a very large hierarchical network

We use a hierarchical network consisting of 25 access
networks of 1000 switches each (generated by BRITE at router
level). Two switches in each access network serve as border
switches in a backbone network of 50 switches with topology
generated by Brite at AS level. Kim et al. [20] discussed ideas
for a multi-level one-hop DHT. Based upon the discussion,
we implemented in our packet-level event-driven simulatoran
extension to SEATTLE for routing in a hierarchical network,

which we refer to as ”OSPF+DHT”.
We performed experiments for this network of 25,000

switches for 250K to 1.25 million hosts. Figure 10 shows the
routing latencies for ROME and OSPF+DHT. ROME’s latency
to a discovered host is very close to the shortest-path latency
of OSPF+DHT, much closer than the latencies in single-region
experiments shown in Figure 7(a). ROME’s latency to an
unknown host is also very close to the shortest-path latency
of OSPF+DHT. Figure 11 shows the storage cost per switch,
control overheads for initialization and in steady state. The
performance of ROME is about an order of magnitude better
than the OSPF+DHT approach.

VII. C ONCLUSIONS

We present the architecture and protocols of ROME, a
scalable and resilient layer-2 network that is backwards com-
patible with Ethernet. Our protocol design innovations include
a stateless multicast protocol, a Delaunay DHT (D2HT), as
well as routing and host discovery protocols for a hierarchical
network. Experimental results using both real and synthetic
network topologies show that ROME protocols are efficient
and scalable. ROME protocols are highly resilient to network
dynamics and its switches quickly recover after a period of
churn. The routing latency of ROME is only slightly higher
than the shortest-path latency.

Experimental results show that ROME performs better than
SEATTLE by an order of magnitude with respect to each
of the following performance metrics: switch storage, control
message overhead during initialization and in steady state, and
routing failure rate during network dynamics. To demonstrate
scalability, we provide simulation performance results for
ROME networks with up to 25,000 switches and 1.25 million
hosts.
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VIII. A PPENDIX

A. Latency reduction techniques for host discovery

Multiple location hashes.For each hosti, the access switch
Si can publish multiple copies of the tuple< ki , vi > in the
network as follows:Si appliesm independent hash functions
on ki and getsm different location hashesH1(ki), ..., Hm(ki).
The switch sendsm publish messages to these locations (each
message contains the tuple and the id of the hash function).
Thus multiple switches, each closest to one of the locations,
store the key-value tuple

If a switch wants to request< ki , vi >, it computes them
location hashes as well as the distances from its own location
to the m locations. It then selects the nearest one as the
destination of the lookup request. By the property of VPoD,
a shorter distance in the virtual space means approximately
lower routing cost or latency. Thus using more hash functions
trades a higher storage cost for a lower latency in host dis-
covery. We demonstrate this trade-off in experimental results
presented in Section VI.

Hashing to a smaller region.To reduce lookup latency,
switches can also use two independent hash functions with
the second function mapping location hashes to a smaller
region in the virtual space. For example, suppose the 2D virtual
space of switches is ([0, 100], [0, 100]) and virtual distance
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is an accurate estimate of routing latency. If location hashes
are distributed over the entire virtual space, the worst-case
latency between sending a lookup request and receiving its
reply is 282.8. If the hash results are mirrored to a smaller
region ([25, 75], [25, 75]), the worst-case lookup latency is
212.1. The average latency is also reduced by using a smaller
hash region. This technique can introduce load imbalance
among switches, i.e., switches in the smaller region store
more tuples than switches outside the region. To avoid load
imbalance, the virtual space can be partitioned into two halves;
two independent hash functions are used with each function
mapping location hashes to one half of the space.

Caching of popular hosts.If there is a set of popular hosts
in the network, caching is an effective way to provide fast
responses to lookup requests. Each access switch can maintain
a cache list that stores the locations of the most popular hosts
requested by its hosts.

Shortcuts. A lookup request sent to locationH(ki) does not
have to reach the resolver that is closest toH(ki). Any inter-
mediate switchS can reply to the request for host information
and stop forwarding it, under one of three conditions: (1)S is
the access switch ofki ; (2) S is a resolver ofki for a different
hash function; (3)ki ’s location was previously discovered by
S and stored inS’s cache.


