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Abstract—Network management will benefit from automated in the data plane, such as, loop-freedom, nonexistenceaokbl
tools based upon formal methods. Several such tools have loee holes, network slice isolation, reachability via waypsingtc.

published in the literature. We present a new formal method . . .
for a new tool, Atomic Predicates (AP) Verifier, which is much The network state in the data plane is determined by the

more time and space efficient than existing tools. Given a seff forwarding and ACL rules in the network’s middle boxes.
predicates representing packet filters, AP Verifier compute a set Forwarding tables and ACLs are packet filters. They can be
of atomic predicates, which is minimum and unique. The use of parsed and represented by predicates that guard input and
atomic predicates dramatically speeds up computation of fevork  output ports of middle boxes. The variables of such a port
reachability. We evaluated the performance of AP Verifier uing predicate are packet header field®Rackets with identical
forwarding tables and ACLs from three large real networks. values in their header fields are considered to be the same
The atomic predicate sets of these networks were computedive  hy packet filters. A predicat® specifies the set of packets for
quickly and their sizes are surprisingly small. which P evaluates to true. The set of packets that can travel

Real networks are subject to dynamic state changes over from ports to portd through a sequence of packet filters can
time as a result of rule insertion and deletion by protocols ad  pe obtained by computing th@njunction of predicates the

operators, failure and recovery of links and boxes, etc. In a sequence or by intersection of the corresponding packet set
software-defined network, the network state can be observeth q y P gp

real time and thus may be controlled in real time. AP Verifier The intersection and union of packet sets are highly
includes algorithms to process such events and check congice COmputation-intensive because they operate on multi-
with network policies and properties in real time. We compae dimensional sets which could have many allowed intervals
time and space costs of AP Verifier with NetPlumber using in each dimension and arbitrary overlaps in each dimension

datasets from the real networks. between two packet sets. In the worst case, the computation
time of set intersection/union i9(2") wheren is the number
I. INTRODUCTION of bits in the packet header. Efficiency of these operations

) ) determines the efficiency of reachability analysis irresipe
Managing a large packet network is a complex task. Thg which formal method is used to compute reachability.
process of forwarding packets is prone to faults from coméigu hi lid h bl
tion errors and unexpected protocol interactions. In |payket In this paper, we propose a novel idea that enables very
ifast computation of reachability. For a given set of prettisa

networks, forwarding tables in routers/switches are upla k . X
we present an algorithm to compute a set of atomic predicates

by multiple protocols. Access control lists (ACLS) in rowge = L h k .
switches, and firewalls are designed and configured by difter Which is proved to be minimum and unique. Atomic predicates

people over a long period of time. Links may be physical ¢l2vé the following property: Each given predicate is equal
virtual (e.g., VLAN, MPLS). Some middle boxes also modify© the disjunction of a subset of atomic predicates and can
packets (e.g., NAT). In a study of large-scale Internetisess € Stored and represented as a set of integers that identify
[15], operator error was found to be the largest single cafiseth€ atomic predicatesThe conjunction (disjunction) of two

failures with configuration errors being the largest cargg  Predicates can be computed as the intersection (union) of
operator errors. two sets of integersThus, intersection and union of packet

_ ) sets can be computed very quickly. Based upon this idea,
Towards more reliable networks, formal analysis methogss geveloped a formal analysis method and prototyped an
and automated tools have been proposed to check reachabyffitomated tool, namedtomic Predicates (AP) Verifierfor

(e.g., “a packet with certain header values cannot readyos computing reachability and checking compliance with netwo
and to verify essential network properties (e.g., “the mekw Cpolicies and properties in real time.

has no routing loop for all packets”). A model for stati
reachability analysis of network state in the data planefwsis
presented by Xie et al. [19]. They proposed a unified appro
for reasoning about the effects of forwarding and filterin , :
rules as well as packet transformations on reachabilitys THNt€Met2 [2]. Since forwarding rules and ACL rules have

approach motivated subsequent development of algoritiehs &lifferent characteristics and locality properties, AP ifier
automated tools by other researchers [3], [12], [14], [113], computes two different sets of atomic predicates, one fot AC

[10]. In these tools, the algorithm for computing reachipil predicates and another for forwarding predicates. We found
is the core algorithm for verifying essential network proijes that the atomic predicate sets of the three networks can be

We evaluated the performance of AP Verifier using for-
grding tables and ACLs frortiree real networkslownloaded
Tﬁom Stanford University [1], Purdue University [16], and

“An abbreviated version of this technical report to appeaPiioceedings 1We will shorten “port predicate” to “predicate” whenevertmeaning is
of IEEE ICNR, October 2013. clear from context.



computed very quickly and their sizes are surprisingly smaincludes firewalls, which are ACLs with large numbers of
For example, the Stanford network [11] has 71 ACLs witkules.) The variables of the predicate are packet headdsfiel
1,584 rules but we found only 21 atomic predicates for thegd® \erifier has a parser for converting ACL rules written
ACLs and rules. This outcome is due to the existence of Cisco IOS to predicatell predicates in AP Verifier are
large amounts of redundancy in the forwarding and ACL rulagpresented by binary decision diagrams (BDDd)ich are

of real networks By encoding the network state in terms ofooted, directed acyclic graphs. Logical operations on BDD
atomic predicates, such redundancy is eliminaté€terefore, can be performed efficiently using graph-based algorittBhs [
AP Verifier is much more time and space efficient than othéWe use the software package JDD [17].) Consider an ACL
automated tools for network verification published to date. with m rules:

Real networks are subject to dynamic state changes over G,actiony
time as a result of, for examples, rule insertion and datetio Ga,actions
by protocols and operators, failure and recovery of linkd an
boxes, etc. Recently, two research groups suggested that in G- action
a software-defined network (SDN), the network state can b% . oo o L
observed in real time and thus may also be controllecea W ere@; is the predicate for théh rule andaction; is allow
time [13], [10]. More specifically, if a “verifier” is placed in ©f deny-
the communication path between a SDN's central controller When a packet is checked against an ACL, it is matched by
and its middle boxes, the verifier can intercept every ndtwothe first rule whose predicate evaluates to true for the pgacke
state change message and verify compliance of the statgehdfrom the predicates in rules, we use Algorithm 1 to compute
with pre-defined network policies and properties. If a statesingle predicate that specifies the packet set allowed doy th
change is detected in real time to be noncompliant, the gerifACL. (Predicatefalse specifies the empty set.)
may raise an alarm or block the state change. We haye— - .
designed algorithms for AP Verifier to perform such realaim/gorithm 1 Converting an ACL to a predicate
checks. AP Verifier was found to be especially fast in chegkirnput: An ACL
reachability compliance of a link up/down event. Existiogls Output: A predicate for the ACL
used several seconds of time to verify compliance of a linki: allowed + false, denied < false
up/down event [10], [13]. AP Verifier's compliance verifimat  2: for i =1 to m do
times were 4 to 5 orders of magnitude smaller for a link ups: if action; = deny then

event (median = 5Qs, maximum = 1.5 ms) and a link down 4: denied < denied V G
event (median = s, maximum = 27us). 5. else
The balance of this paper is organized as follows. In Sectiof: allowed « allowed V (G; N —denied)

I, we present our models of a network and a middle box. we/:  end if
describe how port predicates of each box are computed frorsi €nd for
rules in its forwarding table and ACLs. In Section III, we defi 9 return allowed
atomic predicates. Given a set of predicates, we present an o
algorithm for computing the set of atomic predicates, which If the allowed values of each header field in an ACL rule
is proved to be minimum and unique. We present statistidée specified by a suffix, prefix or an interval, we proved that
of three real networks [1], [16], [2] including the sizes othe predicate of an ACL rule can be represented by a BDD
their atomic predicate sets and their computation times. Yith < 2 + 2k nodes, wheré: is the number of bits in the
Section 1V, we present algorithms for computing reachspili packet header (see Appendix). We found that this constraint
and Verifying a number of network properties_ We prese".ﬁ Satls-fled by each ACL rule in the several datasets we have
computation time and storage costs comparing AP Verifigpcluding those from Stanford and Purdue). For an ACL rule
with Hassel in C (the fast version used in Header Space dfdwhich the allowed values of a header field are specified by
NetPlumber [11], [10]). In Section V, we present algoritiims Multiple disjoint intervals, the number of nodes in the isile
processing network state changes due to rule insertiartidel BDD may be larger thag + 2h but Algorithm 1 remains the
and link up/down events and checking reachability compansame (Such an ACL rule can be replaced in the ACL by
in real time. We present results comparing the computatiénsedquence of rules, one for each disjoint interval of altbwe
times of AP Verifier and NetPlumber [10]. In Section VI wevalues in the header field, specifying the same allowed packe
discuss related work. We provide answers to questions fr&it.)
the reviewers in Section VII and conclude in Section VIII. The forwarding table in a middle box is also a list of
rules. Each rule has an IP prefix and a port name. The port
Il. NETWORKMODEL may be physical or virtual. There is also a special port for
We model a packet network as a directed graph of middbeckets to be intentionally dropped. AP Verifier has parkars
boxes. A middle box can be a switch or a router. A middle baonverting forwarding rules written in Cisco I0S and Junipe
has a forwarding table as well as input and output ports geardJUNOS to predicates. We first convert each prefix to a preslicat
by access control lists (ACLs). Each packet has a header ofepresented by a BDD. The number of nodes in the BDD is
bits. The header is partitioned into multiple fields. Theethr < n + 2 wheren is the number of bits in an IP address.
networks analyzed in this paper are all IP networks. However |, |p forwarding, a packet may be matched by multiple
our model of packet headers is general and not limited t0 |Rjes in the table: the packet is forwarded to the output port
headers. specified by the matched rule with the longest prefix. To
Each ACL consists of a list of ACL rules. Each ACLcompute a single predicate for each port in the forwarding
rule is specified by a predicate and an action. (Our modeble, which hag: ports indexed by{1, ..., k}, we first sort




the rules in the table in descending order of prefix length and il gl
represent the forwarding table with rules as follows: 2 £5|As

Prey,L1, porty £ 46

PT@QaL27POTt2 / o ° \

Fig. 1: An example of a middle box4,..., s are ACL

Prem, Ly, porty, predicates and,, F, I are forwarding predicates.
where Pre; denotes a prefixl;, i € {1,...,m}, are prefix
lengths such thaty > Ly > ... L,,; andport; € {1,...,k}. properties:
Then we use Algorithm 2 to convert the sorted forwardinggabl .
to a list of predicates, one for each output port. 1) pi # false,Vi€ {1,... k}.

k _

Algorithm 2 Converting a forwarding table to forwarding 2) Vi_ipi = true.
predicates 3) pi Apj = false, if i # j.
Input: A sorted forwarding table 4) Each predicate” € P, P # false, is equal to the
Input: A set of output port§1,...,k} disjunction of a subset of atomic predicates:

Output: A list of predicates{ P, ..., Py} p— \/ i, whereS(P) C {1,... k). 1

1: for j=1to k do _

22 Pj <+ false i€s(P)

3: end for 5) k is the minimumnumber such that the sép1, ..., p.}

4: fwd  false satisfies the above four properties.

5. for i =1tom do

6: Pporti <_Pporm\/(P'r‘ei/\ﬁ.f’wd) Note that if P = true, thenS(P) = {1,,]{3}, if P =

7. fwd <« fwdV Pre; false, S(P) = (. Sincepy, . .., p;, are disjoint, the expression
8: end for in equation (1) isuniquefor each predicaté € P.

9: return {Py,..., P}

Given a setP, there are numerous sets of predicates that
_ . satisfy the first four properties of Definition 1. In the tavi

From the several datasets we have (including those froise "these four properties are satisfied by the set of prtedic
Stanford, Purdue, and Internet2), we observed that the aumBach of which specifies a single packet. We are interested in
of BDD nodes used to represent an ACL or a forwardinge set with thesmallestnumber of predicates. The meaning of

table increases approximately linearly with the numberof  atomic predicates is provided by the following theorem @bro
rules in the ACL/table up to a maximum and then decreasgsappendix A).

as m increases further. For example, in the Purdue dataset, ) ) )
an ACL with 52 rules is represented by 515 BDD nodekheorem 1. For a given seP of predicates, the set of atomic
(maximum); the ACL with the most rules (693) is representg¥fedicates forP specifies theminimumset of equivalence
by only 187 BDD nodes. In the Stanford dataset, a forwardif¢asses in the set of all packets.

table with 1,825 rules is represented by 5,325 BDD nodes . N

(maximum); the forwarding table with the most rules (18890 To enable fast computation of reachability in a network, AP

is represented by only 1,900 BDD nodes. (More results aygifier precomputes the set of atomic predicates for alt por
presented in Appendix.) predicates of the network. The set of atomic predicateshege

. . ) with the network topology preserve all network reachapilit
A port in a middle box may be a virtual port (e.g. @ VLANjhformation but without any redundant information in ACL

port) which has a set of physical ports corresponding t0 Jyjes and forwarding rules. Thus, AP Verifier is space effitie
We map the ACL and forwarding predicates of a virtual port

to its set of physical ports. As a result, a physical port cap More importantly, the conjunction of two predicatéy,and
have multiple ACLs; also, a physical output port can havez In 7. can be computed by the intersection of two sets of
multiple predicates computed from the same forwardingetablNt€9€rs.S(P1) and;S(F%). Similarly, the disjunction of, and
For reachability computation, the ACL predicate of a phaic 2 ¢an be computed by the union of two sets of integé(#;;)
port is the disjunction of its predicates computed from 4ll ¢Nd5(/%). Operations on predicates (or operations on packet
the ACLs. The forwarding predicate of a physical output pof€tS) aré highly computation-intensive because they @pera

is the disjunction of all of its predicates computed from th@" many packet header fields. Using atomic predicates, these
forwarding table. computation-intensive operations are replaced by opgratn

sets of integers (i.e., identifiers of atomic predicateshvea

Thus we have the model shown in Fig. 1, namely: a middigamatic decrease in computation time. Thus, AP Verifier is
box with a set of physical input ports and a set of physicaisg time efficient.

output ports. Each input port is guarded by an ACL predicate.
Each output port is guarded by a forwarding predicate fadidw
by an ACL predicate.

B. Computing Atomic Predicates

Il. ATOMIC PREDICATES For a given setP of predicates, we present an algorithm
A. Basic ldea to compute its set of atomic predicates, denoted4§p).

Definition 1 (Atomic Predicates Given a setP of predicates, First, we compute the set of atomic predicates for each
its set of atomic predicate$p,...,pi} satisfies these five predicateP in P using equation (2) below. It is easy to see
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Fig. 2: Number of atomic predicates for forwarding and forl&Qn three real networks.
that A({ P}) satisfies Definition 1. Algorithm 3 uses formula (3) repeatedly. Theorem 2 en-

{true}  if P = false or true sures that Algorithm 3 returns the correct set of atomic
A({P}) = { o (2) predicates. Since the set of atomic predicates is uniqus, it
{P,—P} otherwise. independent of the predicates’ order in the list given to Al-

; , gorithm 3 as input. The computation time however is affected
Second, letPy, P, be two sets of pr(?d|cate§,>1$ set by the predicates’ order (see next subsection). We note that
of atomic predicates béb;,...,b;} and Py’s set of atomic

- - he computation time can be improved by treatid§{ P, }),
SIedlca;isage{fgﬂk’Ms'.’ dm}. We compute a set of predmatesti =1,...,N as leaf nodes of a binary tree and using formula

(3) to compute other tree nodes from their children until the
{a; = by, Ndi,la; # false,iy € {1,...,1},i2 € {1,...,m}} root node is computed. However, since the computation times
(3) of Algorithm 3 are quite small even for large networks (see
In the worst case, the above set can hiaven predicates. Next subsection), we have not tried to improve it.

However, in practice we found that most intersections in (3) _ Stanford | Internet2 | _Purdue
arefalse The following theorem states thét,, . .., a;} is the No. of middle boxes| 16 9 1,646

. . . . No. of ports used 58 56 2,736
set of atomic predicates fo?, U P» (proof in Appendix B).

. . . Stanford Internet2 Purdue

Theorem 2. The set of atomic predlcate_s fdp, U Py is No. of rules Forwarding | ACL | Forwarding | ACL
{a1,...,ar} where, fori € {1,...,k}, a; is computed by : 757170 | 1584 126,017 | 3,605
formula (3) No. of atomic predicates| 494 21 216 3,917

. . . TABLE [: Statisti f th | networks.
Given a set of predicate®, = { P, ..., Py}, Algorithm 3 atstics ot three real neworks

computes the set of atomic predicates far C. Atomic Predicates in Real Networks

Algorithm 3 Computing atomic predicates We downloaded datasets of three real networks from Stan-
_ ford University [1], Purdue University [16], and Internet2
Input: {Py, Py, ..., Py} [2]. Some network statistics are shown in Table I. All 16

Output: A({P1, Py, ..., Pn}) middle boxes in the Stanford dataset are routers. All 9 raidd|
1 fori=1to N do ) ) boxes in the Internet2 dataset are routers. The 1,646 middle
2:  computeA({F;}) using equation (2) boxes in the Purdue dataset consist of routers and switches.
3: end for We observed that forwarding and ACL rules have different
4: for i =2 to N do characteristics and locality properties. Therefore wesier
5. computeA({Fy, ..., P;}) from A({P,...,P,_1}) and  aAcL and forwarding rules separately and compageparate
] él(f{Pi}) using formula (3) sets of atomic predicates for ACL and forwarding predicates
7 (reenturr?r A({Py,....Px}) To compute atomic predicates for ACLs using Algorithm

3, we experimented with two ways for ordering the ACL




predicates: D. Packet Set Specification

: The set of packets that can pass through an output port is

* Random selectllonSeIect an ACL ran-domly. specified by the conjunction of its forwarding and ACL predi-

e Smallest ACL firstSelect an ACL with the smallest cates. For a particular port, 1ét and A denote the forwarding
number of rules. and ACL predicates, respectively. L&t denote the set of

- te atomi dicates for di | integer identifiers of atomic predicates for forwardingt [Sg
0 compute atomic predicates for forwarding, We aiso EXpefjaqia the set of integer identifiers of atomic predicates fo

mented with two ways for ordering the forwarding predicatec| s Then the set of packets that can pass through the output

e Random selectionSelect a forwarding predicate ran-POrt is specified by the predicate
domly. P = (Viesg fi) N (Vjesaa;) (4)

e Selection by boxSelect a middle box randomly andwhere f; anda; denote atomic predicates for forwarding and
then select its forwarding predicates one by one raACLs, respectively.
domly.

. . . IV. COMPUTING REACHABILITY AND VERIFYING
Figure 2 shows growth of the number of atomic predicates NETWORK PROPERTIES

in the three networks versus the number of forwarding/ACL . .
predicates. Figures 2(a) and (c) show that for forwardireglpr __Consider a network represented by a directed graph of
icates, the number of atomic predicates grows approxigat&niddie boxes. Any full-duplex physical link connecting two
linearly with the number of forwarding predicates whicheve?0Xes is represented as two unidirectional logical linkshe
selection method is used. Figures 2(b) and (d) show tHggical link connects the output port of one box to the input
when ACLs are selected randomly, the number of atomi't of the other box. Each input port is guarded by an
predicates grows approximately linearly with the number CL Predicate. Each output port is guarded by a forwarding
ACLs. But with smallest ACL Tfirst the number of atomic Predicate followed by an ACL predicate. If a predicate i{ru
predicates remains low for a long time until near the end 8y Packet can pass through. If a predicate is false, no packe
the computation (thus requiring less computation time). ~ ¢&n pass through. (Notation: In figures in this paper, if & jsor

. not labeled by any predicate identifier, its predicate isiaes

From Table | and Figure 2, observe that the Sta”fo'ié)betrue.)

network has 71 ACLs with 1,584 rules but only 21 atomic _ . ) . .
predicates for these ACLs — a surprisingly small number whic In this section, we first present an algorithm for computing
indicates large amounts of redundancy in the rules as well 8§ Set of packets that can travel from a potd another port
similarity between ACLs. The number of atomic predicate® " the network (more specificalljrom the entry point ok
is 3,917 for Purdue’s 519 ACLs with 3,605 rules; we founfP the exit point ofd). We next describe how the algorithm
that the Purdue dataset contains many different rules andS£xtended to compute the reachability tree fremSuch a
sizable number of extended ACL rules. The number of atonfigachability tree is labeled by sets of integer identifiefs o

predicates is 494 for Stanford’s 757,170 forwarding ruldse tomic predicates. Operations on sets of integers arenelye
number of atomic predicates is 216 for Internet2’s 126,04gSt- The reachability trees from ports can be computedkijuic
forwarding rules. and stored efficiently. AP Verifier can be extended to cheek th

network’s compliance with most safety and temporal proper-

atomic predicates for ACLs _ ties, such as, properties specified using CTL [6].

random selectiorfms) | smallest ACL firs{ms) i X i .
Stanford 1.56 0.84 We will describe how to verify several specific network
Purdue 886.21 45031 properties, namely: loop detection, black hole detectiat;

atomic predicates Tor forwarding work slice isolation, and required waypoints. Using theadats

random selectiorfms) |_selection by boXms) from Stanford University and Internet2, we present computa
Stanford 210.26 201.40 tion results and compare the performance of AP Verifier \@rsu
Internet2 154.91 148.28 Hassel in C [1] [10]

TABLE II: Time to compute atomic predicates.

. . . _A. Reachability trees
Table Il shows times used to compute atomic predicates y

for the three network&.Table Il shows that for ACLsmallest We first consider a path from port to port d. Let
ACL firstuses about 50% less time theandom selectionFor  £1. - - -, Fj be the forwarding predicates in the path represented
forwarding tables, the computation time sdlection by boys by S(F1),...,S(F}). Let Ay,..., A, be the ACL predicates
slightly smaller than the time ondom selectionWe will use i the path represented (A, ), ..., S(Ax). (Any predicate
smallest ACL firsto compute atomic predicates for ACLs and@dual totrue is not represented.) Algorithm 4 computes the

selection by boxo compute atomic predicates for forwarding'€achability set froms to d along the path. In steps 1-3
and S, represent the set of all packets that are injected into

The computation times for ACL atomic predicates in thg, ¢ <"t test reachabilit ;
y. If the Algorithm returnfalse, port
Stanford and Purdue networks were 0.84 ms and 0.45 secq% not reachable from pogt The reachability set fromato d,

respectively. The computation times for forwarding atom'Fepresented by andS, returned in step 11, is specified by
predicates in the Stanford network and Internet2 were 02 ajp, predicate” in equation (4). If there are multiple paths from

0.15 second, respectively. s to d, then the reachability set is the union of the reachability
sets of the paths.
2All results in this paper were computed using joste coreof a six-core Note that reachability can be computed from any port to

Xeon processor with 12 MB of L3 cache and 16 GB of DRAM. any other port in the network. The source podoes not have



Average (ms) Median (ms) Maximum (ms) Average (ms) Median (ms) Maximum (ms)
Hassel in C 233.57 48.57 2086.71 Hassel in C 757.73 610.80 7433.85
AP Verifier 0.91 0.98 1.48 AP Verifier 0.26 0.29 0.48
(a) Port to port reachability computation in Stanford netwo (b) Port to port reachability computation in Internet2.
Average (ms) Median (ms) Maximum (ms) Average (ms) Median (ms) Maximum (ms)
Hassel in C 218.22 53.45 1881.41 Hassel in C 754.19 609.14 5873.44
AP Verifier 0.95 1.03 1.38 AP Verifier 0.27 0.29 0.45
(c) Loop detection from one port in Stanford network. (d) Loop detection from one port in Internet2.
[ [ Average (ms) [ Median (ms) | Maximum (ms) | [ [ Average (ms) [ Median (ms) | Maximum (ms) |
[ AP Verifier | 0.011 | 0.0064 | 0.040 | [ AP Verifier | 0.014 | 0.014 | 0.027 |
(e) Black hole detection for each forwarding table in Stagfoetwork. (f) Black hole detection for each forwarding table in Inteth

TABLE Ill: Computation times of reachability, loop detemti, and black hole detection.

to be an input port that accepts packets from an external hostFigure 3 shows a small network example. The network
or box. The destination port does not have to be an outputhas 6 atomic predicated;, fo, f3, f4, f5, f6, for forwarding
port that connects to an external host or box. and 2 atomic predicates,, a2, for ACLs. Ports that filter

. _ — packets are labeled by integer identifiers of atomic predga
Algorithm 4 Computings — d reachability along a path specifying packets allowed to pass (ports without labdisaal

Input:  S(F),...,S(F;), andS(A), ..., S(Ax) all packets to pass). For examples, port 1 allows all packets
Output: packet set specification to pass; port 3 labeled by (Fs) = {1,2,3} forwards only
1 Sp—{1,....1} /I identifiers of atomic predicates Packets in predicatg;, v f> vV f3. The ACL of port 6 labeled
2 Sa{1,....J} /I identifiers of atomic predicates by S(Ag) = {2} allows only packets in predicate; to pass.
3 Sp < SpNS(F)N---NS(F) The reachability tree fromort; is shown in Figure 4. Each
4: if Sp =0 then node in the tree is a port with two sets of integers separated
5 retun false by a semicolon. Integers before the semicolon identify &om
6: end if predicates for forwarding. Integers (in bold italics) afthe
784 < SanNS(Ar) NN S(Ag) semicolon identify atomic predicates for ACLs. For example
8: if Sy =0 then the expression “1,2,3,4,5,6,2" represents the set of all packets
9: return false injected into port 1. As another example, port 6 is labeled by
10: end if “4,5,6; 2" with the following meaning: packets that satisfy the
11: return Sp, Sa /I packet set specification predicate(f4 V f5 V fs) A asg can reach and pass through port

— — 6. Note that a port can appear as nodes in different paths of
H Wel QOFT&pF\lr]efthe yforgpm?tl(én times I?f Ag‘ IVerlfle%rtEVerSlme reachability tree, such as, ports 8, 9, and 10 in Figure 4.
assel in or the Stanford network and Internét2or S : o
b . Optimization techniques AP Verifier uses several op-
each network, we compute reachability sets for all portspa ization techniques to reduce time for checking various

: ; i
and measure the time used for each pair. The results ar . : o P
presentgd in Table Ill(a) and (b): On the average, AP Verifi ijlc())rm‘k(lfer?/,p\?;lfes)' Egl‘:'; ﬁpk;/;frig'?; &])?':nrfﬁlrz%:r ?(‘;"rsﬂgr%t:)_
is 256 times faster than Hassel in C for the Stanford netwo ven a key, say port number its value is the set of tree nodes

and it is 2,914 times faster than Hassel in C for Internet2. each of which has port number HT can be used to query
The reachability tree from a ports to all other ports in the reachability set from a source parto some destination

the network is computed by performing a depth-first searglort d without traversing the reachability tree fromFunction

which begins with visiting port. The packet set injected into T (d) returns the set of po nodes ins’s reachability tree.

port s is the set of all packets (same as lines 1 and 2 in Second, when computing the reachability tree from a source

Algorithm 4). When the search visits a pofir and S, are e ;
. . - , . port s, AP Verifier stores in each tree node (say pgrthe set
intersected with the sets representing the port’'s forwaydind of ports along the path frons to the tree noddy). Port set

ACL predicates, respectively (any port predicate equatrte . - - : -
is not represented.) A search branch is terminated aftiings Irrég)éhmszt:lci)t?/ f‘rréaebles fast loop detection without travegsine

a port (sayr) if one of the following conditions holds: (5 or - ) ) N

S, becomes empty after visiting part (ii) port z is an output ~ Third, if a set of integer identifiers (such a&, Sa, S(F3),

port and there is no link connecting to an input port; (i) 0r S(4;)) is too large, the set's complement is stored and used

portz is an input port of a box with no output port; (iv) part instead.

has been visited before in the searéiop detectell In each .

case, the search backtracks and depth-first search costirfde Storage Costs of Reachability Trees

until no more port can be reached. When search terminates, awe compare the memory requirements of Hassel in C and

reachability tree from pors to all reachable ports is created AP Verifier for storing reachability trees computed for airs

Each node in the tree has a port number and two sets g¥fthe Stanford network and Internet2. The results are ptege

integers,Sr and Sy, specifying the set of packets that cafn Table IV. Hassel in C required 37 times more memory for the

reach and pass through the port. Stanford network and 28 times more memory for Internet2 than

AP Verifier. Furthermore, we monitored the maximum memory

3The C version of Hassel is faster than the Python version bylpbout USed to store intermediate data when reachability treee wer

two orders of magnitude. computed one at a time. The maximum memory was over 400
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Fig. 4: The reachability tree gfort;.

MB for Hassel in C and was less than 1 MB for AP Verifierthe Stanford network. It found black holes in every forwardi

Size (MB) Size (MB) table of Internet2.
Hassel in C| 323.06 Hassel in C| 187.60
AP Verifier 8.70 AP Verifier 6.72

E. Slice Isolation

. Network operators provide different network slices (vaitu
TABLE IV: Storage costs of reachability trees from ports. petworks, e.g., VLANS) to customers/applications and must
ensure that the slices do not overlap; any overlap wouldvallo
packets to leak from one slice to another. A slice can be di&fine

C. Loop Detecyon_ _ _.by a set of ports together with a set of packets allowed in the
Loop detection is performed by computing the reachabiliyfice.

tree for every port, as described abgve. . In AP Verifier, a set of packets is represented by two sets

We used AP Verifier and Hassel in C to detect loops in thst igentifiers of atomic predicates for forwarding and ACLs.
Stanford network a}r]d Internet2. For the Stanford netwoms_(, Vonsider two slicesSlice; andSlices. Slice, has a setT, of
computed reachability trees for 30 ports as was done preliounorts and a set of packets representedsby and S4, . Slices
_[11]. Twelve |nf|n_|te loop paths were detected by both AP Vehas a set]y, of ports and a set of packets representedsby
ifier and Hassel in C. For Internet2, we computed reachgbilifng S4,. To check whetheiSlice; and Slice, overlap, AP
trees for all ports. Two infinite loop paths were detected byerifier first computed’, NT5. If the intersection is empty, then
both AP Verifier and Hassel in C. Their computation times akgie two slices are isolated: else, it compuses= Sr, NSk,. If
presented in Table lli(c) and (d). On the average, AP Verifigy, s empty, then the two slices are isolated; else, it computes
is 230 times faster than Hassel in C for the Stanford netw05}§4 = 54, N Sa,. If Sy is empty, then the two slices are
and 2,793 times faster for Internet2. isolated; elseSlice; overlapsSlice, at portsT; N T, and the

set of packets shared by both slices is specified byandS 4.

(a) Stanford network (58 ports). (b) Internet2 (56 ports).

D. Black Hole Detection

A black hole in the forwarding table of a box is a set oF. Required Waypoints
packets that are dropped due to no forwarding entry (i@t 141y networks have one or more required waypoints (e.g.
intentionally). Finding black holes in the forwarding talf a firewalls); through which all packets fron?a sourceygomusgt %
box is very easy for AP Verifier. Leﬁ(Fl)’S(F2)’ - S(E) ass through before reaching a specified set of destination
be sets of identifiers of atomic predicates for o.utput.portéorts_ Consider a single middle box, with several input gort
1,2,.... k of the box (including the special port for intentionaly hich is a required wayppoint for all packets from sourcet por
packet drop). LeS(trug) be the set of identifiers of all atomic ;1 verify compliance with the waypoint requirement, AP
predicates for forwarding. The set of black holes is represe \grifier traverses the reachability tree fromto check that

by the set, . every path in the tree passes through an input port of the
S(true) — Ui, S(F) (5)  waypoint before reaching any destination port in the syetifi

If the above set is empty, the forwarding table has no blaskt. AP Verifier returngrue or a set of paths that avoid the

hole. waypoint.

We checked for black holes in each forwarding table in the Checking compliance with the waypoint requirement from
Stanford network and Internet2. The computation times fBr Aa set of source ports to a set of destination ports is perfdrme
Verifier are presented in Table lli(e) and (f). On the averagby traversing the reachability tree of every source porthia t
AP Verifier took 11us for the Stanford network and 14s specified set. It is also straightforward to check the waypoi
for Internet2. It found no black hole in forwarding tables ofequirement that all packets from post pass through any



member of a set of waypoints or the requirement that dtir forwarding may change. To update a port’s reachability
packets from ports pass through several waypoints in dree being used for reachability compliance check, AP \érifi
specified sequence before reaching specified destinatids. paunning on one processor core performs these steps: (i) It
checks if a port predicate is changed by the rule update; if
V. REAL-TIME COMPLIANCE CHECK FORNETWORK S0, it computes a new predicate for the port. (i) It updates t
STATE CHANGES reachability tree using the new predicate, if any. (iii) dtKs

In this section, we describe how AP Verifier handles ruf@ Process which runs on a second core to update the set of
insertion/deletion and link up/down events which change tiRiomic predicates. Steps (i) and (iii) occur concurrently
network state. For performance comparison, we performed th Steps (i) and (ii) can be completed in hundredsuefon
same benchmark experiments for link up and rule insertidhe first core. The updated reachability tree is correct amd ¢
events described in the NetPlumber paper [10]. We also geovibe used for compliance check but is intended to be temporary.
performance results for link down and rule delection eventis a temporary reachability tree, nodes of the port affected
not reported in the paper. In thebenchmark experimentthe by a rule update store a new predicate whose representation
reachability tree of a port is precomputed which satisfiesby atomic predicates has not been resolved. $etand S 4
network property or reachability policy. We investigate time  represent the set of packets that can arrive at the port'y ent
used by AP Verifier to update the reachability tree when & statoint. Suppose the port’s ACL predicateds,,. and the port’s
change event is detected. We performed one experimentdor tbrwarding predicatef’,,;, has been changed fg,,., which
reachability tree of each of Stanford network’s 58 ports ansd unresolved. After the rule update, the set of packetsdhat
Internet2’s 56 ports. pass through the port is represented $4A4,0,¢) N Sa, Sk,

and F},,,.,, which together specify the following predicate:
A. Link Status Chan-ge . . (ijS(Apm)mSAaj) A (Viesn fi) A Fzgort

The sets of atomic predicates are derived from a networkihie port's descendant nodes in the subtree are updateddaccor
forwarding predicates and ACL predicates and, therefooe, ﬁwgly (more details in Appendix).
not depend on the status of any link in the network. The

reachability tree of a port, however, depends on netwog: If rule updates arrive in rapid succession, AP Verifier can

topology and thus the status of each link. In each experime{gSP ©On updating the temporary reachability tree correctly
the reachability tree from a port and its hash tald, are (NOWEVer, computation time increases as the number of un-
precomputed. For a link up/down event, AP Verifier needs {Ssolved predicates in the tree increases).
update the reachability tree amdT. The process runr_1ing on the sgcond core can compute the
Consider a link down event for a bidirectional link with two{Pdated set of atomic predicates in 10 ms on the average for
output ports. For each of the two ports, AP Verifier usE to 0N rule update. If the u;()e%gted set of atomic predicates is
locate nodes in the reachability tree identified by the twet pd!Nchange@ndthere are threor fewer unresolved predicates,
numbers. It removes these nodes and all of their descenddlft PFOC€SS running on the first core replaces each unresolve

nodes from the reachability tree and from the hash table. Predicate in the temporary tree with its atomic predicate
identifiers and converts the temporary tree to a “normal”.one

Consider a link up event for a bidirectional link with twootherwise, the process deletes the temporary tree and ¢espu
output ports. For each of the two ports, AP Verifier us€8' 3 new reachability tree directly from the updated set of atom
to locate nodes in the reachability tree identified by the tweredicates. It can do so in less than 1 ms most of the time.

port numbers. From each node located, it performs a depth-filsee Tables I11(c) and I1i(d); note that loop detection fquaat
search to extend the reachability tree. It also adds newsogg performed by computing its reachability tree.)

from the subtrees 1677 . We performed benchmark experiments [10] using AP Veri-
The benchmark performance results of AP Verifier afger for the Stanford network and Internet2. For each network
summarized in Table V(a)-(d) for the Stanford network anghe reachability tree of a port was first computed using 90%
Internet2. For each link in a reachability tree, we perfadmeyf rules selected at random. (For the Stanford network, the
two experiments for link down and link up. We measured thges include ACL and forwarding rules.) The 10% of rules
time to update the reachability tree. AP Verifier's results aremaining were inserted one by one and the time for updating
compared with those reported for NetPlumb&m the average, the reachability tree was measured. We also ran experiments
AP Verifier is4-5 orders of magnitudeaster than NetPlumber. for each network with 100% of the rules initially. Ten perten
The Veriflow paper [13] reports that its average time tef the rules were then selected one by one for deletion; the
verify a link failure was 1.15 seconds with a maximum of 4.08me for updating the reachability tree after each rule ti@te
seconds. Veriflow experiments were performed for a differewas measured. Results are presented in Table V(e)-(h). For
network, i.e., a synthetic network with a Rocketfuel toggplo rule insertions, the performance of AP Verifier is compagabl
and BGP update traces. to NetPlumber for the Stanford network; it is better than
NetPlumber for Internet2.

B. Rule Update

When a rule is inserted into, or deleted from, a forwarding V_I' RELAT_E.D WoRk ) )
table, it may change a forwarding port predicate. (For an A model for static reachability analysis of network state in
ACL rule update, the following description is similar andllwi the data plane was first presented by Xie et al. [19]. Gouda

not be repeated.) As a result the set of atomic predica?d Liu presented firewall decision diagram (FDD) for formal
analysis of firewalls [7] and distributed firewalls [8]. Quat

4NetPlumber results were computed using 6-core Xeon procesgth 12
MB of L2-cache and 12 GB of DRAM [10]. 5This is a configurable parameter value.



Average (ms) | Median (ms) [ Maximum (ms) Average (ms)| Median (ms) | Maximum (ms)
NetPlumber | 3020.00 2120.00 (not reported) NetPlumber | 4760.00 2320.00 (not reported)
AP Verifier 0.16 0.037 1.55 AP Verifier 0.027 0.0067 0.36
(a) Link up in Stanford network. (b) Link up in Internet2.
[ [ Average (ms) [ Median (ms) [ Maximum (ms) | [ [ Average (ms) [ Median (ms) [ Maximum (ms) |
| AP Verifier | 0.0028 [ 0.00004 [ 0.27 [ AP Verifier | 0.0016 | 0.0011 .10 |
(c) Link down in Stanford network. (d) Link down in Internet2.
Average (ms) | Median (ms) [ Maximum (ms) Average (ms)| Median (ms) | Maximum (ms)
NetPlumber | 0.2 0.065 (not reported) NetPlumber | 0.53 0.52 (not reported)
AP Verifier | 0.29 0.077 26.44 AP Verifier | 0.35 0.19 10.40

(e) Rule insertion in Stanford network. (f) Rule insertion in Internet2.

[ Average (ms) [ Median (ms) [ Maximum (ms) |
AP Verifier | 0.35 [ 013 [ 46.24 |

(h) Rule deletion in Internet2.

[ [ Average (ms) [ Median (ms) [ Maximum (ms) |
[ AP Verifier | 0.32 0.083 [12.71

(g) Rule deletion in Stanford network.

TABLE V: Computational times for dynamic updates.

uses FDDs to represent ACLs in packet networks; it used temges? Answer: AP Verifier is already designed and imple-
to hundreds of seconds to compute reachability along pathented to include firewall rules. A firewall is an ACL with
with ACLs only [12]. a large number of rules. In the Stanford dataset, there are 12

There were two proposals to use general verificati Ls with 50 to 111 rules. In the Purdue dataset, there are
tools from other application domains. ConfigChecker [3]sus(<§p'°‘CLS with 52 to 111 rules and one ACL with 693 rules.
boolean formulas to specify state transition relationsafket | 1eS€ ACLS were included in our experiments. Furthermore,
sets before and after a packet filter. It applies symbolic ehod®!lr model of packet headers is general. A packet header is a
checking to check network properties. Anteater [14] usS§duence of bits partitioned into multiple fields. Our parsers
boolean formulas to represent packet filters and a SAT soltd AP Verifier can be extended to handle nonstandard rules.

for checking network properties. Both of these generappse Question: Why is there no experimental comparison using
tools are slow and operate on time scales of seconds to haives Purdue dataset? It is possible that AP Verifier won't grin
[13]. much advantage when there is low redundamfayswer: We
Custom-designed methods for reachability computation iRErformed experiments using AP Verifier and Hassel in C to
clude Header Space/Hassel in C [11], NetPlumber [10], af@MPUte port-to-port reachability sets for the Purdue skita
Veriflow [13]. We have compared the performance of APNCE the Purdue dataset does not have forwarding tabkes, th

Verifier versus Hassel in C and NetPlumber and showed thaersection of ACL predicates along the shortest path @p h
AP Verifier is much more time and space efficient. count) between two ports is computed. AP Verifier used;ds2
he average, for each pair of source-destination poddsan

. . ) ont
Veriflow aggregates packets into equivalence classes.(ECZ‘rs-'g orders of magnitude faster than Hassel in C (see Appgndix
by first storing all rules in anulti-dimensional prefix tree (trie) Comparing with Tables lli(a) and (b), it is noteworthy that
[13]. An EC is defined by a particular choice of one of thgomputing the intersection of ACL predicates is 2-3 orddrs o

disjoint intervals of allowed values for every header fietd Imagnitude faster than computing the intersection of fodivey
the trie. After tens of thousands of rules are inserted in thgadicates.

trie, the number of disjoint intervals for each header fied
numerous. For ACL rules which specify allowed values for
many header fields, the number of ECs is the product of the

set sizes of disjoint intervals and is very large. The penfomce : i o :
of Veriflow was demonstrated mostly for forwarding rulestwit Predicates (AP) Verifier, which is much more time and space

only one header field. Veriflow used one to several second icient than existing tools. We evaluated the performance
of time to verify the compliance of a link down event for of AP Verifier using forwarding tables and ACLs from three

synthetic network. AP Verifier used 10; for most link failures qarge real networks. The sizes of atomic predicate setsasth

(maximum of 0.27 ms for the Stanford network and maximufi€tWorks are surprisingly small. This outcome indicatest th
of 0.1 ms for Internet2) there exist large amounts of redundancy in the forwardirdy an
' ' ACL rules of real networks. By encoding the network state in

terms of atomic predicates, such redundancy is eliminated.

VIl. ANSWERS TOQUESTIONS FROMREVIEWERS The use of atomic predicates dramatically speeds up com-

Question: How would AP Verifier perform on backbone ISPutation of reachability trees from ports. On the average, A
networks?Answer: The Stanford dataset has 757,170 prefixégerifier is 3 orders of magnitude faster than Hassel in C. It
in forwarding tables of which 197,808 are distinct. The nembalso uses 2 to 3 orders of magnitude less memory than Hassel
of distinct prefixes in the forwarding tables of a backbone 1Sin C for computing and storing reachability trees from ports
network may be twice as many. We believe that AP Verifier peg| networks are subject to dynamic state changes over
will scale and can be used for verifying reachability prasr yime a5 a result of rule insertion and deletion by protocols
of backbone ISP networks. (We need access to the forwardigjey operators, failure and recovery of links and boxes,Afec.
tables and ACLs of a backbone ISP.) Verifier includes algorithms to process such events andkchec

Question: Can AP Verifier be extended to include firewaltompliance of network policies and properties in real time.

VIIl. CONCLUSION
We present a new formal method for a new tool, Atomic



In particular, atomic predicates are not affected by lirdktist predicates specifying equivalent classes (Property 4). ®

(up or down). Thus while existing tools used several seconEg .
. . i : : mma 2. For a setP of predicates, le{C,...,C,} denote
of time to verify reachability compliance of a link up/down%qe equivalence classes \F/)vﬂ Consideg alny set of}predicates

g\r/ggrté ,(A)Fm\gergli?l:gecsrrﬁngllearnce verification times are 4 to p1,-..,pm | that satisfies the first four properties of Definition
9 : 1. Then for alli € {1,...,m}, there exists a uniqug €

_Lastly, reachability properties of networks are affectgd b{1, ... »} such thatC; O the packet set specified by. This
middle boxes that modify packets, e.g., NAT, MPLS, IPse@nplies thatrn > n which is minimum.

etc. Our work on modeling and analysis of such “packet
transformers” is presented in a related paper under prépara Proof: For any predicate®? € P, from the assumption

Acknowlegment This work was sponsored by Nationathat {p1,...,pn} satisfies the fourth property of Definition
Science Foundation grant CNS-1214239. We thank the anody-I” ¢an be represented by the disjunction of a subset of

mous reviewers for their constructive comments. P1,---,Pm}. Consider some; € {pi,...,p,} and choqse
any two packetspkt; andpkto, from the packet set specified

by p;. We will show thatpkt; andpkts are equivalent. There
APPENDIX are two possibilities in the disjunction representation faf
A. Proof of Theorem 1 First, p, appears in the subset representifgin which case,

To prove Theorem 1, we first define equivalence classesldft()pktl) = Ip(pkts) = 1. r?er?ond;pi does not appear in the
packets with respect to (w.r.t.) a given $ewf predicates. We SUPSet representing, in which case/p(pkt1) = Ip (pkts) =
then prove Lemmas 1 and Zheorem 1 follows directly from 0- Therefore,Ip(pkt,) = Ip(pkts), VP € P. Thus pkt,

Lemmas 1 and .2 and pk_tQ are equivalent w.r.t?, and pkt,, pkt € C; for
) o i somej € {1,...,n}. ThusC; D the packet set specified by
For a predicaté” and a packepkt, theindicator function . c ¢, " ° ' 1. -
Ip(pkt) is defined as follows: Y
Ip(pkt) = {1 P evaluates to true fopkt, B. Proof of Theorem 2
PP 0 otherwise Proof: Theorem 1 states that the atomic predicates for

Given a setP of predicates, two packetgkt,; and pkt, are 71U P2 specify the set of equivalence classes WU Ps.
equivalentw.r.t. P if and only if Ip(pkt,) = Ip(pkty), VP € \We prove Theorem 2 by showing that, . . ., a; from formula
P. (3) specify equivalence classes w.P. U P,. That is, for any

The packet equivalence relation partitions the set of a)f° packetspkt, andpkts, pkty IS equivalent topkts w.r.t.

: . ; if and only if there existsi € {1,...,k} such that
packets intoequivalence classegC1,...,C,}. That is, for "} UP, | 2
every pair of packetspkt; and ;(ktg, they a%e in the same PFt1 andpktz belong to the pack?t set specified by
C;, fori e {1,...,n}, if and only if they are equivalent. We If part: Assume that there existsc {1,...,k} such that
can also define the indicator function on equivalence ctassekt1,pkt2 belong to the packet set specified &y Then there
Ip(C;) = Ip(pkt),¥pkt € C;, wherei € {1,...,n}, and eXistiy € {1,...,1} andiz € {1,...,m} such thata; =
Pep. bi, N d;,. Thus pkty, pkty belong to the packet set specified

. . . by b;, and to the packet set specified 8y,. From Theorem
Lemma 1. Given a setP of predicates, the predicates thag’ b;, andd;, each specifies an equivalence class wWPi.

specify {C1, ..., C,} satisfy the first four properties in Defi- ang'p,  respectively. ThusyP € Py, Tp(pkt1) — Ip(pkts),
nition 1. andVP € P, Ip(pkty) = Ip(pkty). Therefore,Ip(pkt,) =

Proof: We prove the four properties one by one usinéfr(f/%i)bvée P1UP,. Thatis,pkt, andpkt, are equivalent

set notation. By the definition of equivalence clasggs# 0, ] .

Vi € {1,...,k} so Property 1 is satisfied. The equivalence Only if part: Assume thatpkt; and pkt, are equivalent
classes partition the set of all packets; thus the disjanaif all W.r.t. to P; U P2. Then we have p(pkt1) = Ip(pkt2), VP €
predicates igrue and Property 2 is satisfied. A packet canndt1, andZp(pkt1) = Ip(pkts), VP € Pa. Thus,pkty, pkt, are
belong to two equivalence classes; therefore, the coripmctedquivalent w.r.t.?,, and pkt,,pkto € the equivalence class

of two different predicates igalse and Property 3 is satisfied. specified byb;,, for somed; € {1,...,l}. Similarly, we can
To prove Property 4, consider an arbitrary predidate P. S1°VW thalkty, pkt, € the equivalence class specified dy,
P perty 4, yp - for someis € {1,...,m}. Sincepkty, pkto € the equivalence

Let the packet set specified By be {pkt | Ip(pkt) = 1}. We
prove Property 4 by proving that a packstt’ is in {pkt |
Ip(pkt) = 1} if and only if packetpkt’ is in Ur, c,)=1C:.

If part: Consider a packepkt’ € Uy, (c,)=1Cs. Then for

classes specified by, andd;, respectively, and;, A d;, #
false, there exists € {1,...,k} such thatu; = b;, Ad;,, and
pkt1, pkte € the packet set specified lay.

, Consequently, the sefai,...,a;} specifies the set of
somei, pkt’ < C; andIp(Cy) = 1. Thuslp(pkt') = Ir(Ci) =  equivalence classes of packets W% U P,. Thus A(P; U
1. Hencepkt' € {pkt | Ip(pkt) = 1}. Po) = {ar,....ax). m

Only if part: Consider a packetkt’ € {pkt | Ip(pkt) =
1}. Then Ip(pkt’) = 1. Since{C4,...,C,} is a partition C. Advantages of BDD over Other Data Structures

of the set of all packets, there exists anc {1,...,n} We selected BDD as the data structure for representing a
such thatpkt” € C;. Thus Ip(Ci) = Ip(pkt') = 1. Hence ,regicate (set of packets) after performing a comparativeys
pkt" € Ur,(c,)=1Ci- of BDD versus three other data structures, namely: Packet Se
We have proved thafpkt|Ip(pkt) = 1} = Uj,(c,)=1Cs,  (PS) representation using a set of tuples [18], firewall sieni
which means thaf’ is equal to the disjunction of a subset ofliagram (FDD) [7], and wildcard expression [11]. In what



follows, we explain why none of the other three data striegurTheorem 3. If the length of a packet header isbits, and an
has all of the desirable properties of BDD and is as efficieACL rule specifies each header field by an interval, a prefix or
as BDD. a suffix, then the size of the BDD representation of an ACL

Unique representation: Consider a given predicate reprelule is < 2+ 2h.
tsaet?c::':]gas ;ertec()jfugggkg:zéIrtegaégge[ré]pcr)cr)vaeg ;h?éétj Creedprgs%n Proof: The header’s bit sequence is partitioned into fields.
[7] is unique. However such a predicate may have muItiag,E h; be the numger O.f Ellts .Of t;‘&h field, i =1,2,..., k. bi
PS representations or multiple wildcard expressions. It fsi1 hi :kh. hEa% vanahe In the BDD represents ?]nﬁ Icti
nontrivial to check that different PS representations,fiecent " the packet header. In the BDD representation, each header

wildcard expressions, are equivalent and thus represent figld in a rule is specified by a BDD subgraph. The BDD graph
same predicate. of the rule is obtained by merging the subgraphs represgentin

i . ) . its fields. A high level representation of the BDD graph for

Logical operations: Computing the negation of a BDD orgn ACL rule is shown in Figures 5a and 5b. A circle labeled
FDD is easy; it is done by swapping the two terminal nodesy, f;ci4; indicates a BDD subgraph representing ttiefield.
in the BDD or FDD. However, computing the negation oj\n'edge exiting the circle is labeledue if the corresponding
a PS representation or wildcard expression is nontriviak Tsubgraph is evaluated torue. An edge exiting the circle
negation of a PS representation (or a wildcard representatiis |apeled false if the corresponding subgraph is evaluated
might result in more tuples (or wildcard strings) than thg, r4/sc. For a rule that hasilow action, its BDD graph
original representation. For all four data structuresj@oction  eyajuates tarue if all subgraphs evaluate to true. For a rule
(also disjunction) requires time proportional to the prodof ha¢ hasdeny action, its BDD graph evaluates tulse if all
the operand sizes. subgraphs evaluate toue.

. Representation size for an ACL rule: Consider ACL rules ~ por the ACL rule that allows all packets, its BDD repre-
in which the allowed values of each header field are specifig@ntation has only one node, the terminal node:. For the

by a suffix, prefix, or an interval. This constraint is sati$fiy e that denies all packets, its BDD representation hag onl
every ACL rule in the datasets we have (from Stanford, Purdyge node, the terminal nodgulse.

and Wisconsin) and is likely satisfied by the vast majority of . .
) y y jortty For a nontrivial rule, there may be one or more non-terminal

ACL rules in practical use. ¢ ; .
) nodes in each circle. LeV; be the number of non-terminal
Both PS and FDD use intervals to represent allowed valuggdes in the circle for théh field,i = 1,..., k. Then the total

of each field in a packet header. A prefix is a special type her of nodes in the BDD representatior2is- Zx_c N,

of interval. However, a suffix is not. If a field is specified by, hare 2 counts the two terminal nodes =1

a suffix, an exponential number of intervals are required to ) ' ) ] )
represent the suffix in the worst case. For example, consider We next derive upper bounds aY;. If the ith field is

a 32-bit IP address field. A single-bit suffix (the worst casépecified by a prefix or a suffix, it is straightforward to
requires23! intervals to represent. The size of a PS (also FDI§Present the field using a BDD. (See Figures 6a and 6b for
representation of an ACL rule can be measured by the numdepit examples.) The length of the longest possible prefix or
of intervals used. Consider a packet header witfields and Suffix is h; for field i. Thus we haveV; < h; for these two

theith field hash; bits,i = 1,. .., k. In the worst case, the sizeCaSes.

of a PS (also FDD) representation(g2"1 + 2"z ... 2hx), If the ith field is specified by an interval, Gupta [9] shows
The size of a wildcard expression can be measured Bi@t it can be represented by at mast; — 2 prefixes. All

the number of wildcard strings used in the expression. A these prefixes can be represented by a non-reduced binary

interval can be represented by multiple wildcard expressio decision diagram of at mosth; nodes (see Figure 6c for a
For example, consider the interval from 001 to 110 of a 3 fbit example). So we hav®; < 2h;.

field. This interval has 6 numbers and can be represented by Therefore, we have the worst-case boudé, Z’?_ N; <
multiple wildcard expressions, including: 919 Zk h,— 9249 =
=171 .

1. 001, 01%, 10%, 110
2. 0*1, *10, 10* Jields
3. *01, 1*0, 01*
4. *01, *10, 011, 100

It is easy to see that each of the wildcard expressions above

representing the interval from 001 to 110 has at least 3 waitdic
strings. In general, for a field that has bits, there exists an

fields false

true -

interval that requires at least wildcard strings in each of its field

expressions. Therefore, there exists an ACL rule that regui

hihs - - - hy, wildcard strings in its expression. true
The size of the BDD graph representing an ACL rule is

measured by the number of nodes in the graph. For the same  (a) action = allow. (b) action = deny.
ACL rule, ordering variables differently may result in BDD . ) .
graphs of different sizes. Lét denote the number of header Fig. 5: BDD representation of an ACL.

bits. The following theorem shows that the size of the BDD Based on the above analysis, we chose BDD as the data
for an ACL rule is2 + 2h in the worst case, wherk is the structure for AP Verifier since BDD representations of predi
number of header bits. cates are unique and efficient.



" [false] [true]

(a) BDD subgraph for prefix (b) BDD subgraph for suffix (c) BDD subgraph for the inter-
101. *x101. val from 0001 to 1110.

Fig. 6: BDD subgraphs representing a prefix, a suffix and amvat. The field has 4 bits represented by variablgs::, x2, 3.
A dotted edge denotes an assignmenf#dse and a solid edge denotes an assignmertt-ie.

When numerous rules are grouped into an ACL or a 10.0.0.0/8, porty
forwarding table, we are interested in the growth of the nemb /
of BDD nodes used to represent the ACL/table as the number 10.1.0.0/16, ports 10.2.0.0/16, ports

of rules increases. From several datasets ([11], [16],[&],
we observed that the number of BDD nodes used to represent

an ACL or a forwarding table increases approximately lityear 10.1.1.0/24, porty
with the numbenn, of rules in the ACL/table up to a maximum
and then decreases as increases further (see Figures 7 and
8).

Fig. 9: Forwarding rules organized as a tree

stored for theith rule,i =1,2,...,m:

) ) G1,actiony, allowedy, denied;
D. Performance Evaluation using Purdue Dataset

We used the Purdue dataset to compare the performance of
AP Verifier and Hassel in C. We started from a network topol- G . ,
ogy including just the core routers in the Purdue dataset, an mACtiONy , allowedn, deniedy,
gradually increased the network size by including neigbboror theith rule, allowed; is the predicate specifying the set
of middle boxes already chosen. In each network, we selec®fdpackets that are allowed by rules from 1 dodenied; is
the shortest path that go through core routers for each pairtiee predicate specifying the set of packets that are denjed b
middle boxes. We measured the times to compute intersectiédles from 1 toi. In particular,allowed,, specifies the set of
of ACLs along each path using AP Verifier and Hassel ipackets that are allowed by the ACL.

C. The results are summarized in Table VI. We can see that When theith rule is updated, AP Verifier starts from tfi@
on the average, AP Verifier takes about }+:2 to compute rule and runs Algorithm 1 usingllowed;_; anddenied;_; to
intersections of ACLs along a path and is about 2-3 orders @compute the predicate for the ACL.

magnitude faster than Hassel in C. Port Predicate Change due to a Forwarding Rule Update

. To accommodate forwarding rule updates, AP Verifier or-
E. Rule Update Algorithms ganizes rules of a forwarding table into a forest and congpute
When a rule is inserted into or deleted from an ACL (oforwarding port predicates using trees in the forest. hbte
a forwarding table), it may change a port predicate and tlo¢ Algorithm 2, AP Verifier first sorts rules in the table in
set of atomic predicates may change also. To update a podéscending order of prefix lengdnd then uses Algorithm 5
reachability tree being used for reachability complianiceak, to build trees in the forest. See Figure 9 for an example of a
AP Verifier running on one processor core performs thesestepee.
(i) It checks if a port predicate is changed by the rule update
so, it computes a new predicate for the port. (ii) It updakes t
reachability tree using the new predicate, if any. (i) dtKs Input: A sorted forwarding table
a process which runs on a second core to update the seQaftput: A forest of rules

Go,actions, alloweds, denieds

Algorithm 5 Organize Forwarding Rules as a Forest

atomic predicates. Steps (ii) and (iii) occur concurrently 1: for i =1tom do
To perform step (i), AP Verifier uses different approacheg for j=i+1tomdo ) ,
for ACL and forwarding table rule updates. 3: if rule j's prefix contains rule’s prefix then
. 4 make rulej the father of rulei
Port Predicate Change due to an ACL Rule Update 5 break
When an existing rule is deleted from or a new rule isé: end if

added to an ACL, the ACL's predicate may change. A naiver:  end for
way is to run Algorithm 1 from the first rule to recompute 8: end for
the predicate. However, AP Verifier stores intermediateltgs
to avoid recomputation from the first rule. When Algorithm 1 Consider a forwarding table that has rules andk ports
is run for the first time, predicateglowed; anddenied; are indexed by{1,...,k}. AP Verifier stores two predicates for
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Hassel in C AP Verifier

Network Size | Average (ms) | Median (ms) | Maximum (ms) | Average (ms)| Median (ms) | Maximum (ms)
74 0.65 0.68 0.90 0.0027 0.00049 0.038
161 0.67 0.69 1.04 0.0012 0.00019 0.012
224 0.93 0.96 1.35 0.00056 0.00012 0.042
351 0.99 0.96 2.89 0.00080 0.00012 0.034
519 0.83 0.82 1.84 0.00082 0.00012 0.040
603 0.80 0.80 1.57 0.0020 0.00086 0.056
647 0.30 0.32 0.80 0.0014 0.0022 0.038
880 1.06 1.08 1.93 0.0028 0.00090 0.053
904 0.82 0.79 1.53 0.00090 0.00017 0.0049
941 0.96 0.94 1.50 0.00071 0.00017 0.013

TABLE VI: Time to compute intersections of ACLs along a pathHurdue dataset.



each rule: map each atomic predicate to a set of predicates. (AP Verifier

Prey,Lq, porty, Ry can_fo_rk a new process which runs on another core to perform
Preg, Ly, ports, Ry minimization.)
""" Definition 2 (Reference FunctignLetP = {Py, P, ..., Py}
Prep,, L, port,,, Rm be a set of predicates, abt{P) = {p1, p2, ..., px} be the set
where. fori = 1.2 m, predicatePre; represents the prefix of atomic predicates. The reference functierf is defined on
] It Rt I 1 7

of theith rule, L; is the length of the prefigort, € {1,...,k} A(P):

is the port number, ané&; specifies the set of packets that areref(p;) = {P;li € S(P;),j=1,...,N},i=1,2,...,k (8)
actually forwarded by the rule. Predicafe is computed using ] ) ) ] ]

the following equation: Functionref stores the information of how atomic predi-
cates are used to represent predicates and it can be computed

Ri = Prei A (Vi j is a chid of ruiei ~re;) ) \When the set of atomic predicates is computed.
The forwarding port predicate of part = = 1,2,... .k, is Algorithm 6 shows how to minimize the set of atomic
P, = Ve i forwards to porte Fi (7) predicates after a predicate is removEds a set of predicates,

. . . and A(P) is its set of atomic predicates. Assume thiatis
In what follows, we first discuss rule deletion and then ru'&oing (to )be removed. P 13

addition. In each case, at most two port predicates aretatfec ] . . .
portp The algorithm first updates theef function. Then it

If rule i is deleted from the forwarding table, we updatg,qs every pair of old atomic predicatesp’ such that

its tree of rules as follows. We find rulés father, rulej, and ref(p) = ref(p'), and mergesp and p’ to be one new

make rule:’s children into rulej’s children. Predicated?; of  giomic predicate Becausezf(p) = ref(p') means that the
rule j is updated as two atomic predicates have the same usage for the changed

R; + R; V R; set of predicates. Note that for each old atomic predigate

Assume that rule forwards packets to pott, and rulej :ﬂr;?ré)ls:aigc();t)one different old atomic predicateuch that

forwards packets to pott Then the forwarding port predicates
P, and P, are updated using the following equation: Algorithm 6 Minimize the set of Atomic Predicates
Py = Fo ARy Input: P, P;, A(P)
Py« P,V R; Output: A(P — {P;})
If a new rule,i, is added, AP Verifier first inserts it into the 1: tmp <= A(P)
tree it belongs. Assume that rulis father in the tree is rule 2 for all p € A(P) do
j. R; is computed using (6) an®; is updated by GG{(P) «ref(p) — {P;}
Rj — Rj A = Pre; - end tor

: for all p used to represen®; do
Assume that rulei forwards packets to port, and rulej if there existsy’ € A(P),p # p’ such thatref(p) =

forwards packets to port. Forwarding port predicateB, and ref(p') then

w

o u s

P, are updated by: 7 tmp < tmp — {p,p'}
P, « P,V R; 8: tmp < tmp U {pVp'}

P, « P, AR, 90 end if

v Y 0: end for

1
If no port predicate changes after a rule update, AP Ver1: A(P — {P;}) + tmp
ifier does not need to update the reachability tree or atomic
predicates. Otherwise, AP Verifier needs to run the follgvin Update Reachability Tree

steps. . . AP Verifier can first update the set of atomic predicates
Update Atomic Predicates and compute the reachability tree directly. However, uipdat
When port predicates are changed, the corresponding a&tmic predicates takes 10 ms on the average. For quick
of atomic predicates needs to be updated. Updating atomésponse to a rule update, AP Verifier forks a process which
predicates can be handled by two basic cases: add a mews on another core to update the set of atomic predicates
predicate and remove an old predicate. while the process running on the first core builds a temporary

Add A Predicatelt is straightforward to update the set ofi€€ for quick response as follows.
atomic predicates when a new predicate is added. A new setAP Verifier updates the reachability tree using changed
of atomic predicates will have to be computed by applyingort predicates. The updated tree is correct and can be used
formula (3) to the existing set of atomic predicates and thHer compliance check but is intended to be temporary. In the
newly added predicate. The mapping from predicates to s&fiowing description, we assume a forwarding rule updtite;
of atomic predicates is then updated. procedure is similar for an ACL rule update.

Remove A Predicatdf a predicate is removed, the old In a temporary reachability tree, each node uses a set of
set of atomic predicates still satisfy the first 4 properiies predicates] to store new port predicates that are unresolved.
Definition 1. Thus AP Verifier can still use it to represent th&or example, in the top part of Figure 10, the port has
remaining predicates. However, the old set of atomic pegdic forwarding port predicaté,,,, and ACL predicated,,, .. Let
is not necessary minimum w.r.t. the remaining predicates. 5r and S represent the set of packets that can reach the
make it minimum, AP Verifier uses the following function toentrance of the port. Thefiy N S(Fpori) andSa N S(Aport)




SF7SA

——port

SF n S(Fport)7 SA N S(Aport)

FpOTta Aport

the process computes a new reachability tree directly fiwan t
updated set of atomic predicates. It can do so in less than 1 ms
most of the time (see Tables lli(c) and llIi(d); note that loop

detection for a port is performed by computing its reacliigbil

SF7 SA N S(Apo'rt)v {le)m't}

SF7 SA7 {}

F’

port>

Aport

Fig. 10: Add changed port predicatesTo [

represent the set of packets that can pass through the port.[2]

After a forwarding rule updatel,,; is changed tOF[mt
which is unresolved (see bottom part of Figure 10). Hence APl
Verifier storesF, ., in 7. The packet set that can pass through

the port is specified by the following predicate

(VjeS(Apor)nsadi) A (Viesy fi) A Fpons
After multiple rule updates, sét can have multiple unresolved
predicates. [5]

AP Verifier locates all nodes in the tree that are affected by
a rule update. For each affected node: AP Verifier copiesahe g6l
Sr from its father node, and adds the new forwarding predicate
to set7. Then AP Verifier removes all its descendant noded;]
and performs a depth-first search from the node to extend tfﬁ
tree. In the depth-first search, predicates ir/satre propagated 8
to each of the new descendant nodes.

If rule updates arrive in rapid succession, AP Verifier cari9]
keep on updating the temporary reachability tree correctly

Convert to A Normal Reachability Tree [10]

The process running on the second core can compute the
updated set of atomic predicates in 10 ms on the average for
one rule update. In our experiments, about 50% of rule updagal
did not change atomic predicates.

If the updated set of atomic predicates is unchanged [12]
there are thréeor fewer unresolved predicates, the temporary
tree is converted to a “normal” one by the process running 6+l
the first core. To do this, AP Verifier traverses the temporary
reachability tree. In each node, each unresolved predisat%w
replaced by its set of atomic predicate identifiers. If theeun
solved predicate is for forwarding, its set of atomic pratkc
identifiers is intersected witlr; if the unresolved predicate [15)
is for ACL, its set of atomic predicate identifiers is intertss
with S 4. This step is summarized as Algorithm 7.

(4]

Algorithm 7 Convert to Normal Reachability Tree [16]
Input: A temporary reachability tree
Output: A normal reachability tree [17]
1: for each node: in the temporary reachability treso
2: access node’s S, Sa, T [18]
3. for Pin T do
4: if P is a forwarding predicatéhen
5: SF%SFQS(P) [19]
6: else
7: Sa+San S(P)
8: end if
9: end for
10:  removeT
11: end for

Otherwise, if the updated set of atomic predicates is
changedor there are more than three unresolved predicates,

6This is a configurable parameter value.

tree).
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