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Abstract—Packet transformers are widely used in ISPs, dat-
acenter infrastructures, and layer-2 networks. Existing network
verification tools do not scale to large networks with transformers
(e.g., MPLS, IP-in-IP, and NAT). Towards scalable verification,
we conceived a novel packet equivalence relation. For networks
with packet transformers, we first present a formal definition
of the packet equivalence relation. Our transformer model is
general, including most transformers used in real networks.
We also present a new definition of atomic predicates that
specify the coarsest equivalence classes of packets in the packet
space. We designed an algorithm for computing these atomic
predicates. We built a verifier, named APT (Atomic Predicates for
Transformers), and evaluated its performance using 3 network
datasets with MPLS tunnels, IP-in-IP tunnels, and NATs. For a
provider-cone dataset with 6.9 million forwarding rules and 40
MPLS tunnels which use 176 transformers, APT used only 40.2
ms, on average, to compute the reachability tree from a source
port to all other ports for all packets. For the Stanford and In-
ternet2 datasets with NATs, APT is faster than HSA (Hassel in C
implementation) by 2 to 3 orders of magnitude. By working with
atomic predicates instead of individual packets, APT achieves
verification performance gains by orders of magnitude.

I. INTRODUCTION

The process of forwarding packets in networks is prone

to faults from configuration errors and unexpected protocol

interactions. Active probes (pings and traceroutes) are widely

used to measure data plane reachability. These tools, however

suffer from major limitations and biases [8].

Automated tools based upon formal methods have been

developed in recent years for verifying reachability properties

in the data plane: such as, “a packet with certain header values

cannot reach host z,” “the network has no forwarding loop for

any packet,” “all packets from specified input ports must pass

through a given sequence of firewalls.” Substantial progress

has been made in developing formal methods with efficient

algorithms for verifying networks of packet filters, represent-

ing forwarding tables and access control lists (ACLs), but not

much progress so far for networks with packet transformers.

We observe that tunnels and NATs are widely used in packet

networks. A measurement study shows that all tier-1 ISPs and

more than half of large ISPs used MPLS tunnels [21]. The
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Internet also has IP-in-IP tunnels used by IPsec and for the co-

existence of IPv4 and IPv6. Furthermore, researchers continue

to propose new applications of IP-in-IP tunnels [11].

The entry and exit routers of a tunnel perform header

encapsulation and de-encapsulation, respectively. Each transit

router in a MPLS tunnel performs label switching. All of

them perform packet transformations. NATs rewrite packets

and are packet transformers. Therefore, verifying reachability

properties using a network model with packet filters only

without including packet transformers would not be useful for

many networks in the real world.

An abstract framework for addressing the network verifica-

tion problem was proposed by Xie et al. [24]. In this frame-

work, a network consists of packet filters and transformers.

A packet filter is specified by a predicate which represents a

set of packets for which the predicate evaluates to true and

can pass through the filter. A packet transformer maps a set

of packets to another set of packets in the set of all packets,

namely: the packet space.

Designing and building an automated tool for verifying

reachability properties of a large network with packet trans-

formers as well as filters present major challenges. State-of-

the-art verification tools fail to meet these challenges for one

of two reasons: (i) they are computationally efficient but do

not model packet transformers; (ii) they can, in theory, model

packet transformers but are computationally inefficient and not

scalable. In this paper, we present a verification tool, APT,

based upon a novel packet equivalence relation, for verifying

networks with many different packet transformers as well as

filters; the tool is computationally efficient enough to scale to

networks with millions of forwarding rules and large numbers

of packet transformers.

A. Related work

In recent years, researchers have proposed network verifi-

cation methods and tools by following one of two different

approaches: (i) custom design new data structures and algo-

rithms to compute reachability sets directly [13], [12], [14],

[25], [26]; (ii) reformulate the network verification problem

within the context of verification tools previously designed

for other problem domains [5], [6], [17], [16], [15].

In the first approach, HSA [13] presents a new data struc-

ture, wildcard expressions, for representing packet sets to-

gether with methods for computing reachability trees to verify

network properties. NetPlumber [12], based upon HSA, and
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Veriflow [14] were designed for software defined networking

with a controller to perform incremental verification after a

network configuration change. The network model of Veriflow

has packet filters only. AP Verifier [25], [26], also designed

for packet filters only, uses atomic predicates computed from

the packet filters to substantially reduce both computation time

and space for network verification.

In the second approach, among tools that model some packet

transformations, Quarnet [15] is based upon firewall decision

diagrams previously designed for analyzing firewalls. For a

campus network dataset with 98 ACLs only (573 rules per

ACL on the average, no forwarding rule), it used 11 hours

to compute the reachability matrix [15]. Also in the second

approach, ConfigChecker [5] uses symbolic model checking,

Anteater [17] uses a SAT solver, and NoD [16] uses Datalog.

These general verification tools have expressive modeling

languages which can be used to specify packet transformers.

However, since the data structures and algorithms of these

tools were originally designed for other problem domains, they

run very slowly for network verification.

The designers of NoD replaced the native data structure of

Datalog by a new data structure more suited to representing

packet sets. As a result, Table 3 in [16] shows that NoD runs

much faster than model checkers and SAT solvers but it is

still an order of magnitude slower than Hassel (HSA),1 which

was shown to be orders of magnitude slower than AP Verifier

[25], [26].

For networks with packet filters only, packet equivalence

is intuitive and not hard to define. This is because when a

packet arrives at a filter, it either exits unchanged or is filtered.

Informally, two packets are equivalent if and only if they are

treated identically by every filter in the network. This idea

was applied to speed up network verification in Veriflow [14]

and in AP Verifier [25], albeit these tools use very different

data structures and algorithms. AP Verifier is more efficient

than Veriflow because its algorithm computes the coarsest

equivalence classes of packets in the packet space (i.e., the

number of equivalence classes is smallest). Recently, Plotkin et

al. [19] presented a different approach based upon bisimulation

and modal logic to speed up network verification and wrote:

“A side effect of all this machinery is the ability to formalize

earlier concepts such as slicing and a (generalized version of)

Yang-Lam equivalence” where “Yang-Lam equivalence” refers

to atomic predicates defined for a network of packet filters

[25].

B. Contributions of this paper

Towards scalable verification of packet networks in the

real world, we set out to develop a general theory of packet

equivalence for networks with both transformers and filters.

When a packet arrives at a transformer, it may be filtered.

If not filtered, it may exit unchanged, exit as another packet

(deterministic transformation), or exit as any packet in a

specified set of packets (non-deterministic transformation).

To handle most packet transformations in real networks, the

problem is substantially more challenging than the one we

1Hassel is the optimized version of HSA written in C [3].

solved previously for filters only [25]. We needed a new

definition of packet equivalence together with a new algorithm

for computing the coarsest equivalence classes (i.e., atomic

predicates). The major contributions in this paper are summa-

rized in the following subsections.

1) A general theory of packet equivalence: Every packet

injected into the network may possibly be transformed into

other packets by any sequence of transformers in the network.

Therefore, we need a new packet equivalence relation that

formalizes the following intuition: namely, two packets are

equivalent if and only if they are treated identically by every

filter and by every possible sequence of one or more transform-

ers in the network. After a number of attempts, we conceived

a formal definition of the intuition based upon the following

insight: For every sequence of transformations, consider the

sequence of inverse mappings instead of the sequence of

forward mappings. (See Definition 3 in Section IV.)

Subsequently, we solved two additional hard problems: (i)

formulating a new definition of atomic predicates for trans-

formers and filters with a proof that they specify the coarsest

equivalence classes of packets, and (ii) designing a new

algorithm for computing atomic predicates for transformers

and filters with a proof that the algorithm terminates and,

upon termination, it returns the set of atomic predicates. The

definition, algorithm, and theorems are presented in Sections

IV and V. Proofs of the theorems are presented in the

Appendix.

2) Formulas for transformed predicates: For a set of pack-

ets specified by a predicate, P , we derived formulas for

computing the transformed predicate, T (P ), where T is one of

the following five different transformations: packet rewriting;

encapsulation and de-encapsulation of a new header; encapsu-

lation and de-encapsulation of a new instance of the outermost

header. These formulas are novel and necessary for computing

transformations of atomic predicates in implementation.

3) APT implementation and its performance: The new

algorithm and formulas are implemented in a new verification

tool, APT, in which sets of equivalent packets are represented

by integer identifiers of atomic predicates. By working with

atomic predicates instead of individual packets, APT achieves

performance gains in computation time and space by orders

of magnitude.

The performance of APT was evaluated using the Stanford

and Internet2 datasets, and a new provider-cone dataset con-

sisting of 51 routers, 1,048 ports, and 6.9 million forwarding

rules (see subsection VI-A).2 Various numbers of NATs, IP-

in-IP tunnels, and MPLS tunnels were added into each dataset

for performance evaluation of APT.

For each of the three datasets with transformers, we mea-

sured the times to compute reachability trees from source ports

which can be used to verify safety and progress properties

specified by a temporal logic (e.g., CTL [10]). For examples,

the reachability tree from a source port to all other ports in

the same network can be used to detect forwarding loops for

all packets injected into the source port, and for verifying that

2The provider cone of a network consists of all of its direct and indirect
Internet service providers including tier-1 ISPs.
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all injected packets traverse a specified sequence of waypoints

in the network.

For the provider-cone dataset with 6.9 million forwarding

rules and 40 MPLS tunnels which use 176 transformers, APT

used only 40.2 ms, on average, to compute the reachability

tree from a source port and perform loop detection for all

packets.3 Thus, APT is scalable to very large networks, such

as, ISP networks and large-scale datacenter infrastructures.

Since Hassel supports packet rewriting,4 we ran the Hassel

in C code on our computer for the Stanford dataset with 0 to

14 NATs added and the Internet2 dataset with 0 to 9 NATs

added and compare its results with those of APT. We found

that APT is faster than Hassel in C by 2 orders of magnitude

for the Stanford datasets and faster by 3 orders of magnitude

for the Internet2 datasets. For the Stanford dataset, APT also

found the same 12 infinite forwarding loops found by Hassel

in C. This direct comparison provides validation for APT.

Lastly we experimented and found that APT recovers

quickly from network changes including link/box status

change, addition/removal of a NAT or tunnel, and rule updates.

The balance of this paper is as follows: Our network model

is presented in Section II. Formulas for transformed predicates

are presented in Section III. Our theory on packet equivalence

and atomic predicates is presented in Section IV. Algorithm

design is presented in Section V. Performance evaluation of

APT is presented in Section VI. We conclude in Section VII.

Proofs of theorems are in the Appendix.

II. NETWORK MODEL

We use “box” to refer to any network device that forwards

packets, including routers, switches, as well as middle boxes

such as firewalls, NATs, etc. A packet network is modeled as a

directed graph of boxes. We use predicates to represent packet

sets. A predicate is a Boolean formula where each variable

represents one packet header bit. A predicate represents a set

of packets for which the predicate evaluates to true. Predicate

false specifies the empty set, and predicate true specifies the

set of all packets.

A. Box model

Each box has at least one input port and one output port. A

forwarding table is used to forward each input packet to one

or more output ports (including a special port for intentional

drops). The forwarding table may be obtained from multiple

protocols, such as IPv4, IPv6, MPLS, etc.

In the model, the forwarding table is converted to a set of

predicates such that each output port is guarded by a predicate

for forwarding. Each port, input or output, is also guarded by

a predicate specified by an ACL. (If a port is not guarded by

an ACL, the predicate of the port is true.)

Our model of a box is illustrated in Figure 1. A box may

have one or more packet transformers, or none.

3All results in this paper were computed using one core of a six-core Xeon
E5-1650 processor with 12 MB of L3 cache and 16 GB of DRAM.

4Hassel has no implementation for header encapsulation and de-
encapsulation because HSA’s data structure does not support these transfor-
mations.
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Fig. 1: An example of a box with packet transformers T1

and T4. A1, . . . , A4 are predicates for ACLs, F3 and F4 are

predicates for forwarding.

Fig. 2: An example of a packet with a stack of headers. head1
is at top of the stack, head3 is at bottom of the stack.

B. Packet transformer model

In general, packet transformers are modeled as functions

that map an input packet set to an output packet set. For a

packet transformer T and a predicate P specifying its input

packet set, T (P ) denotes the transformed predicate specifying

the output packet set. This model includes both transformers

that are: (i) deterministic (one packet is mapped to another

packet), and (ii) nondeterministic (one packet is mapped to

any packet in a set of packets).

Three widely used types of packet transformations are

implemented in APT: (i) packet translation which rewrites

the bits of an existing header; (ii) packet encapsulation which

prepends a header to the existing packet header; (iii) packet

de-encapsulation which removes the outermost header from a

packet. For examples, packet translation is performed in NATs;

packet encapsulation and de-encapsulation are performed for

IP-in-IP tunnels; all three transformations are performed for

MPLS tunnels. Any transformer T , not in any of these three

types, can also be implemented by deriving a new formula for

T (P ) as illustrated in Section III.

Consider the box example in Figure 1. T1 and T4 denote two

packet transformers. Note that a packet may be transformed

after it enters an input port and before forwarding (e.g.,

encapsulation, de-encapsulation, and MPLS label switching).

After forwarding, the packet may be transformed before it is

sent to an output port (e.g., NAT).

As an exercise in reachability analysis, consider a set P of

packets injected into port1 in Figure 1. The set of packets that

can pass A1 is P∧A1. The set coming out of T1 is T1(P∧A1).
Of the injected packets in P , the subset of packets coming out

of port3 is T1(P ∧ A1) ∧ F3 ∧ A3.

The subset of injected packets coming out of T1 may also

pass through F4, transformed by T4, and filtered by A4. Thus

of the injected packets in P , the subset of packets coming out

of port4 is T4(T1(P ∧ A1) ∧ F4) ∧ A4.

Lastly, each transformer in our model may actually be

multiple transformers in sequence, e.g., one encapsulation

immediately following another. For example, if T1 is actually

Ta followed by Tb, then for input packet set P , the output

packet set of T1 is computed from T1(P ) = Tb(Ta(P )).

C. Packet header model

The header of a packet is modeled by a stack of protocol

headers (see example in Figure 2), also referred to as header
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Fig. 3: Auxiliary variables v0, v1, v2, are used in predicates to

indicate presence of protocol headers in a header stack.

stack or just stack. Encapsulation pushes a new protocol header

into the stack. De-encapsulation removes a protocol header

from the top of the stack. Packet translation rewrites some

bits within the packet header.

There are multiple fields in each protocol header within

a header stack. Not all of them are used by packet filters

and transformers in a given network. APT uses only header

fields that are relevant for verifying the network’s reachability

properties, such as, IP addresses, port numbers, MPLS label,

etc. In the balance of this paper, all fields mentioned are

relevant fields.

Relevant fields in different protocol headers within a header

stack are represented by different bit variables. For example,

if IPv4 packets are encapsulated with a new IPv4 header, the

inside destination IPv4 address and the outside destination

IPv4 address are different fields.

Each possible header stack corresponds to a unique se-

quence of relevant header fields, which is represented by a

sequence of bit variables in our model. The set of all possible

values of such bit strings represents the set of all packets in

our model, i.e., the packet space. In practice, packets have a

maximum size. Therefore, the set of all possible header stacks

is finite and the set of all packets is finite.

III. PREDICATE TRANSFORMATIONS

Consider a predicate P specifying the input packet set

of a packet transformer T , we present in this section five

formulas for computing T (P ) for the three basic types of

packet transformations. These formulas are used by APT for

computing transformations of atomic predicates.5

Auxiliary variables. Extending the model of a packet

header to a header stack requires the use of auxiliary variables

in each predicate to identify the protocol headers in a stack.

Auxiliary variables do not represent any real header bits; they

are not implemented and needed for verification only.

Consider the example in Figure 3 which shows three bi-

nary variables, v0, v1, v2, which are auxiliary variables. For

examples, v2 = 1 indicates a MPLS encapsulation. v1v0 = 01
indicates one IP encapsulation, and v1v0 = 11 indicates two IP

encapsulations. For a packet without any encapsulation, these

variables are set to v0 = 0, v1 = 0, and v2 = 0.

Logical operations. Logical operations used for computing

the output packet set of a packet transformer include conjunc-

tion (“∧”), disjunction (“∨”), negation (“¬”), substitution (“|”),

and existential quantification (“∃”). The first three operations

are common logical operations. In the following, we briefly

introduce substitution and existential quantification.

5These formulas are novel and necessary for implementation. However, for
readers not interested in predicate logic, they can skip ahead to Section IV
by considering T (P ) as the result returned by a function call, and still fully
understand the other key ideas and contributions of this paper.

We use notation P |x=b to denote the predicate computed by

the substitution operation that replaces variable x in predicate

P by expression b. In general, b can be a constant (either

true or false) or a predicate. When b is a constant (either

true or false), predicate P |x=b is called a restriction of P .

The existential quantification of variable x is defined using

substitution:

∃x.P = P |x=true ∨ P |x=false, (1)

which removes each occurrence of x (either x or ¬x) in

predicate P .

A. Packet rewrite

Consider packets with variables x1, x2, . . . , xk representing

bits to be translated in their headers. Suppose the header bits

are changed to new values specified by predicate Q that has

variables x1, x2, . . . , xk. We use existential quantification and

conjunction to change the values of variables x1, x2, . . . , xk.

In predicate notation, incoming packets specified by P are

translated to output packets specified by

T (P ) = (∃xk. . . .∃x2.∃x1.P ) ∧Q, (2)

For example, let xi, xj be the boolean variables representing

two header bits of packets in P . These two bits are set to

xi = 0, xj = 1 by a NAT. The set of packets exiting the NAT

is specified by the predicate, (∃xj .∃xi.P ) ∧ (¬xi ∧ xj).
Note that packet translation does not change the value of

any auxiliary variable because the header stack is not changed.

B. Encapsulation and de-encapsulation

There are two cases of encapsulation and de-encapsulation:

(i) encapsulation of a protocol header different from the

protocol header on top of the header stack, and its subsequent

de-encapsulation, e.g., IPv4 in MPLS; (ii) encapsulation of a

new instance of the protocol header on top of the header stack,

and its subsequent de-encapsulation , e.g., IPv4 in IPv4.

(i) A different protocol header. For encapsulation, let pred-

icate P specify a set of packets entering the transformer. Let

H be a predicate that specifies the new header encapsulating

the packets and v be the auxiliary variable for the new header.

H has variables y1, y2, . . . , yk representing bits in the new

header. y1, y2, . . . , yk do not exist in P .

We use conjunction (“∧”) and existential quantification

(“∃”) to add the new header and set the auxiliary variable v
to 1. The set of encapsulated packets leaving the transformer

is specified by predicate

T (P ) = (∃v.(H ∧ P )) ∧ v. (3)

At a transformer that de-encapsulates packets specified by

T (P ), the following predicate is computed:

(∃v.∃yk. . . .∃y2.∃y1.T (P )) ∧ (¬v) (4)

which specifies the set of de-encapsulated packets leaving

the transformer. Existential quantifications on y1, y2, . . . , yk
remove the encapsulated header, and auxiliary variable v is

set to 0 by the conjunction.
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(ii) A new instance of the protocol header on top of

stack. We use IPv4 in IPv4 as an example. The formulas are

the same for other protocols. For encapsulation, let P be a

predicate specifying a packet set entering the transformer. Let

H be a predicate that specifies the IPv4 header encapsulating

the packets. Prior to encapsulation, the outermost header of

packets specified by P is IPv4. Both H and P have variables

x1, . . . , xk because they are for the same protocol (IPv4).

There are two steps to perform this encapsulation: (a)

rename variables of the existing outermost IPv4 header; (b)

set the auxiliary variable v for the new IPv4 header to 1 and

push the new IPv4 header specified by H into the header stack.

To perform step (a), we use substitution operations and com-

pute predicate P |x1=y1,x2=y2...,xk=yk
, where each occurrence

of x1, x2, . . . , xk in P is replaced by y1, y2, . . . , yk, respec-

tively. To perform step (b), we use existential quantification

(“∃”) and conjunction (“∧”) to set the auxiliary variable and

use conjunction to add the encapsulated header.

Therefore, the encapsulated packet set T (P ) is computed

by the following formula:

T (P ) = (∃v.(P |x1=y1,x2=y2,...,xk=yk
)) ∧ v ∧H. (5)

There are two steps to perform de-encapsulation: (a) re-

move the outermost IPv4 header represented by variables

x1, x2, . . . , xk, and set auxiliary variable v to 0; (b) rename

variables y1, y2, . . . , yk of the IPv4 header that becomes the

outermost IPv4 header after de-encapsulation. Thus, the de-

encapsulated packet set is computed by the following formula

((∃v.∃xk. . . . ∃x1.T (P )) ∧ (¬v))|y1=x1,y2=x2,...,yk=xk
, (6)

where predicate ∃v.∃xk. . . . ∃x1.T (P ) does not have any

occurrence of v, xk, . . . , and x1.

IV. THEORY

Let U denote the set of all elements.6 Without qualification,

an element x is always in set U , and a set of elements is

always a subset of U . A predicate specifies a set of elements

in U . Predicate true specifies U . Predicate false specifies the

empty set.

The indicator function for a set D of elements and an

element x is defined as follows:

ID(x) =

{

1 x ∈ D,

0 x /∈ D.

A. Atomic and representative predicates for a set of filters

We first consider a network with a set, P , of predicates

(representing filters) only. Two elements, x1 and x2 are

equivalent w.r.t. P if and only if IP (x1) = IP (x2), ∀P ∈ P ,

where P is interpreted as a set of elements.

Definition 1 (Atomic Predicates for P). Given a set P of

predicates, its set of atomic predicates {b1, . . . , bn} satisfies

these five properties:

1) bi 6= false, ∀i ∈ {1, . . . , n}.
2) ∨ni=1bi = true.

6In the context of a packet network, U is the packet space.

3) bi ∧ bj = false, if i 6= j.

4) Each predicate P ∈ P , P 6= false, is equal to the

disjunction of a subset of atomic predicates:

P =
∨

i∈S(P )

bi, where S(P ) ⊆ {1, . . . , n}. (7)

5) n is the minimum number such that the set {b1, . . . , bn}
satisfies the above four properties.

Definition 1 is from [25]. By satisfying property 5 in the

above definition, atomic predicates specify the coarsest equiv-

alence classes w.r.t P (i.e., smallest number of equivalence

classes). They can be used to provide the best computation

time and space performance in network verification.

For a given set P of predicates, we will use {C1, . . . , Cn}
to denote the set of equivalence classes specified by the atomic

predicates for P , where n is the number of atomic predicates.

We will refer to a set of predicates that satisfies the first

four properties of the above definition as representative. Rep-

resentative predicates also specify equivalence classes w.r.t.

P and may be used in lieu of atomic predicates in network

verification, albeit less efficiently than atomic predicates.

Definition 2 (Representative Predicates for P). A set, B =
{b1, b2, . . . , bl}, of predicates is representative of P if and

only if B satisfies the first four properties of Definition 1.

B. Transformers

Let T denote a set of transformers. A transformer T ∈ T
maps an element from its domain to a set of elements in its

range. Both the domain and the range of T are subsets of U .

For a transformer T , and an element x in the domain of T ,

T (x) denotes the set of elements after transformation. For a

set D of elements, we define

T (D) =
⋃

x∈D

T (x) (8)

Assumption. For each transformer T , its inverse T−1 is a

function from the range of T to the domain of T .

For an element x ∈ U , T−1(x) is undefined if x is not in

the range of T .

C. Equivalence relation for sets of transformers and filters

Consider a network with a set, T , of transformers as well

as a set, P , of predicates. We define a new packet equivalence

relation for a network with both transformers and filters, which

formalizes the intuition that two packets are equivalent if and

only if they are treated identically by every filter and by every

possible sequence of one or more transformers in the network.

Definition 3 (Equivalence w.r.t. P and T ). Given a set P of

predicates and a set T of transformers. Let {C1, C2, . . . , Cn}
denote equivalence classes specified by the atomic predicates

for P .

Two elements x1, x2 in set U are equivalent w.r.t. P and T
if and only if the following two conditions hold:

1) ICi
(x1) = ICi

(x2) for each i ∈ {1, . . . , n}.
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2) Either both T−1
αk
· · ·T−1

α1
(x1) and T−1

αk
· · ·T−1

α1
(x2) are

undefined, or

ICi
(T−1

αk
· · ·T−1

α1
(x1)) = ICi

(T−1
αk
· · ·T−1

α1
(x2)) (9)

for each i ∈ {1, . . . , n}, any positive integer k and any

possible sequence Tαk
. . . Tα1 of transformers, Tαj

∈
T , j ∈ {1, . . . , k}.

Let {B1, . . . , Bl} denote equivalence classes defined by the

above equivalence relation (Definition 3). Note that elements

x1 and x2 are equivalent w.r.t. P and T if and only if x1, x2 ∈
Bj , for some j ∈ {1, . . . , l}.

Note. It is possible to define a less coarse equivalence

relation w.r.t. P and T by replacing {C1, C2, . . . , Cn} in

Definition 3 with a set of equivalence classes specified by

representative predicates, instead of atomic predicates, for P .

D. Atomic and representative predicates for transformers and

filters

Definition 4 (Representative predicates for P and T ). Given

P and T , the set, B = {b1, b2, . . . , bl}, of predicates is

representative of P and T if and only if B satisfies the

following properties:

1) B is representative of P .

2) For each T ∈ T and for each bi ∈ B that is transformed

by T , the following holds:

T (bi) =
∨

j∈S(bi)

bj,where S(bi) ⊆ {1, . . . , l}. (10)

Note that Property 2 in Definition 4 requires that, for each

transform T in T and each predicate bi in B, if packets in

bi can be transformed by T , then the transformed predicate

of bi must be the disjunction of a subset of predicates in B.

This means that all packets specified by each predicate in B are

treated identically by each transformer, i.e., they are equivalent

w.r.t. all transformers and can be represented as a single entity.

We can now define atomic predicates for sets of predicates and

transformers.

Definition 5 (Atomic predicates for P and T ).

Given P and T , the set of atomic predicates for them, B =
{b1, b2, . . . , bl}, satisfies the following properties:

1) B is representative of P and T .

2) l is the minimum number such that the set {b1, . . . , bl}
satisfies the above property.

In the Appendix, we proved the following: (i) Definition 3

defines the coarsest equivalence relation w.r.t. P and T . (ii)

The equivalence classes in Definition 3 are specified by atomic

predicates in Definition 5. These results constitute Theorem 1.

Theorem 1. Given a set P of predicates and a set T of

transformers, the atomic predicates for P and T (defined in

Definition 5) specify the coarsest equivalence classes in the

set U w.r.t. P and T (defined in Definition 3).

Advantages of atomic predicates. For real networks, each

atomic predicate represents a very large number of equivalent

packets in many disjoint fragments of the packet space. A

predicate (packet filter) is equal to the disjunction of a subset

of atomic predicates and is represented in APT by the integer

identifiers of the atomic predicates; a packet transformer is

represented by a set of mappings, each of which maps an

integer to a set of integers (that is, from one atomic predicate

to a subset of atomic predicates).

APT computes reachability trees for atomic predicates, each

of which represents a very large number of packets with

equivalent behavior, rather than for individual packets. Thus

the use of atomic predicates reduces the time and space

required for computing and storing these trees, as well as for

verifying reachability properties, by orders of magnitude.

V. ALGORITHM DESIGN

Consider a network with a set, T , of transformers and a set,

P , of predicates (representing filters). Each transformer T ∈
T is modeled as a function that maps a predicate specifying

its input packet set to another predicate specifying its output

packet set. The input packet set is the domain, D, of T and

the output packet set is the range, T (D), of T in Equation (8).

The predicate specifying the input packet set of T is added to

P if it is not already included.

To design an algorithm for computing the network’s atomic

predicates, we make use of the following observations:

(i) For T ∈ T , its input packet set, specified by P ∈ P , P 6=
false, is equal to the disjunction of a subset of representative

predicates for T by Equation (7):

P =
∨

i∈S(P )

bi, where S(P ) ⊆ {1, . . . , l}. (11)

Thus the transformed predicate T (P ) is the following:

T (P ) =
∨

i∈S(P )

T (bi), where S(P ) ⊆ {1, . . . , l}. (12)

(ii) We can use the formulas in Section III to compute the

transformed predicate T (bi) where T is one of five different

packet transformations.

(iii) For T ∈ T , its input packet set consists of all packets

that can pass through the transformer. However, not all packets

in the input packet set are transformed by T . For examples:

the entrance of an IP-in-IP tunnel only encapsulates packets

with certain destination IP addresses; a MPLS router only

switches labels for packets with MPLS headers. Therefore, for

each transformer, the algorithm only needs to compute T (bi)
for those representative predicates specifying packets that are

changed by the packet transformer.

Notation. Given any set, Q, of predicates, we use A(Q)
to denote the set of atomic predicates for Q, which can be

computed using one of the algorithms in [25], [26].

Algorithm 1 below computes the set of atomic predicates

for P and T .

In line 1 of Algorithm 1, B is set to A(P). It is represen-

tative of P but not representative of P and T unless T is

empty.

Line 2 computes the transformed predicate of each predicate

in B if it can be transformed by T , for each T in T .

In line 3, if the condition B = A(P ′ ∪R) is satisfied, it

means that each transformed predicate in R is equal to the



7

Algorithm 1 for computing atomic predicates after adding

transformers

Input: a set P of predicates, a set T of transformers

Output: a set B = {b1, b2, . . . , bl} of predicates

1: P ′ ← P ,B ← A(P ′)
2: Compute the following set:

R = {T (bi)| for each T ∈ T , and

for each bi ∈ B that is transformed by T }

3: if B = A(P ′ ∪R) then

4: return B.

5: else

6: P ′ ← P ′ ∪R, B ← A(P ′)
7: goto line 2

8: end if

disjunction of a subset of predicates in B, which is Property 2

in Definition 4. Property 1 of Definition 4 also holds because

B is the set of atomic predicates for P ′ and P ′ ⊇ P is an

invariant of Algorithm 1. Therefore, the set B returned by

Algorithm 1 is representative of P and T by Definition 4.

We proved that, upon termination, the predicates returned by

Algorithm 1 specify equivalence classes defined in Definition

3. Thus they are actually the atomic predicates for P and T .

A proof of Theorem 2 is presented in the Appendix.

Theorem 2. If the set U of all elements is finite, then Algo-

rithm 1 will terminate and return the set of atomic predicates

for the set P of predicates and set T of transformers.

Observations. (i) Transformers in the set T in Algorithm

1 can be of different types. (ii) Changing the ordering of

transformers in T does not change the set of atomic predicates

returned by Algorithm 1 but the computation time varies. (iii)

Algorithm 1 can be used for adding more transformers to a

network with existing predicates and transformers; in this case,

the input set P must be the set of atomic predicates for the

existing predicates and transformers.

Number of iterations. Algorithm 1 requires different num-

bers of iterations for different types of packet transformers. A

simple case such as “NATs only” requires two iterations. In

the first iteration, the set R is computed. Each predicate in R
is found to be atomic in line 3 and thus not transformed by

any transformer in T in the second iteration. As a result, the

set R computed in the second iteration is the same as that in

the first iteration, the termination condition B = A(P ′ ∪R)
in line 3 is satisfied.

IP-in-IP tunnels (all variations) belong to the general case.

However, Algorithm 1 only needs three iterations to compute

the new set of atomic predicates after adding a set of IP-

in-IP tunnels. The first iteration computes atomic predicates

specifying packets allowed to enter each tunnel and the corre-

sponding encapsulated packets. The second iteration computes

atomic predicate(s) specifying packets not allowed to enter

each tunnel. In the third iteration, the termination condition is

satisfied and Algorithm 1 terminates.

A more general case, such as MPLS, may require more than

3 iterations (see experimental results in Section VI).

Sets of predicates. For networks with two very different

types of packet filters (e.g. derived from ACLs and forwarding

tables), it is more efficient to represent them by two different

sets of predicates [25]. In this case, Algorithm 1 is run twice

(once for each set of predicates with the set of transformers)

to obtain two sets of atomic predicates.

VI. PERFORMANCE EVALUATION

We implemented Algorithm 1 in APT for the three types

of widely used packet transformations with the formulas

presented in Section III. In APT, predicates are represented by

binary decision diagrams (BDDs) which are rooted, directed

acyclic graphs, with logical operations for packet transforma-

tions implemented by BDD operations [7]. For each packet

transformer, the BDD specifying the set of transformed pack-

ets can be computed from the BDD specifying the set of

input packets using highly efficient, optimized BDD graph

algorithms [23].7

We present a performance evaluation of APT for three

datasets, namely: the Stanford dataset [3] and Internet2 [4]

dataset from real networks, and a very large provider-cone

dataset we constructed from Internet open sources. Transform-

ers used by NATs, IP-in-IP tunnels, and MPLS tunnels are

added to the datasets.

A. Three datasets

Statistics of the three datasets used in our experiments are

shown in Table I. Their topologies are shown in Figure 4.

We downloaded the Stanford dataset [3] and the Internet2

dataset [4]. To evaluate scalability, we constructed a large

provider-cone dataset as follows: From the Internet topology

for October 2013 created by CAIDA [1], we isolated the

provider cone of a monitored tier-4 AS (37684) consisting

of the direct and indirect Internet service providers of the tier-

4 AS. In the dataset, each AS is represented by a router; two

routers are connected by a link if the ASes they represent

have a provider-customer or peer relationship. Routing tables

were computed using control plane data for October 2013 from

several open sources [2], [18], [20], [22]. The graph, shown

in Figure 4(c), includes 51 routers representing 51 providers

including all 15 tier-1 ISPs. The dataset has 524 links (1,048

ports) and a total of 6,958,862 IPv4 forwarding rules. (For

each router, ports connecting to routers outside of the graph

are merged as one additional port.)

Stanford Internet2 Provider cone

No. of routers 16 9 51

No. of ports 58 55 1,048

Stanford Internet2 Provider cone

No. of rules
IPv4 ACL IPv4 MPLS IPv4

757,170 1,584 126,017 318 6,958,862

TABLE I: Statistics of the three datasets.

7Examples of packet sets represented by predicates and BDD graphs are
illustrated in the Appendix.
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(a) Stanford dataset.
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(b) Internet2 dataset. (c) Provider-cone dataset.

Fig. 4: Network topologies of the three datasets. (The Stanford topology is from [13].)

B. Transformers added to the datasets

NATs. In the experiments, NATs are added to each dataset

connecting edge routers of the network to private subnets.

Since we will compute reachability trees rooted at ports with

public addresses only, we added to the datasets only NATs for

translating public addresses to private subnet addresses. For

each NAT added for a subnet, we use a different public IP

address for the newly created port of the edge router and a

different private prefix for the subnet.

IP-in-IP tunnels. An IP-in-IP tunnel consists of an entry

router and an exit router. At the entry router, packets allowed

to enter the tunnel are encapsulated with a new IP header; at

the exit router, the new IP header is de-encapsulated and the

original packets are recovered. The exit router also filters out

packets not allowed to enter the tunnel. The entry and exit

routers of an IP-in-IP tunnel have packet transformers. (Thus

two packet transformers are added for each tunnel added.) To

create a tunnel for the Internet2 dataset, we randomly select

three different routers. The first two routers are the entry and

exit routers. The IP prefix of the third router is the destination

address of packets encapsulated and de-encapsulated by the

entry and exit routers, respectively. For the provider-cone data

set, the entry router of each tunnel is the router representing

the customer network (AS 37684). Each exit router is a router

representing a non tier-1 AS. Each tunnel carries packets

destined to a router representing a tier-1 AS.

MPLS tunnels. When a packet travels along a MPLS

tunnel, it is encapsulated by a MPLS header at the entry

router, its MPLS label is changed at each transit router, and the

MPLS header is de-encapsulated at the exit router. Thus every

router along the tunnel has a packet transformer. The Internet2

dataset includes incomplete MPLS tunnel configurations. Each

tunnel is missing the entry router and the exit router, which

we added. The set of packets allowed to enter the tunnel is

specified by the prefix of a router not in the MPLS path. We

found a total of 28 distinct MPLS tunnels which use 109

transformers. The longest tunnel has five hops. On average,

a MPLS tunnel in the Internet2 dataset has 2.9 hops.

To create MPLS tunnels for the provider-cone dataset, we

use the same entry and exit routers as the ones created for the

IP-in-IP tunnels. For each pair of entry and exit routers, we

compute a random path for the tunnel, and specify the set of

packets allowed to enter the tunnel by the prefix of a router

not in the MPLS path. We created 40 MPLS tunnels which

use 176 transformers. The longest tunnel has five hops. On

average, a MPLS tunnel in the dataset has 3.4 hops. (We used

parameter values similar to Internet measurements [21]).

C. Computing atomic predicates

Number of Algorithm 1 iterations. We have proved that

after adding a set of NATs, Algorithm 1 requires two iterations.

Also, after adding a set of IP-in-IP tunnels, Algorithm 1

requires three iterations. We do not have an analytic bound

for adding MPLS tunnels.

Figures 5(a) and (b) show the number of iterations used

by Algorithm 1 versus the number of MPLS tunnels, for the

Internet2 and provider-cone datasets, respectively. For each

dataset, Algorithm 1 requires up to nine iterations in the

experiments.
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(b) Provider-cone dataset.

Fig. 5: Number of Algorithm 1 iterations for networks with

MPLS tunnels.

Number of atomic predicates. Consider an IPv4 network,

for example. Allowing packets in the network to be encap-

sulated by just one IPv4 header increases the packet space

size from 2n to 22n, where n = 32 if only the destination

IP address is used for filtering, or n = 104 if bits in the 5-

tuple are used for filtering. Instead of individual packets, APT

works with atomic predicates each of which represents a large

equivalence class of packets. In this subsection, we studied

how the number of atomic predicates increases when packet

transformers are added to existing networks with filters only.

We make two empirical observations from the atomic

predicates computed for our datasets: (i) After adding a set

of transformers to an existing set of filters, the increase in

the number of atomic predicates is dependent mainly on the

number of packet transformers added, and not on the number

of existing filters. (ii) For the three types of transformers added

(described in subsection VI-B), the increase in the number of

atomic predicates is ≤ 2 per transformer on the average.

To illustrate, consider the Internet2 dataset with 126,017

forwarding rules. The number of atomic predicates for filters

only is 217. Consider the provider-cone dataset with 6,958,862

forwarding rules (including forwarding rules obtained from all
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15 tier-1 ISPs), the number of atomic predicates for filters only

is 19,637. Figures 6(a) and (b) show the number of atomic

predicates for both filters and transformers versus the total

number, k, of hops in MPLS tunnels, for the Internet2 and

provider-cone datasets, respectively. Each MPLS tunnel of k
hops has k+1 transformers. In each figure, the reference line

has a slope of 2. The number of atomic predicates grows at a

rate of less than 2 per hop (also per transformer).
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(b) Provider-cone dataset.

Fig. 6: Number of atomic predicates for networks with MPLS

tunnels.

ini
tia

l

NAT
1

IP
inI

P1

M
PLS

1

NAT
2

IP
inI

P2

M
PLS

2210

220

230

240

250

Sequence of adding transformers

N
o.

 o
f a

to
m

ic
 p

re
di

ca
te

s

Fig. 7: Number of atomic predicates for a network with

multiple transformer types (MPLS1 has two hops, MPLS2 has

four hops).

As another example, we computed atomic predicates for the

Internet2 dataset with 2 NATs, 2 IPv4-in-IPv4 tunnels, and 2

MPLS tunnels. In particular, the dataset has an IP-in-IP tunnel

nested inside a MPLS tunnel. Figure 7 shows the number of

atomic predicates versus the sequence of transformers added.

The increase in the number of atomic predicates is 2 for each

NAT (1 transformer each), 3 for IP-in-IP1 and 4 for IP-in-IP2

(two transformers per tunnel), 5 for MPLS1 (3 transformers),

and 7 for MPLS2 (5 transformers).
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Fig. 9: Time to compute atomic predicates for networks with

IP-in-IP tunnels.

Time to compute atomic predicates. We show the time

used by Algorithm 1 to compute atomic predicates for all

packet filters and transformers in each of the three datasets.

The computation time results are presented in Figure 8 for

NAT, Figure 9 for IPv4-in-IPv4, and Figure 10 for MPLS.

The black portion of each bar in these figures represents the

computation time for the initial set of atomic predicates for

packet filters only. The grey portion of each bar represents the

additional computation time used by Algorithm 1 to process

packet transformers to obtain the atomic predicates for both

transformers and filters.

We found that Algorithm 1 is very fast. In Figures 8-

10, observe that the vertical axis is in milliseconds for the

Stanford and Internet2 datasets, and in seconds for the large

ISP-scale provider-cone dataset. In almost all cases, the time

for computing atomic predicates for packet filters only (line 1

of Algorithm 1) is much greater than the time for computing

atomic predicates for the set of packet transformers.
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Fig. 10: Time to compute atomic predicates for networks with

MPLS tunnels.

Baseline preprocessing time. The network verification

problem has a baseline preprocessing overhead that is nec-

essary, irrespective of which verification tool is used, namely:

the overhead to parse and convert forwarding tables and ACLs

in network devices into data structures that represent them in

the verification tool. Such baseline preprocessing overheads

for other verification tools are rarely shown in prior papers on

network verification.

The preprocessing times of Hassel in C and APT are shown

in Figure 11. Note that the vertical axis is in log scale. APT

computes faster than Hassel by 8 and 5 times for the Stanford

and Internet2 datasets, respectively. The forwarding tables in

the provider-cone dataset are too large for the Hassel program.

Therefore, only the preprocessing time of APT is shown for

this dataset.

Observe that these preprocessing times are orders of mag-

nitude larger than the times used by APT to compute atomic

predicates in the previous subsection for the same networks.

The comparison demonstrates that the computation of atomic

predicates incurs negligible overhead cost.
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Fig. 11: Preprocessing time.

D. Verifying network properties

APT computes reachability trees for verifying network

properties. Such a tree is rooted at a port in the network;

each tree node is labeled with the set of packets that can

traverse the node. Computing the reachability tree from a
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Fig. 8: Time to compute atomic predicates for networks with NATs.
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Fig. 12: Ave. time to compute reachability tree from one port (also for loop detection) for datasets with NATs.

source port detects forwarding loops for all packets injected

into the source port, if any. More generally, reachability trees

can be used to verify safety and progress properties specified

in a temporal logic (such as, CTL [10]): for example, verifying

that all packets injected into the source port traverse a specified

sequence of required waypoints in the network.

Both APT and Hassel compute the reachability trees de-

scribed above, but using different packet set representations.

We use the time to compute the reachability tree from a

source port, averaged over all source ports, as the benchmark

for performance evaluation and comparison. For the Stanford

and Internet2 datasets, all ports are source ports. For the

provider-cone dataset, only ports used by the customer AS

to reach its direct providers are source ports.

NATs. Figures 12(a)-(c) show average tree computation

times of Hassel in C and APT for the three datasets versus

the number of NAT transformers. Forwarding tables of the

provider-cone dataset are too big for Hassel in C. Therefore,

the average tree computation time is shown only for APT in

Figure 12(c).

Note that the vertical axes in Figures 12(a)-(b) are in log

scale. Average time is measured in milliseconds showing

that network verification by APT is extremely fast. Also

the verification time is not very sensitive to the number of

NAT transformers. APT is faster than Hassel by 2 orders

of magnitude for the Stanford dataset and by 3 orders of

magnitude for the Internet2 dataset. For the Stanford dataset,

APT found the same 12 infinite forwarding loops found by

Hassel in C. This direct comparison provides validation for

APT.

Hassel performs better for the Stanford dataset because after

compression [9], its 757,170 forwarding rules are reduced to

3,840 forwarding rules. In comparison, the Internet2 dataset

still has 77,451 forwarding rules after compression. We note

that, for APT, the number of atomic predicates is the same,

irrespective of whether forwarding tables are compressed or

not.

Tunnels. Figures 13(a) and (b) show the average tree

computation times of APT for the Internet2 and provider-cone
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Fig. 13: Ave. time used by APT to compute reachability tree

from one port (also for loop detection) for datasets with IP

tunnels and MPLS tunnels.

datasets versus the number of tunnels for IP-in-IP and MPLS,

respectively.

The vertical axes in Figures 13(a) and (b) are in log

scale. Also average time is measured in milliseconds showing

that network verification by APT is extremely fast. Also the

verification time is not very sensitive to the number of tunnels.

Memory space required. The memory requirement of APT

is very low. For the Internet2 dataset with 28 MPLS tunnels,

APT uses 11.44 MB to store predicates for filters, atomic

predicates, and transformer mappings, and uses 10.94 MB to

store all 55 trees. For the provider-cone dataset with 40 MPLS

tunnels, APT uses 355.57 MB to store predicates for filters,

atomic predicates, and transformer mappings, and uses 4.14

MB to store two trees.

E. Handling dynamic changes

We next describe how APT handles events that change the

network state.

Network with
NATs

Network with IP
tunnels

Network with MPLS
tunnels

Link up 0.048 ms 0.055 ms 0.42 ms

Link down 0.0091 ms 0.0092 ms 0.022 ms

Box up 0.39 ms 0.46 ms 1.98 ms

Box down 0.059 ms 0.060 ms 0.11 ms

TABLE II: Average time used by APT to update a reachability

tree for Internet2.
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Link/box status change. The set of predicates and the set

of atomic predicates are not changed by link up/down status

change. However, reachability trees from source ports may be

affected by a link status change. APT checks each reachability

tree and updates it if needed. A box up event can be handled

by processing link up events for all links connected to the box,

and a box down event can be handled by processing link down

events for all links connected to the box.

For evaluation, we used the 3 Internet2 datasets with one

type of added transformers (9 NATs, 20 IP-in-IP tunnels, or 28

MPLS tunnels). Table II shows the average time used by APT

to update a reachability tree for a link up/down event and a

box up/down event. For link up/down events, the average time

to update a reachability tree is very small; it is smaller than

the average time to compute a reachability tree (see Figures

12-13) by 1-2 orders of magnitude.

Network with
NATs

Network with IP
tunnels

Network with MPLS
tunnels

Internet2 2.0 ms 6.1 ms 37.8 ms

Provider cone 0.065 sec 0.29 sec 2.7 sec

TABLE III: Averge time used by APT to update atomic

predicates after adding a NAT or a tunnel.

Addition/deletion of transformers. When a NAT or a

tunnel is removed from the network, the existing set B of

predicates is still a representative set and can be used for

reachability verification (the number of predicates in the set

may not be smallest). APT recomputes all reachability trees

but not the atomic predicates.

When a NAT or a tunnel is added to the network, APT first

updates the set of atomic predicates and then recomputes all

reachability trees.

For evaluation, we used the 3 Internet2 datasets described

above and also 3 provider-cone datasets (with 51 NATs, 40 IP-

in-IP tunnels, or 40 MPLS tunnels). Algorithm 1 is first used to

compute atomic predicates for all NATs (or all tunnels) except

one. The last one is then added and we measured the average

time for Algorithm 1 to update the atomic predicates after

adding the last NAT or tunnel. Table III shows the average

time to update the set of atomic predicates for the Internet2

and provider-cone datasets.

Network with
NATs

Network with IP
tunnels

Network with MPLS
tunnels

Internet2 2.11 ms 2.32 ms 3.89 ms

Provider cone 0.273 sec 0.278 sec 0.280 sec

TABLE IV: Averge time used by APT to update atomic

predicates after a predicate change.

Rule updates. When a rule is inserted into, or deleted from,

a forwarding table (or ACL), it may change one or more

predicates for some filters. We did some experiments using

the Internet2 dataset and found that 44% of rule insertions and

deletions do not change any predicate. However, if a predicate

is changed by rule updates, APT first updates the set of atomic

predicates and then recomputes all reachability trees.

We evaluated the time to update the set of atomic predicates

after a predicate change for the 6 Internet2 and provider-cone

datasets. A predicate change is represented by deleting an

existing predicate and adding a new predicate. The average

time to update the set of atomic predicates after one predicate

change is shown in Table IV for the six datasets.

Observation. Updating the set of atomic predicates after

an incremental change (adding a NAT/tunnel or a predicate

change) is very fast, much faster than computing the atomic

predicates from scratch (see Figures 8-10 for comparison).

VII. CONCLUSIONS

Towards scalable verification of packet networks with trans-

formers and filters, we conceived and formally defined a

novel packet equivalence relation. Our transformer model is

general, including most transformers used in real networks.

We also define atomic predicates which specify the coarsest

equivalence classes of packets in the packet space. We built

a verification tool, APT, based upon a new algorithm for

computing atomic predicates for networks with both packet

transformers and filters.

For real networks, an atomic predicate typically represents

equivalent packets in a large number of disjoint fragments of

the packet space. In APT, each packet filter is represented

by a set of integers (identifiers of atomic predicates). Each

transformer is represented by a set of mappings, each of which

maps an integer to a set of integers. By representing a very

large set of equivalent packets by a single integer, the use

of atomic predicates reduces the computation time and space

required for network verification by orders of magnitude.

Our experimental results for three network datasets with

large numbers of NATs, IP-in-IP tunnels, and MPLS tunnels

demonstrate that APT is scalable to large networks, such as,

ISP networks and large-scale datacenter infrastructures. We ex-

perimented and found that APT recovers quickly from network

changes including link/box status change, addition/removal of

a NAT or tunnel, and rule updates.

APPENDIX A

PROOFS OF THEOREMS

We prove two theorems. Given a set U of elements, a set P
of predicates, and a set T of transformers, Theorem 1 states

that the atomic predicates for P and T (defined in Definition

5) specify the coarsest equivalence classes in the set of all

elements w.r.t. P and T (defined in Definition 3).

Theorem 2 states that, if the set U of all elements is finite,

then Algorithm 1 will terminate and return the set of atomic

predicates for P and T .

A. Lemmas

The following three lemmas are useful in proofs to follow.

Lemma 1. Consider a transformer T ∈ T , an element x ∈ U ,

and a set D of elements. If T−1(x) is defined, we have

IT (D)(x) = ID(T−1(x)) (13)

Proof. Let y = T−1(x).
If y ∈ D, then x ∈ T (y) ⊆ T (D). As a result, IT (D)(x) =

ID(T−1(x)) = 1.
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If y /∈ D, then x ∈ T (y) and T (y)∩T (D) = ∅. As a result,

IT (D)(x) = ID(T−1(x)) = 0.

Lemma 2. Consider any set of predicates {q1, . . . , qm} that is

representative of the set P of predicates. Let {D1, . . . , Dm} be

the collection of sets such that qi specifies Di, i ∈ {1, . . . ,m}.
Let x1 and x2 be two elements in U , and T be any transformer

in T .

Then the following two properties are equivalent:

P1. For each i ∈ {1, . . . ,m, }, IT (Di)(x1) = IT (Di)(x2).
P2. For each i ∈ {1, . . . ,m, }, either both T−1(x1)

and T−1(x2) are undefined, or IDi
(T−1(x1)) =

IDi
(T−1(x2)).

Proof. P1 implies P2:

We first show it is not possible that only one of T−1(x1)
and T−1(x2) is defined. Without loss of generality, assume

that T−1(x1) = y1 and T−1(x2) is not defined. There

exists j ∈ {1, . . . ,m} such that y1 ∈ Dj . Therefore, x1 ∈
T (y1) ⊆ T (Dj) and x2 /∈ T (Dj). So IT (Dj)(x1) = 1 and

IT (Dj)(x2) = 0, which is a contradiction.

If both T−1(x1) and T−1(x2) are undefined, then property

P2 holds.

If both T−1(x1) and T−1(x2) are defined, IDi
(T−1(x1)) =

IDi
(T−1(x2)) by Lemma 1 and property P2 also holds.

P2 implies P1:

If both T−1(x1) and T−1(x2) are undefined, IT (Di)(x1) =
IT (Di)(x2) = 0.

If both T−1(x1) and T−1(x2) are defined, IT (Di)(x1) =
IT (Di)(x2) by Lemma 1.

Lemma 3. If x1 and x2 are equivalent w.r.t. P and T , then for

any T ∈ T , either both T−1(x1) and T−1(x2) are undefined,

or T−1(x1) and T−1(x2) are also equivalent w.r.t. P and T .

Lemma 3 follows directly from Definition 3.

B. Atomic predicates specify the coarsest equivalence classes

w.r.t. P and T

Theorem 1. Given a set P of predicates and a set T of

transformers, the atomic predicates for P and T (defined in

Definition 5) specify the coarsest equivalence classes in the

set U w.r.t. P and T (defined in Definition 3).

Proof outline. Theorem 1 follows from Lemmas 4 and 5.

Lemma 4 proves that the predicates that specify the equiv-

alence classes in Definition 3 are representative predicates

for P and T in Definition 4. Lemma 5 proves that the

equivalence classes in Definition 3 are the coarsest equivalence

classes. Therefore, they are specified by the smallest set of

representative predicates for P and T which, by Definition 5,

is the set of atomic predicates for P and T .

Lemma 4. Given a set P of predicates and a set T of

transformers, the predicates that specify equivalence classes

{B1, . . . , Bl} w.r.t. P and T in Definition 3 satisfy the two

properties in Definition 4 for representative predicates.

Proof. Condition 1 in Definition 3 guarantees that the set

of predicates specifying equivalence classes {B1, . . . , Bl} is

representative of P . Hence the first property in Definition 4 is

satisfied.

To prove the second property in Definition 4, consider two

elements, x1 and x2 that are equivalent w.r.t. P and T (that is,

x1, x2 ∈ Bj for some j ∈ {1, . . . , l}). For any i ∈ {1, . . . , l}
and any transformer T ∈ T , if both T−1(x1) and T−1(x2)
are not defined, then IT (Bi)(x1) = IT (Bi)(x2) = 0.

If both T−1(x1) and T−1(x2) are defined, then by Lemma

1, we have

IT (Bi)(x1) = IBi
(T−1(x1))

IT (Bi)(x2) = IBi
(T−1(x2))

(14)

In this case, equivalence of x1 and x2 implies equivalence

of T−1(x1) and T−1(x2) by Lemma 3. Hence, we have

IBi
(T−1(x1)) = IBi

(T−1(x2)) which together with equation

14 prove that IT (Bi)(x1) = IT (Bi)(x2). Therefore, for any i,
j ∈ {1, . . . , l}, and for any T ∈ T , we have, for the indicator

function, IT (Bi)(Bj) = IT (Bi)(x), x ∈ Bj . As a result, we

have, for any i ∈ {1, . . . , l} and for any T ∈ T

T (Bi) =
⋃

IT (Bi)
(Bj)=1

j∈{1,...,l}

Bj (15)

Thus the second property in Definition 4 is also satisfied by

predicates that specify {B1, . . . , Bl}.

The following lemma proves that the equivalence classes

w.r.t. P and T in Definition 3 are the coarsest equivalence

classes.

Lemma 5. For a set P of predicates and a set T of transform-

ers, let {B1, . . . , Bl} denote equivalence classes w.r.t. P and

T , and {C1, . . . , Cn} denote equivalence classes w.r.t. P in

Definition 3. Consider any set of predicates {q1, . . . , qm} that

satisfy the properties in Definition 4 for representative pred-

icates. Let {D1, . . . , Dm} be the collection of sets such that

qi specifies Di, i ∈ {1, . . . ,m}. Then for all i ∈ {1, . . . ,m},
there exists a unique j ∈ {1, . . . , l} such that Bj ⊇ Di. This

implies that m ≥ l which is minimum.

Proof. To prove this lemma, it is sufficient to prove the

following statement:

S1: For any x1, x2 ∈ U , if x1, x2 ∈ Di for some i ∈
{1, . . . ,m}, then x1 and x2 are equivalent w.r.t. P and T .

If S1 is true, then there exists a unique j ∈ {1, . . . , l} such

that x1, x2 ∈ Bj . As a result, Bj ⊇ Di implying that m ≥ l
which is minimum. We proceed to prove that S1 holds by

showing that for any x1, x2 ∈ Di, for some i ∈ {1, . . . ,m},
x1 and x2 satisfy both conditions of Definition 3. Thus x1 and

x2 are equivalent w.r.t. P and T by definition.

To prove condition 1 in Definition 3, we use Lemma 2

in [25], [26], which shows that for each g ∈ {1, . . . ,m},
there exists a unique j ∈ {1, . . . , n}, such that Dg ⊆ Cj .

We also have, IDg
(x1) = IDg

(x2) for x1, x2 ∈ Dg, for

each g ∈ {1, . . . ,m} because x1 and x2 are equivalent w.r.t.

P . This property implies that ICh
(x1) = ICh

(x2) for each

h ∈ {1, . . . , n}. Thus condition 1 in Definition 3 is satisfied.

To prove that condition 2 in Definition 3 is satisfied, it is

sufficient to prove the following statement:
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S2: Either both T−1
αk
· · ·T−1

α1
(x1) and T−1

αk
· · ·T−1

α1
(x2) are

undefined, or

IDg
(T−1

αk
· · ·T−1

α1
(x1)) = IDg

(T−1
αk
· · ·T−1

α1
(x2)) (16)

for each g ∈ {1, . . . ,m}, any integer k and any possible

sequence Tαk
. . . Tα1 of transformers.

Observe that if both T−1
αk
· · ·T−1

α1
(x1) and T−1

αk
· · ·T−1

α1
(x2)

are undefined, then condition 2 in Definition 3 is satis-

fied. If equation (16) holds, then both T−1
αk
· · ·T−1

α1
(x1) and

T−1
αk
· · ·T−1

α1
(x2) are in Dr, for some r ∈ {1, . . . ,m}. Since

Dr ⊆ Cj for some j ∈ {1, . . . , n}, both T−1
αk
· · ·T−1

α1
(x1) and

T−1
αk
· · ·T−1

α1
(x2) are in Cj . Therefore, we have

ICh
(T−1

αk
· · ·T−1

α1
(x1)) = ICh

(T−1
αk
· · ·T−1

α1
(x2)) (17)

for each h ∈ {1, . . . , n}, any integer k and any possible

sequence Tαk
. . . Tα1 of transformers. Thus condition 2 in

Definition 3 is satisfied.

We next prove S2 by induction on k, the length of the

sequence of transformers. Note that we assume x1, x2 ∈ Di,

for some i ∈ {1, . . . ,m}.
Base case (k = 1). For each Dg ∈ {D1, . . . , Dm}

and T ∈ T , T (Dg) can be represented by the union of

a subset of {D1, . . . , Dm}. There are two possibilities in

the union representation of T (Dg). First, Di containing x1

and x2 appears in the subset representing T (Dg), in which

case, IT (Dg)(x1) = IT (Dg)(x2) = 1. Second, Di does not

appears in the subset representing T (Dg), in which case,

IT (Dg)(x1) = IT (Dg)(x2) = 0.

Therefore, IT (Dg)(x1) = IT (Dg)(x2), for each g ∈
{1, . . . ,m} and each T ∈ T . The base case follows from

Lemma 2.

Induction case. Assume that for k = h, either both

T−1
αh
· · ·T−1

α1
(x1) and T−1

αh
· · ·T−1

α1
(x2) are undefined, or

IDg
(T−1

αh
· · ·T−1

α1
(x1)) = IDg

(T−1
αh
· · ·T−1

α1
(x2)) (18)

for each g ∈ {1, . . . ,m}, and any possible sequence

Tαh
. . . Tα1 of transformers.

For k = h + 1, consider any sequence of length h + 1 :
T−1
αh+1

, . . . , T−1
α1

. From the induction assumption, we know

that either (i) both T−1
αh
· · ·T−1

α1
(x1) and T−1

αh
· · ·T−1

α1
(x2)

are undefined, or (ii) y1 = T−1
αh
· · ·T−1

α1
(x1) and y2 =

T−1
αh
· · ·T−1

α1
(x2).

In case (i), both T−1
αh+1

T−1
αh
· · ·T−1

α1
(x1) and

T−1
αh+1

T−1
αh
· · ·T−1

α1
(x2) are undefined. Thus this case

holds for k = h+ 1.

In case (ii), we have IDg
(y1) = IDg

(y2) for each g ∈
{1, . . . ,m}. Tαh+1

(Dg) can be represented by the union of a

subset of {D1, . . . , Dm}. Using the same argument as the one

for the base case, we have

ITαh+1
(Dg)(y1) = ITαh+1

(Dg)(y2),

for each g ∈ {1, . . . ,m}. From Lemma 2, we have either

T−1
αh+1

(y1) and T−1
αh+1

(y2) are undefined, or IDg
(T−1

αh+1
(y1)) =

IDg
(T−1

αh+1
(y2)). Thus this case holds for k = h+ 1.

We have proved by induction on k that S2 is true. Therefore,

for any x1, x2 ∈ Di, for some i ∈ {1, . . . ,m}, condition 2 of

Definition 3 is satisfied. Thus we have proved that S1 is true

and the lemma is proved.

C. Correctness and Termination of Algorithm 1

Proof outline. Consider a network where h is the maximum

number of transformations that can be applied to any packet

injected into the network. By induction on h, we prove Lemma

6, which states that the set of predicates computed by the hth

iteration of Algorithm 1 satisfies the equivalence relation, Rh,

stated in Lemma 6, for h ≥ 1. Lemma 7 states that Algorithm

1 returns the set of atomic predicates for P and T . Termination

follows from the assumption that set U is finite. Theorem 2

is thus proved.

Lemma 6. Given a set P of predicates and a set T of trans-

formers. Let {C1, C2, . . . , Cn} denote equivalence classes

specified by the atomic predicates for P . At the hth iteration,

Algorithm 1 computes a set of predicates that satisfies the

following equivalence relation, Rh:

Two elements x1 and x2 are equivalent w.r.t. Rh if and only

if the following two conditions hold

1) ICi
(x1) = ICi

(x2) for each i ∈ {1, . . . , n}.
2) Either both T−1

αg
· · ·T−1

α1
(x1) and T−1

αg
· · ·T−1

α1
(x2) are

undefined, or

ICi
(T−1

αg
· · ·T−1

α1
(x1)) = ICi

(T−1
αg
· · ·T−1

α1
(x2)) (19)

for each i ∈ {1, . . . , n}, any integer g ≤ h and any

possible sequence Tαg
. . . Tα1 of transformers, Tαj

∈ T ,

j ∈ {1, . . . , g}.

(Note: The above definition is the same as Definition 3 but

with the number of transformations bounded by h.)

Proof. We prove this lemma by induction on h.

Base case (h = 1). According to the algorithm, the set

of predicates computed specifies the following equivalence

relation.

Elements x1 and x2 are equivalent if and only if

1) ICi
(x1) = ICi

(x2) for each i ∈ {1, . . . , n}.
2) IT (Ci)(x1) = IT (Ci)(x2) for each i ∈ {1, . . . , n}, and

each T ∈ T .

From Lemma 2, the second condition is equivalent to: for each

i ∈ {1, . . . , n} and each T ∈ T , either both T−1(x1) and

T−1(x2) are undefined, or ICi
(T−1(x1)) = ICi

(T−1(x2)).
Thus the above two conditions satisfy R1 and the base case

is proved.

Induction case. Assume that the lemma is true for h =
f . The f th iteration computes predicates that satisfy the

equivalence relation, Rf , and specify equivalence classes,

E1, . . . , Er. The following properties are equivalent.

• Elements x1 and x2 are equivalent w.r.t. Rf .

• IEi
(x1) = IEi

(x2) for each i ∈ {1, . . . , r}.

Consider the (f + 1)st iteration of Algorithm 1. In line 2

of the algorithm, set R is computed to be

R = {T (Ei)| for each T ∈ T , and

for each i ∈ {1, . . . , r} that is transformed by T }.

{E1, E2, . . . , Er} is the set of atomic predicates for P ′ in line

3. Therefore, the set of atomic predicates computed in line 3

is A(P ′ ∪R) = A(A(P ′) ∪R) = A({E1, . . . , Er} ∪ R).
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By Theorem 2 in [26] (or Theorem 1 in [25]),

A({E1, . . . , Er} ∪ R) satisfies the following equivalence re-

lation: two elements x1 and x2 are equivalent if and only if

1) IEi
(x1) = IEi

(x2) for each i ∈ {1, . . . , r}.
2) IT (Ei)(x1) = IT (Ei)(x2) for each i ∈ {1, . . . , r}, and

each T ∈ T .

From Lemma 2, the above equivalence relation is the same

as: two elements x1 and x2 are equivalent if and only if

1) IEi
(x1) = IEi

(x2) for each i ∈ {1, . . . , r}.
2) Either both T−1(x1) and T−1(x2) are undefined, or

IEi
(T−1(x1)) = IEi

(T−1(x2)), for each i ∈ {1, . . . , r}
and each T ∈ T .

The first condition means that x1 and x2 are equivalent

w.r.t. Rf ; the second condition means that either both T−1(x1)
and T−1(x2) are undefined, or T−1(x1) and T−1(x2) are

equivalent w.r.t. Rf . Since the second condition holds for

h = f+1, x1 and x2 are equivalent w.r.t. Rf+1, for g ≤ f+1
in Equation (19).

The case for h = f+1 is proved. Thus the lemma is proved

by induction.

Lemma 7. If Algorithm 1 terminates, it returns the set of

predicates that specify the equivalence classes of Definition 3.

Therefore, Algorithm 1 computes the set of atomic predicates

for set P of predicates and set T of transformers.

Proof. If Algorithm 1 terminates at the first iteration, trans-

formers in T do not transform any elements. The set of

predicates returned by the algorithm is the set of atomic

predicates for P .

Assume that Algorithm 1 terminates at the hth iteration, h >
1. The set of predicates computed in the (h− 1)th iteration is

the same as the set computed in the hth iteration, which is the

set of predicates returned. Therefore, the equivalence relation

Rh−1 of the (h− 1)th iteration is the same as the equivalence

relation Rh of the hth iteration. Suppose we keep running the

algorithm, we have Rh−1 = Rk, where k ≥ h is an arbitrary

integer. Therefore, by Lemma 6, the set of predicates returned

specifies the equivalence classes of Definition 3.

Theorem 2. If the set U of all elements is finite, then Algo-

rithm 1 will terminate and return the set of atomic predicates

for the set P of predicates and set T of transformers.

Proof. In each iteration, the size of the set B of predicates

computed strictly increases (except for the last iteration). The

largest possible set for B is the set of all single elements.

Therefore, Algorithm 1 will terminate and the theorem follows

from Lemma 7.

APPENDIX B

EXAMPLES OF PREDICATES AND BDD GRAPHS

REPRESENTING PACKET SETS

We show examples of predicates, as well as their BDD

graphs, specifying packet sets before and after a packet trans-

formation (header rewrite or encapsulation).

For illustration, we use a simplified packet header model

in which the destination IP address field has four bits and the

MPLS label field has two bits, which are the only relevant bits.

The bit variables, x3, x2, x1, x0, represent the outermost IP

header and the bit variables, y3, y2, y1, y0, represent the inside

IP header if there is one. Packets may also be encapsulated by

a MPLS header with bit variables m1,m0. We use auxiliary

bit variables, v1, for the MPLS header and, v0, for the

encapsulated IP header, respectively.

Suppose the packets injected into the network have desti-

nation IP prefix 11**, that is, x3 = 1 x2 = 1 x1 = ∗ x0 = ∗.
These packets have no encapsulation (v1 = 0 and v0 = 0).

In predicate notation, this packet set is specified by predicate

P1 = x3 ∧ x2 ∧ ¬v1 ∧ ¬v0. The BDD graph representing P1

is shown in Figure 14(a).

Suppose the packets specified by P1 pass through a NAT

that changes the highest two bits in their destination IP address

from 11 to 00. In predicate notation, the packets exiting the

NAT are specified by P2 = ¬x3∧¬x2∧¬v1 ∧¬v0. The BDD

graph representing P2 is shown in Figure 14(b).

Suppose the packets exiting the NAT arrive at the entry

router of an IP-in-IP tunnel, which encapsulates the packets

with an outside IP header with destination address 1111. The

encapsulated packets are specified by predicate

P3 = (

0
∧

i=3

xi) ∧ (

2
∧

i=3

¬yi) ∧ ¬v1 ∧ v0.

The BDD graph representing P3 is shown in Figure 14(c).

Note that the bit values of the IP header specified by P2 are

moved to the inside IP header specified by P3 and represented

by y3, y2, y1, y0. Also, auxiliary variable v1 is set to 1 to

indicate that packets specified by P3 have an encapsulated

IP header.

Lastly, suppose the packets specified by P3 arrive at the

entry router of a MPLS tunnel which adds a MPLS header with

m1 = 1 and m0 = 0 to incoming packets. The encapsulated

packets are specified by predicate

P4 = (m1 ∧ ¬m0) ∧ (
0
∧

i=3

xi) ∧ (
2
∧

i=3

¬yi) ∧ v1 ∧ v0.

The BDD graph specifying P4 is shown in Figure 14(d). Note

that auxiliary variable v0 is set to 1 to indicate that packets

specified by P4 have a MPLS header.
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