
A Discipline for Constructing Multiphase 
Communication Protocols 

CHING-HUA CHOW, MOHAMED G. GOUDA, and SIMON S. LAM 

University of Texas at Austin 

Many communication protocols can be observed to go through different phases performing a distinct 
function in each phase. A multiphase model for such protocols is presented. A phase is formally 
defined to be a network of communicating finite-state machines with certain desirable correctness 
properties; these include proper termination and freedom from deadlocks and unspecified receptions. 
A multifunction protocol is constructed by first constructing separate phases to perform its different 
functions. It is shown how to connect these phases together to realize the multifunction protocol so 
that the resulting network of communicating finite state machines is also a phase (i.e., it possesses 
the desirable properties defined for phases). The modularity inherent in multiphase protocols 
facilitates not only their construction hut also their understanding and modification. An abundance 
of protocols have been found in the literature that can be constructed as multiphase protocols. Three 
examples are presented here: two versions of IBM’s BSC protocol for data link control and a token 
ring network protocol. 
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1. INTRODUCTION 

A layered communications architecture facilitates the construction of networking 
software in a modular fashion. Nevertheless, each protocol layer is a set of 
complex parallel programs. Several distinct functions can usually be identified 
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among the tasks designated for a protocol layer to perform. For example, a data 
link control prot,ocol may be thought of as having at least three functions: 
connection management, and one-way data transfers in opposite directions. In 
both the analysis and the construction of protocols, however, it is preferable to 
think about the individual functions of a multifunction protocol one at a time. 
In fact, most protocol analyses published in the literature have been illustrated 
with single-function protocols. For example, both the alternating-bit protocol 
analyzed by Bochmann [4] and Stenning’s protocol, analyzed by Stenning [31] 
and Hailpern and Owicki [17], are concerned with a one-way data transfer 
function only. The protocol analyses of Kurose [20] and Razouk [26] are con- 
cerned with the connection management, function only. 

Of interest to us are methods for reducing the analysis/construction of a 
multifunction protocol to the analysis/construction of smaller single-function 
protocols. Lam and Shankar [22] presented a method for constructing “image 
protocols” from a given multifunction protocol. An image protocol is an abstrac- 
tion of the original protocol but is specified like any real protocol. It is constructed 
to preserve all safety and liveness properties of the original protocol concerning 
one of its functions. Thus, their method reduces the analysis of a multifunction 
protocol to the analyses of several smaller single-function protocols. An appli- 
cation of their method to verify a version of the HDLC protocol is presented 
in [29]. 

This paper is concerned with the construction of a multifunction protocol from 
a composition of single-function protocols. In general, this is a difficult problem. 
However, many real-life protocols can be observed to go through different phases 
of behavior. In particular, these protocols go through their phases one at a time 
with a distinct function performed in each phase. For protocols characterized by 
this model of multiphase behavior, the following three-step methodology for 
constructing a multifunction protocol is proposed: 

(1) Divide the protocol’s functionality into separate functions. 
(2) Construct and verify a phase to perform each such function. (A phase, 

formally defined in Section 3, is a network of communicating finite-state 
machines that satisfies certain general properties of correctness, including 
proper termination and freedom from deadlocks and unspecified receptions.) 

(3) Connect individual phases together to form the required protocol. The 
resulting protocol should satisfy the same general properties of correctness 
as the individual phases. 

Step (1) is straightforward; a protocol’s functions can often be divided quite 
naturally. For example, a half-duplex data link control protocol such as IBM’s 
BSC protocol has three distinct functions [18, 211: a call setup function, a data 
transfer function, and a call clear function. 

To carry out step (2), there are two basic approaches. In the first approach, 
each phase is constructed on the basis of the designer’s knowledge and experience. 
It is then verified using available verification techniques, for example, the 
reachability analysis techniques of Bochmann [4], Rubin and West [28], Yu and 
Gouda [33,34], and Gouda and Yu [Xi], the proof methods of Good [12], Hailpern 
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and Owicki [17], and Misra and Chandy [24,25], the symbolic execution method 
of Brand and Joyner [ 21, etc. If an error is found in a phase, the phase is modified 
and the verification repeated. This procedure goes on until a provably correct 
phase is obtained. In the second approach, each phase is constructed according 
to some design rules that automatically result in correct phases. See, for example, 
Bochmann and Sunshine [6], Zafiropulo et al. [35], Merlin and Bochmann [23], 
and Gouda and Yu [16]. 

Step (3) has received little attention so far, although both Razouk and Estrin 
[27] and West and Zafiropulo [32] observed that many errors in a protocol are 
caused by improper connections between different phases of the protocol. In this 
paper, we formally characterize the concept of a phase and present a methodology 
to carry out step (3). We also demonstrate how some realistic protocols can be 
constructed (and understood) using the three-step methodology. 

The model of communicating finite-state machines has been used successfully 
to model and analyze many existing protocols [4, 13, 27, 321, For simplicity, our 
results will be developed using such a model, although these results can be 
extended to other models as well. 

This paper is organized as follows. In Section 2 the model of communicating 
finite-state machines is presented. The concept of phases is formally defined in 
Section 3. The modeling of errors and timeouts is discussed in Section 4. Our 
method for constructing multiphase protocols is presented in Section 5; the 
construction method guarantees that the resulting multiphase protocol termi- 
nates properly and is free from deadlocks and unspecified receptions. In Section 
6 we discuss a sufficient condition for multiphase protocols to be bounded. A 
version of IBM’s BSC protocol for data link control [ 18,211 is used as a running 
example in Sections 3-6 for illustration. In Sections 7 and 8 we present two 
multiphase protocol examples, namely, a token ring network protocol [l] and a 
modified BSC protocol with fair call connection. The advantages of our construc- 
tion methodology are discussed in Section 8, and concluding remarks are in 
Section 9. In Appendix A, we present the method of closed covers that can be 
used to verify that a network of communicating finite-state machines satisfies 
the properties of a phase. Proofs of all our theorems are in Appendix B. 

2. NETWORKS OF COMMUNICATING FINITE-STATE MACHINES 

A communicating finite-state machine M is a directed labeled graph with two 
types of edges, namely sending and receiving edges. A sending (or receiving) edge 
is labelled -g (or +g, respectively) for some message g in a finite set G of messages. 
A node in it4 whose outgoing edges are all sending (or all receiving) edges is called 
a sending (or receiving, respectively) node. A node in M whose outgoing edges 
include both sending and receiving edges is called a mixed node, and a node in M 
that has no outgoing edges is called a final node. One of the nodes in M is 
identified as its initial node, and each node in M is reachable by a directed path 
from the initial node. 

Let M and N be two communicating finite-state machines with the same set 
G of messages; the pair (M, N) is called a network of M and N. 

A state of network (M, N) is a four-tuple [v, w, x, y], where v and w are nodes 
in M and N, respectively, and x and y are strings over the messages in G. 
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Informally, a state [u, w, x, y] means that the executions of M and N have reached 
nodes v and w, respectively, while the input channels of M and N store the 
strings x and y, respectively. 

The initial state of network (M, N) is [uO, wo, E, E] where u. and w. are the 
initial nodes in M and N respectively, and E is the empty string. 

Let s = [u, w, x, y] be a state of network (M, N), and let e be an outgoing edge 
of node v or w. A state s’ is said to follow s over e iff exactly one of the following 
four conditions is satisfied: 

(1) e is a sending edge, labeled -g, from u to u’ in M, and s’ = [u’, w, X, y . g], 
where “ . ” is the concatenation operator. 

(2) e is a sending edge, labeled -g, from w to w’ in N, and s’ = [IJ, w’, x . g, y]. 
(3) e is a receiving edge, labeled +g, from IJ to v’ in M, and s’ = [u’, w, x’, y], 

wherex=g.x’. 
(4) e is a receiving edge, labeled +g, from w to w’ in N, and s’ = [u, w’, X, y’], 

where y = g . y’. 

Let s and s’ be two states of network (M, N). Then s’ follows s iff there is a 
directed edge e in M or N such that s’ follows s over e. 

Let s and s’ be two states of (M, N). Then s’ is reachable from s iff s = s’ or 
there exist states sl, . . . , .sr such that s = sl, S’ = sr, and si+l follows si for i = 1, 
. . . ) r- 1. 

A state s of network (M, N) is said to be reachable iff it is reachable from the 
initial state of (M, N). Next we use the concept of reachable states to define 
what it means for the communication of a network (M, N) to terminate properly 
and to be free from deadlocks and unspecified receptions, and to be bounded. 

The communication of a network (M, N) is said to terminate properly iff the 
following two conditions are satisfied: 

(1) For any reachable state [u, w, X, y] of (M, N), if u is a final node of M, then 
x: must be the empty string and there must be a directed path of all receiving 
edges from node w to a final node w’ in N such that the string y is received. 

(2) For any reachable state [u, w, X, y] of (M, N), if w is a final node of N, then 
y must be the empty string and there must be a directed path of all receiving 
edges from node v to a final node u’ in M such that the string x is received. 

A reachable state [u, w, E, E] of (M, N) is called a proper terminating state iff 
both node IJ and w are final nodes. 

A reachable state [u, w, x, y] of a network (M, N) is a deadlock state iff (i) both 
u and w are receiving nodes, and (ii) x = y = E (the empty string). If no reachable 
state of network (M, N) is a deadlock state, then the communication of (M, N) 
is said to be deadlock-free. 

A reachable state [u, w, x, y] of a network (M, N) is an unspecified reception 
state iff one of the following two conditions is satisfied: 

(1) x=g1.gz. .** * gk (k 2 l), and v is a receiving node and none of its outgoing 
edges is labeled +gl. 

(2) y = g1*g2 * -** + gh (k z l), and w is a receiving node and none of its 
outgoing edges is labeled +gl. 
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If no reachable state of (M, N) is an unspecified reception state, then the 
communication of (M, N) is said to be free from unspecified receptions. 

The communication of a network (M, N) is said to be bounded by K, where K 
is a nonnegative integer, iff for every reachable state [u, w, x, y] of (M, N), 
] x 1 I K and [ y ] 5 ,K, where [ x 1 is the number of messages in string X. The 
communication is said to be bounded iff it is bounded by some nonnegative 
integer K; otherwise it is unbounded. 

3. PHASES 

Let M and N be two communicating finite state machines. The network (M, N) 
is called safe iff its communication terminates properly and is free from deadlocks 
and unspecified receptions. 

Let (M, N) be a safe network, and let u and w be two final nodes in machines 
M and N, respectively. The node pair (u, w) is called an exit node pair of (M, N) 
iff the state [u, w, E, E] of (M, N) is reachable. 

The exit set of a safe network (M, N) is the set of all exit node pairs of 
0% NJ. 

A safe network (M, N) is called a phase iff every final node in M or N appears 
in exactly one exit node pair in the exit set of (M, N). 

Is it decidable whether an arbitrary network is a phase? In general, the answer 
is negative, as discussed by Brand and Zafiropulo [3]. However, the problem can 
be decided in some special cases. For instance, if the communication of the given 
network (M, N) is bounded, then the problem can be decided by generating and 
checking all the reachable states of (M, N). Further, we discuss a technique in 
Appendix A that can be used to verify that a given network is a phase even if the 
number of its reachable states is infinite. The technique is based upon the concept 
of closed covers of Gouda [14]. 

Example 1 (Call Setup Phase). Consider the two communicating finite state 
machines Ml and N1 in Figure 1. They model the call setup procedure in the 
BSC protocol [18, 211: Ml models the primary station, N1 models the secondary 
station, and the messages have the following meanings: 

ENQ denotes an “enquiry” message 
ACKO denotes an “affirmative acknowledgement” message 
NAK denotes a “negative acknowledgement” message 
WACK denotes a “temporarily not ready to receive” message 

Starting from node 1, if Ml wants to set up a call with N,, it sends an ENQ 
message to N1 and waits at node 3. There are four possibilities: 

(1) N1 accepts the request with an ACKO message; then each of Ml and N1 
reaches its final node 7 and exits the call setup phase. 

(2) N1 rejects the request with a NAK message; then each of Ml and N1 returns 
to node 1. 

(3) N1 replies with a WACK message, asking Ml to try again later; then each of 
Ml and N1 returns to node 1. 
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"1 % 

Fig. 1. A call setup phase. 

(4) Ml receives an ENQ message. This is a message-collision situation implying 
that both machines want to set up a call. In this case, according to the BSC 
protocol, the primary Ml is given priority to set up its call, and the secondary 
N1 has to relinquish its request and decide whether or not it is ready to 
accept the call from M1. 

To show that the network (Ml, N1) is a phase, it is sufficient to prove the 
following three propositions: 

(i) The communication of (Ml, NJ terminates properly. 
(ii) None of the reachable states of (Ml, NJ is a deadlock state or an unspecified 

reception state. 
(iii) The exit set of (Ml, NJ is {(5, 5), (6,6), (7, 7)), where each final node in Ml 

or N1 appears exactly once. 

These three propositions can be proved by generating and examining all the 
reachable states of network (Ml, N1); there are 32 of them. Alternatively, we can 
prove that (M,, NJ is a phase using the closed cover technique in Appendix A. 
It is straightforward to show that the set {[l, 1, E, E], [5, 5, E, E], 16, 6, E, E], 
[7, 7, E, E]J is a closed cover for the network (Ml, Nl); hence (Ml, N,) is a safe 
network by Theorem Al of Appendix A. It is also straightforward to show that 
this closed cover satisfies the condition in Theorem A2 of Appendix A, therefore 
(Ml, N1) is a phase: 0 

Example 2 (Data Transfer Phase). Consider the two communicating finite 
state machines Mz and N2 in Figure 2. They model the data transfer procedure 
in BSC: Mz models a sender, Nz models a receiver, and the messages have the 
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*2 

(Sender) 

N2 

(Receiver) 

Fig. 2. A data transfer phase. 

following meanings: 

D 
ACKO 

ACKl 

ENQ 
WACK 
RVI 
EOT 
Er 
Ls 
Tm 

denotes a data message 
denotes an “affirmative acknowledgement zero” message; it is used to 
acknowledge the reception of an odd-numbered message 
denotes an “affirmative acknowledgement one” message; it is used to 
acknowledge the reception of an even-numbered message 
denotes an “enquiry” message 
denotes a “temporarily not ready to receive” message 
denotes a “reverse interrupt” message 
denotes an “end of transmission” message 
is a special message that models a corrupted data message 
is a virtual message that models a message loss 
is a virtual message that models a timeout occurrence 

Starting from node 1, the sender n/i, can send a data message to the receiver 
Nz. It then waits at node 2. There are three possibilities: 

(1) The data message is correctly delivered. This is modeled by M2 sending a 
data message D. The receiver acknowledges the reception with an ACKl 
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message; then the sender and receiver will each reach node 3. At node 2, the 
receiver may request the end of transmission by sending back WACK or RVI 
instead of ACKl. We discuss this feature later. 

(2) The data message is corrupted. This is modeled by Mz sending a corrupted 
message Er. The receiver indicates this data corruption with an ACKO 
message; then the receiver and sender will each return to node 1. 

(3) The data message is lost. This is modeled by M2 sending a virtual message 
Ls and the receiver sending back a virtual message Tm. (The reception of 
Tm models the occurrence of a timeout event in the sender. These messages 
are not transmitted or received in reality.) The sender then sends an ENQ 
message to the receiver. The receiver responds with ACKO, since the data 
message has not been received. When the sender gets ACKO, both the sender 
and receiver are back at node 1. 

The above mechanism models the delivery of odd-numbered data messages. 
Delivery of even-numbered data messages starts at node 3 in Mz. The mechanism 
is similar to the above except that ACKO is used to acknowledge the correct 
delivery of the data message, while ACKl is used to acknowledge a message 
corruption. 

After delivering its data messages, the sender Mz (at node 1 or 3) can send an 
EOT message (indicating an end of transmission) to the receiver N,; both sender 
and receiver will then exit the data transfer phase. 

There are two ways by which the receiver can request the sender to terminate 
its transmission: one is via sending WACK messages; the other is via sending 
RVI messages. The difference between using WACK and RVI messages is as 
follows. By repeatedly sending WACK messages, the receiver prevents the 
progress of data transmission and eventually forces the sender to send EOT. On 
the other hand, after sending RVI the receiver is still ready to receive the next 
data message from the sender, and the data transmission can still proceed 
effectively. 

To show that network (Mz, Nz) is a phase, it is sufficient to prove the following 
three propositions: 

(i) The communication of (Mz, NJ terminates properly. 
(ii) None of the reachable states of (M,, Nz) is a deadlock state or an unspecified 

reception state. 
(iii) The exit set of (M,, NJ is {(9, 9), (10, lo), (11, ll), (12, 12)], where each 

final node in M2 or Nz appears exactly once. 

These three propositions can be proved by generating and examining all the 
reachable states of (M2, NJ, of which there are 40. Alternatively, we can prove 
that (M2, Nz) is a phase using the closed cover technique in Appendix A. It is 
straightforward to show that the following set is a closed cover for (Mz, NJ: 

IL 1, E, El, P, 2, E, El, P,14, E, El, P, 13, E, El, P, 9, E, El, [3,3, E, El, 
[5,3, E El, P, 7, E, El, [7,7, E, El, P, 1, E, El, [4,4, E, El, [4,16, E, El, 
14,179 E, El, [IL 11, E, El, 1% 6, E, El, 1% 16, E, El, [‘J, 17, E, El, 
P, 15, E, El, PO, 10, J-C El, P, 5, E, El, [6,1, E El, B 8, E, El, [6,8, E, El, 
P9 3, E, El, [4,5, G El> [4,13, E, El, [4,14, E, El, W, 12, E, El, 
[4,18, E, El, [4,6, E, 311. 
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r!l Fig. 3. A call clear phase. 

2 

Moreover, this closed cover satisfies the condition in Theorem A2 of Appendix 
A. Therefore, (M,, Nz) is a phase. Cl 

Example 3 (Call Clear Phase). Consider the two communicating finite state 
machines M3 and N3 in Figure 3. They model the call clear procedure in BSC. It 
is trivial to show that (i&, N3) is a phase and that SB = {(2, 2)) is its exit set. Cl 

Examples l-3 show the three basic phases of the BSC protocol for data link 
control. In Section 5 we show how to connect together five instances of these 
three phases to form the BSC protocol. 

4. MODELING ERRORS AND TIMEOUTS 

In the phases presented in Section 3 we have followed a peculiarity of the BSC 
protocol and assumed that only data messages, but not control messages, can be 
corrupted or lost by the communication channels. In fact, BSC control messages 
are very short, consisting of one or two control characters, and do not even have 
CRC checksums for error detection [HI. (This is often cited as one of the 
weaknesses of BSC [21].) The BSC manual does not specify recovery procedures 
for handling corruption or loss of control messages. Since the intent of these 
examples is to illustrate the multiphase protocol model, we decided to present 
them as they are described in the manual and not to add our own versions of 
recovery procedures to them. 

In general, if messages received can have undetected errors, there is no good 
recovery procedure that we are aware of. If errors are always detected, timeouts 
can be used to recover from the loss of messages due to errors. In the data 
transfer phase presented in Section 3 we used virtual messages to model (simu- 
late) the logical behavior that a timeout for a data message occurs only if the 
message (or its acknowledgment) is lost. This same trick can be extended to 
specify BSC phases that include timeouts for recovery from the loss of control 
messages; in this case, the finite-state machines shown in Figures 1-3 would be 
substantially larger. 

Timeouts modeled as described above are said to be nonpremature timeouts. 
In a recent technical report, Joseph et al [ 191 employed essentially the same idea 
as ours to model nonpremature timeouts. Their model also allows the occurrence 
of premature timeouts. However, they found that an alternating-bit protocol can 
be proved correct only if timeout occurrences are always nonpremature. Instead 
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of simulating the occurrences of timeouts, Shankar and Lam [29, 301 model 
timers and clocks explicitly in distributed systems. Given timers and clocks, 
timeout events and real-time constraints of protocol systems can be specified in 
a straightforward manner. 

5. CONSTRUCTING MULTIPHASE NETWORKS 

In this section we discuss a discipline for connecting a number of phases together 
to construct a multiphase network that is also a phase (thus guaranteeing that 
its communication terminates properly and is free from deadlocks and unspecified 
receptions). Phases are connected by joining the exit node pairs of one phase to 
the initial node pair of another phase or the same phase. 

Let p1 = (Ml, Ni) and p2 = (M,, N2) be two phases, with exit sets Si and Sz, 
respectively, and let C be a subset of S1. We define a composite network of pl, C, 
andp2, denoted by (pl, C, p2), to be the network (M, N), where 

(1) M is the communicating finite-state machine constructed (from Ml, C, and 
Mz) by joining all the final nodes of Ml in C to the initial node of Mz. The 
initial node of Ml becomes the initial node of M. 

(2) N is the communicating finite-state machine constructed (from Ni, C, and 
N2) by joining all the final nodes of Ni in C to the initial node of N2. The 
initial node of N1 becomes the initial node of N. 

The two phasesp, = (Ml, Nl) andp, = (M2, N2) are called the constituentphases 
of the composite network ( pl, C, p2). In this case, machines Ml and Mz are called 
the constituent machines of M, and machines N1 and N2 are called the constituent 
machines of N. 

As an example, Figure 4a shows two phases p1 = (M,, N1) and p2 = (M2, N2). 
In phase pl, the node pair (1, 1) is its initial node pair and {(Z, 2), (3, 3)) is its 
exit set. In phase p2 the node pair (4, 4) is its initial node pair and {(5, 5)) is its 
exit set. By joining the exit node pair (2, 2) of p1 to the initial node pair (4, 4), 
we have the composite network pl,2 = (pl, {(2, 2)), p2) shown in Figure 4b. 

THEOREM 1. L.-et p1 and p2 be two phases with exit sets S1 and S2, respectively, 
and let C be a subset of S1. Then the composite network (p,, C, p2) is a phase 
whose exit set is (SI U S2) - C. 

By Theorem 1, network pl,z in Figure 4b is also a phase whose exit set is 
1(3,3), c&5)1. 

So far we have discussed how to connect one phase to another. Next, we discuss 
how to connect a phase to itself. 

Let p1 = (Ml, Ni) be a phase whose exit set is S,, and let C be a subset of Si. 
The composite network of p1 and C, denoted (pl, C ), is a network (M, N) where 

(1) M is the communicating finite-state machine constructed (from Ml and C) 
by joining all the final nodes of Ml in C to the initial node of Ml. The initial 
node of Ml becomes the initial node of M. 

(2) N is the communicating finite-state machine constructed (from Ni and C) 
by joining all the final nodes of Ni in C to the initial node of Ni. The initial 
node of N1 becomes the initial node of N. 

Phase p1 = (Ml, Ni) is called the constituent phase of the composite network 
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(~1, C) = (M, N). In this case, machines Ml and N1 are called the constituent 
machines of M and N, respectively. 

For example, consider phase pl,z in Figure 4b. If we join the exit node pair 
(5, 5) of p1,2 to its initial node pair, then we get the composite phase 
(pl,z, ((55))) shown in Figure 4c. 

THEOREM 2. Let p be a phase whose exit set is S, and let C be a subset of S. 
Then the composite network (p, C) is a phase whose exit set is S - C. 

By Theorem 2, network (F,,~, {(5, 5)j) + F’gu m 1 re 4 c is also a phase whose exit 
set is ((3, 3)). 

The process of constructing the multiphase network p* in Figure 4c from the 
two phases p1 and p2 in Figure 4a can be represented by the following sequence 
of equations: 

PI = UK, Nd, 

PZ = Wz, N2), 

p1,z = (Pl, K2, 2)l,P2), 

P * = (Pl.2, ((5, 5)!). 

This equation sequence clearly provides all the information needed to construct 
p* from p1 and p2. Moreover, it is a more concise notation than the graphical 
representations in Figures 4b and 4c. 

Example 4 (BSC Protocol ). Figure 5 shows a version of the BSC protocol [18, 
211 modeled as a composite network that consists of five phases (namely, one 
call setup phase, two data transfer phases, and two call clear phases). The 
constituent phases are those defined in Section 3; they are represented in Figure 
5 by their initial and final nodes only. The dashed lines identify the individual 
phases. The bold lines show how the phases are connected. Machine M models 
the primary station and machine N models the secondary station of BSC. 

An equation sequence that specifies the construction sequence of this version 
of BSC is as follows: 

PI = (MI, Nd, where Ml and N1 are defined in Figure 1, 
~2 = (M2, Nz), 

~3 = W2, W, 
where M2 and N2 are defined in Figure 2, 

~4 = (N3, M3), 

~6 = W3, Nd, 
where M3 and N3 are defined in Figure 3, 

PL2 = (Pl, Cl, Pz>, 

PI,293 = h2, (729 P3), 

Pl,2,3,4 = (P1.2.3, c3, p4), 

pl 2 3 4 5 = @1,2,3,4, c4, p5), 9 3 7 9 

p = @1,2,3,4,5, cd. 

G = (66) in ~1, (7, 7) in ~11, 

C2 = ((5, 5) in PA 
C3 = {(9, 9) in p2, (10, 10) in p2, (11, 11) in p2, (12, 12) in p2], 
C4 = ((9, 9) in p3, (10, 10) in p3, (11, 11) in p3, (12, 12) in p3], 

C5 = ((2, 2) in p4, (2, 2) in p& 

where (i, j) in pk = the node pair (i, j) in phase pk. 
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Fig. 5. A BSC protocol. 

Notice that this equation sequence is not unique for constructing the BSC 
protocol in Figure 5. Cl 

From Theorems 1 and 2, the communication of the composite network 04, N) 
in Figure 5 is free from deadlocks and unspecified receptions. In the next section 
we show that this communication is also bounded. 

6. BOUNDEDNESS OF MULTIPHASE NETWORKS 

In this section we present a sufficient condition for the communication of a 
composite network to be bounded provided that all its constituent phases are 
bounded. Before doing so, some definitions are in order. 

Let (M, N) be a composite network, and let Mi be a constituent machine in 
M. A final node in Mi is called a plus node iff all its incoming edges are receiving 
edges. A final node in Mi is called a minus node iff all its incoming edges are 
sending edges. A final node in it4i is called a zero node iff its incoming edges 
include both sending and receiving edges. 

Let (M, N) be a composite network, and assume that machine M consists 
of r (r 1 1) constituent machines Ml, M,, . . . , M,. The abstract machine &f of M 
is a directed labeled graph constructed from M as follows: 

(i) For each constituent machine Mi in M, add a node labeled Mi to fi 
(ii) If only plus nodes of a constituent machine Mi are joined with the initial 

node of some constituent machine Mj (which may be the same as MJ, then 
add a directed edge, labeled +, from node Mi to node Mj in &i. 

(iii) If only minus nodes of a constituent machine Mi are joined with the initial 
node of some constituent machine Mj (which may be the same as Mi), then 
add a directed edge, labeled -, from node Mi to node Mj in Xf. 

ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 



. C.-H. Chow, M. G. Gouda, and S. S. Lam 

Fig. 6. Abstract machine of machine M in Figure 5. 

(iv) If the nodes of a constituent machine Mi, joined with the initial node of 
some constituent machine Mj (which may be the same as Mi), include one 
zero node or include both plus nodes and minus nodes, then add two directed 
edges, one labeled -, the other labeled +, from node Mi to node Mj in &f. 

A directed edge labeled + (or -) in ti is called a plus (or minus) edge. 
As an example, Figure 6 shows the abstract machine of the communicating 

machine M in Figure 5. 

THEOREM 3. Let (M, N) be a composite network whose constituent phases are 
all bounded, and let &f be the abstract machine of M. If each directed cycle in &f 
has at least one plus edge and one minus edge, then the communication of (M, N) 
Is bounded. 

Notice that l@ satisfies this condition iff fi satisfies the same condition; hence 
checking one abstract machine is sufficient. 

Assume that the communication of (M, N) is known to be bounded after 
checking the condition in Theorem 3. From the proof of Theorem 3 (in Appendix 
B), the communication of (M, N) is bounded by K = & Ki, where K,, . . . , K, 
are the communication bounds for the r constituent phases of (M, N). K is not 
necessarily a tight communication bound of (M, N); it is merely an upper bound. 
A tighter upper bound can be obtained by executing the following four steps on 
the abstract machine &l of M: 

(i) Label each node Mi in fi with the communication bound of its corresponding 
constituent phase. 

(ii) Remove all plus edges from i@. (The resulting graph is acyclic by Theorem 
3.) An upper bound m for the number of messages in the output channel of 
M is the length of the longest directed path in the modified &I?, where the 
length of a path is computed by adding all the labels of its nodes. 

(iii) From the original I$, remove all minus edges from &f. (The resulting graph 
is acyclic by Theorem 3.) An upper bound n for the number of messages in 
the output channel of N is the length of the longest directed path in the 
modified &f, where the length of a path is computed by adding all the labels 
of its nodes. 

(iv) The communication bound of (M, N) 5 max(m, n). 
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A correctness proof that the above four steps give a communication bound for 
(M, N) is similar to that of Theorem 3. 

Executing these steps on the abstract machine II?f in Figure 6, we found that 
the communication of the BSC protocol in Figure 5 is bounded by 5. The actual 
bound for this network is 3; therefore the upper bound computed by the above 
four steps is still not very tight. 

7. TOKEN RING PROTOCOL EXAMPLE 

The method of phases and the theorems in this paper can be extended in a 
straightforward manner to networks with n (n > 2) communicating finite-state 
machines. For example, a high-level session control protocol modeled after one 
in IBM’s Systems Network Architecture [ 111 can be constructed as a multiphase 
network of three machines [lo]. This method can also be extended to networks 
whose topology is characterized by one or more parameters. As an example, we 
construct in this section a token ring protocol as a multiphase network of n 
machines, where n is a parameter. 

Consider a ring network of n communicating finite-state machines MO, MI, 
. . . , M,-, that communicate via n unidirectional channels, as shown in Figure 7. 
Clearly, each machine Mi receives messages only from its upstream neighbor 
Mci-l)modn and sends messages only to its downstream neighbor Mfi+l)mo~n. The 
communication protocol can be defined as follows: 

(i) When a machine has the token, it can send its data messages, one by one, 
downstream. 

(ii) When a machine Mj receives a data message (generated by Mi, i # j) from 
its upstream neighbor, it examines the message to decide whether it wants 
to keep a copy of it. The message is then sent to its downstream neighbor. 

(iii) A data message generated by Mi is subsequently removed by Mi after the 
message has traveled once around the ring. 

(iv) When Mi has removed all its data messages from the ring and has no more 
data message to send, it sends the token to its downstream neighbor. 

This protocol can be viewed as consisting of n phases po, pl , . . . , pnml, where 
phase pi defines the communication among the n machines when machine Mi 
has the token. For example, the n machines M& M!, . . . , MZW1 in phase PO can 
be defined as shown in Figure 8a, where the messages have the following 
meanings: 

D denotes a data message 
T denotes the token 

Similarly, the n machines in phase p1 are shown in Figure 8b. 
Two comments concerning po are in order: 

(i) To prove that network p. is indeed a phase whose exit set is ([3, 6, 7, 7, . . . , 
711, one can use induction over n. Moreover, since each of the networks pl, 
P2, -**, pnml is identical to p. (except for the order of the machines in the 
network), this same inductive proof shows that each of pl, ~2, . , . , p,,-1 is 
also a phase. 

(ii) Phase p. has one “exit tuple,” namely, [3,6, 7, 7, . . . , 71 where nodes labeled 
7 are not final nodes; rather they are receiving nodes. This requires a slight 
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Fig. 7. A ring network. 

M?3 . . . 
%-1 

Fig. 8. Two phases ia the token ring protocol. (a) Phase pO. (b) Phase p,, 

extension to the definition of exit node pairs (or tuples). For this extension 
to be valid (i.e., for the results in Theorems 1 and 2 to continue to hold), the 
receiving nodes in an exit tuple can be joined only with initial nodes that are 
receiving nodes when we construct composite networks. 
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Fig. 9. Constructing a multiphase token ring protocol. (a) MO before reduction. (b) MO after reduction. 
(C) h4j (j = 1,. , . , n - 1) after reduction. 

To construct the composite network (MO, Mi, . . . , M,,-1) from these phases, 
we need to join all the MS machines to form M,,, join all the Mi machines to 
form Ml, and so on. For example, Figure 9a shows the construction of MO from 
its constituent machines MA, i = 0, . . . , n - 1. (In Figure 9a, an undirected edge 
between two nodes means that these two nodes should be joined into one.) The 
resulting M,, after joining nodes, is shown in Figure 9b. Similarly, the resulting 
Mj (j = 1, . . . , n - l), after joining nodes, is shown in Figure 9c. We have 
assumed, without any loss of generality, that initially n/r, has the token, 

8. ACHIEVING MODULARITY 

This paper presents a method for the modular construction of protocols. First, 
individual phases are constructed. Each phase is verified to satisfy certain 
desirable properties. Second, phases are connected together using the method 
described in Section 5. The resulting protocol is guaranteed to terminate properly 
and to be free from deadlocks and unspecified receptions. Under some additional 
conditions, the resulting protocol is also bounded. 

The advantages of this construction methodology are as follows. 

(i) Ease of construction and reasoning. The methodology allows us to focus on 
one phase of a complex protocol at a time. By ensuring that each phase 
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Fig. 10. Modification of the data transfer phase in Figure 2. 

satisfies some desirable properties, we are guaranteed that the phases can 
be later connected together to form a multiphase protocol with the same 
desirable properties. 

(ii) Parallel construction anti uerification. Construction and verification of the 
different phases of a protocol can proceed independently and, it is hoped, in 
parallel. 

(iii) Flexibility for modifying a phase. After constructing a protocol by connecting 
a number of phases together, it is possible to modify one of the phases 
without affecting the others. This is done by preserving the exit set in the 
modified phase. As an example, consider the data transfer phase in Figure 
2. Assume that each sending edge labeled -D in Mz is replaced by the 
structure in Figure 10a whose message labels have the following meanings: 

SOH denotes a “start-of-header” message 
H denotes a byte in the header 
STX denotes a “start-of-text” message 
T denotes a text byte 
ETX denotes an “end-of-text” message followed by a check sum 

Assume also that each receiving edge labeled +D in Nz is replaced by the 
structure in Figure lob. The resulting network (Ma, Ni) is a phase and has 
the same exit set as (M,, Nz). Therefore, (Ma, N4) can replace (M2, Nz) 
in any composite protocol. (Notice, however, that the communication 
of (MI, Ni) is unbounded, and so the resulting composite protocol is 
unbounded.) 

(iv) Flexibility for rearranging phases. After constructing a protocol by connect- 
ing a number of phases together, it is possible to add more copies of the 
existing phases and rearrange the connections between phases to make the 
protocol satisfy some additional desirable properties (fairness, robustness, 
etc.). For example, the BSC protocol in Figure 5 is unfair. This is because 
whenever the primary M and the secondary N compete to become the 
sender, the primary M always wins. This unfairness is intentional in the 
original BSC protocol [18, 211. It is possible to make this protocol fair by 
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Fig. 11. Abstract machines for a modified BSC protocol. 

adding one call setup phase, four data transfer phases, and four call clear 
phases, and rearranging the phase connections to obtain the protocol 
(Mf, Nf) as shown in Figure 11. (In Figure 11 each rectangular node labeled 
Mj represents machine Mj in some phase. Also, each directed edge from node 
Mj to Mk means that all the exit nodes of Mj are joined with the initial node 
of Mk. This convention, however, is not followed in the case of Ml and N,, 
where each of their final nodes is joined with the initial node of a different 
machine.) 

Notice that initially M, behaves as a primary, and Nf behaves as a 
secondary. They change roles each time after they compete to become the 
sender and the primary wins. 

(v) Efficient validation. As demonstrated by the BSC protocol example, many 
copies of the same phase may be used in a protocol. The method of phases 
requires such a phase to be validated only once regardless of how many 
copies of it are used in the protocol. Table I shows the number of generated 
states and the required execution time to validate the BSC protocol (in 
Figure 5) and the modified BSC protocol (in Figure 11). By using the method 
of phases, the number of generated states is reduced by factors of 1.5 and 
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Table I. Reachabilitv Analvsis Results 

Number of states generated Execution time 
Protocols analyzed in validation of validation” 

BSC (Figure 5) 107 0.760 
Modified BSC (Figure 11) 292 2.581 
Call setup phase (Figure 1) 32 0.228b 
Data transfer phase (Figure 2) 40 0.313b 
BSC using phases 72 0.541b 
Modified BSC using phases 72 0.541b 

’ Execution time is measured by Cyber TM seconds. 
b Includes checking of the exit set condition. 

4.0, respectively, and the execution time is reduced by factors of 1.4 and 4.8, 
respectively. (Notice that these gains are accomplished without relying on 
any parallel validation as discussed in (ii).) 

9. CONCLUDING REMARKS 

We have described a methodology for constructing large multiphase communi- 
cation protocols and demonstrated that this methodology can be used to construct 
(and understand) some realistic protocols. The protocols constructed are guar- 
anteed to terminate properly and to be free from deadlocks and unspecified 
receptions. In addition to the examples presented in this paper, we have also 
shown that a session management protocol modeled after one in IBM’s System 
Network Architecture [lo] and the call establishment/clear protocol of X.25 [9] 
can be constructed as multiphase protocols. 

Although the multiphase concept and our construction methodology have been 
developed using the model of communicating finite-state machines, it should be 
straightforward to extend the results herein to facilitate protocol construction 
using other models [5] as well. 

Our methodology can be viewed as a bottom-up approach to the protocol 
construction problem. A top-down approach for protocol construction was re- 
cently proposed by Gouda [13]. Both approaches need to be examined and 
compared so that the protocol construction problem can be better understood. 
An integrated approach, which employs both bottom-up and top-down strategies, 
for protocol construction seems attractive. 

In the BSC data transfer phase, we have demonstrated the use of virtual 
messages to model message losses and nonpremature timeouts. This technique 
seems promising, and using it we have managed to specify several protocols to 
our satisfaction. In reality, protocol systems are proned to other types of errors 
(e.g., reordering of messages), as well as premature timeouts and crashes. Further 
research is needed to develop specification and verification techniques for these 
problems. 

We are currently developing an interactive protocol design system to support, 
among other things, the multiphase construction methodology herein and the 
projection method in [22]. The system is called PROSPEC. It is implemented in 
C, runs on a SUN workstation, and has a multiwindow graphical interface. 
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After writing this paper, it came to our attention that Raymond Miller and 
Tat Y. Choi at Georgia Institute of Technology had independently obtained 
results [7, 81 similar to those reported in this paper. They have also applied the 
multiphase concept to simplify the analysis of certain protocols. The reader can 
find in their work another interesting multiphase protocol example, namely, the 
call establishment/clear protocol of X.21. 

APPENDIX A. USING CLOSED COVERS TO PROVE PHASES 

The technique of closed covers has been proposed in [14] to prove that the 
communication of a network (M, N), where M and N have no final nodes, is free 
from deadlocks and unspecified receptions. Here we extend this technique to 
prove that a network (M, N), where M and N may have final nodes, is a phase. 

Let M and N be two communicating finite-state machines, possibly with 
final nodes. A closed cover C of network (M, N) is a finite set of state schemas 
[v 1, Wl, x1, Yll, * * *, [u,, wr, X,, YJ such that the following three conditions 
are satisfied: 

(i) For each state schema [v, w, X, Y] in C, v is a node in M, w is a node in N, 
and X and Y are two sets of (possibly infinite) message sequences. Each 
state schema can be viewed as a set of network states. A state [v, w, x, y] is 
in some state schema [u, w, X, Y] of C iff the message sequences x and y 
are in sets X and Y, respectively. 

(ii) The initial state of (M, N) is in some state schema of C. 
(iii) For every state s in some state schema of C, there exist two states s’ and s” 

such that 

(a) S” is in a state schema of C, and 
(b) either (s’ follows over an edge in M and s” follows s’ over an edge in N) 

or (s’ follows over an edge in N and S” follows s’ over an edge in M). 

(iv) If [v, w, X, Y] is in C where v (w) is a final node, then w (v) is a final node 
and X = Y = 23 (the empty string). 

THEOREM Al. If a network (M, N) has a closed couer C, then (M, N) is a safe 
network. 

The proof is in Appendix B. 
From Theorem Al, the existence of a closed cover C for a network (M, N) 

guarantees that the communication of (M, N) terminates properly and is free 
from deadlocks and unspecified receptions. In order to guarantee that (M, N) is 
a phase, an additional condition on its closed cover C is needed. 

THEOREM A2. Let (M, N) be a network whose closed cover C satisfies the 
following condition: For any final node v (w) in M (N), there exists exactly one 
final node w (v) in N (M) such that [v, w, E, E] is in C. Then (M, N) is a phase. 

The proof is in Appendix B. 

Example A. Consider the two communicating finite-state machines M and N 
in Figure 12; they model a full-duplex data transfer procedure with flow control. 
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M 

Fig. 12. Network (M, N). 

N 

The exchanged messages have the following meanings: 

F denotes a “flow control” message 
D denotes a data message 
A Denotes an “acknowledgment” message 
DI denotes a “disconnect” message 

The following set C of state schemas of network (M, N) is an infinite closed 
cover for (M, N): 

C = {[l, 1, F”, F”], [2,1, F”+‘, F”Dl, IL‘.& F”D, Fn+ll, P, 3, J% El, [3,‘& E, El, 
1% 2, PD, F”O, P, 2, A Al, P, 6, E, El, P, 5, E, WI. 

The first state schema [l, 1, F”, F”] represents the infinite set of states 
1L 1, E, El, IL 1, F, Fl, ILL F2, J-1, . . .), where E denotes the empty string and 
each state has an equal number of F messages in its two channels. The other 
state schemas should be interpreted in the same way; in particular, the schema 
[2, 3, E, E] represents the set 1[2, 3, E, Eli. It is straightforward to check that 
the set C satisfies the conditions of a closed cover; hence C is a closed cover for 
network (M, N). Moreover, this closed cover satisfies the condition of Theorem 
A2; hence (A4, N) is a phase. (Notice that the communication of (M, N) is 
unbounded, and so network (M, N) cannot be proved to be a phase using state 
exploration.) Cl 

APPENDIX B. PROOFS OF THEOREMS 

PROOF OF THEOREM 1. Let p1 = (Ml, N,), pz = (M,, Nz), and (M, N) = 
(pl, C, pz). To prove that (M, N) is a phase, we first prove that (M, N) is a safe 
network, that is, it terminates properly and is free from deadlocks and unspecified 
receptions. Then we prove that (& - C) U S, is its exit set, where every final 
node of M or N appears exactly once. We begin by proving that (M, N) terminates 
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properly. (The proof is by contradiction. The proofs for freedom of deadlocks 
and unspecified receptions are similar.) 

Assume that s = [u, w, X, y] is a reachable improper terminating state of 
(M, N). Then there are four cases to consider: 

(i) u is a final node and x # E, where E is the empty string. 
(ii) w is a final node and y # E. 

(iii) IJ is a final node and x = E, but there does not exist a directed path of 
all receiving edges from node w to a final node w’ in N where the string 
y is received. 

(iv) w is a final node and y = E, but there does not exist a directed path of 
all receiving edges from node u to a final node u’ in N where the string 
x is received. 

We prove that case (i) leads to a contradiction. (Similar proofs can show that 
cases (ii)- also lead to contradictions.) 

Let a and /3 be the two directed paths in M and N, respectively, that lead 
(M, N) from its initial state to state [u, w, X, y]. There are four cases to consider. 

Case 1. All edges of path CY are in MI, and all edges of path ,8 are in Ni. This 
implies that (MI, N1) does not terminate properly; hence it contradicts the 
assumption that (M,, Ni) is a phase. 

Case 2. Path (Y ends at a final node u in M2, and path ,L? ends at node w in 
Ni. Let (u, w’) be an exit node pair of (M2, N2). One of the nodes in cr must be 
a final node u* of MI, which appears in exactly one exit node pair (u*, w*) in C. 
Assume that node w # w*. (The proof for the case w = w* is similar.) The 
network (M, N) must have reached state [u*, w”, x”, y”] before it reaches 
[u, w, X, y]. Since (MI, NJ terminates properly, X” = E, and machine Ni can only 
follow a directed path of all receiving edges from node WI via node w to node w*, 
where y” is received. This implies that the input channel of M is kept empty 
from state [u*, w”, x”, y”] to state [u, w, X, y], in other words, x = E. Therefore, 
in machine M the path from node u* (for that matter the initial node of M2) to 
node u must be a path of all sending edges. Let y2 be the string sent by M2 from 
node u* to node u. Since (M2, N2) terminates properly, there exists a directed 
path of all receiving edges from the initial node of N2 to node w’, where string 
y2 is received. Let y = y1 . y2. It is easy to see that there exists a directed path of 
all receiving edges from node w via node LO* to node w’ in N, where string y is 
received. This contradicts the assumption that condition (i) is true. 

Case 3. All edges of path CY are in MI, and path /3 ends at node w in N2. Using 
a similar argument to that of case 2 it can be shown that this case also leads to 
a contradiction. 

Case 4. Path CY ends at a final node u in M2, and path p ends at a node w 
in N2. Path CY should have a node u* and path p should have a node w*, 
where (u*, w*) is an exit node pair of (MI, NJ. By the definition of proper 
termination, each message sent along path CY before node u* should be received 
along path @ before node w *, and each message sent along path /3 before node w * 
should be received along path cr before node u*. Since the exit node pair (u*, w*) 
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of (M,, Ni) joins the initial node pair (~0, wO) of (Mz, N,), the state [u, w, X, y] 
can be reached from the state [uO, wo, E, E] of (M,, Nz). This implies that 
(M2, NJ does not terminate properly; hence, it contradicts the assumption that 
(M,, Nz) is a phase. 

This completes the proof that (M, N) terminates properly. Similar arguments 
can be used to prove that (M, N) is free from deadlocks and unspecified 
receptions. Therefore, (M, N) is a safe network. 

To show that (S1 - C) U Sp is the exit set of (M, N), it is necessary and 
sufficient to show that (i) each node pair in (& - C) U S, is an exit node pair of 
(M, N), and (ii) each exit node pair of (M, N) is in (S, = C) U &.. 

(i) Each node pair in (S, - C) U Sz is an exit node pair of (M, N). For 
each node pair (u, w) in S1, [u, w, E, E] of (A4, N) is reachable, since 
[u, w, E, E] of (Mi, NJ is reachable and (Ml, Ni) is a subgraph of (M, N). 
Let (u*, w*) be an exit node pair in C. [u*, w*, 23, E] of (it!, N) is reachable, 
since C is a subset of &. Since (u*, w*) joins the initial node pair (iI, iz) of 
(M2, N2), [il, i2, E, E] and [u*, w*, E, E] are the same states. Therefore, [il, 
ip, E, E] of (M, N) is reachable. For any node pair (u, w) in Sz, [u, w, E, E] 
of (M, N) is reachable from [il, i2, E, E] because (M2, N2) is a subgraph of 
(M, N). Since [il, iz, E, E] is reachable, [u, w, E, E] is reachable. Therefore, 
by definition of exit node pair, the node pairs of (& - C) U S, are exit node 
pairs of (M, N). 

(ii) Each exit node pair (u, w) of (M, N) is in (& - C) U Sp. If both u and w are 
in subgraph (M,, N1) of (M, N), then (u, w) must be in S1 - C; otherwise, 
the assumption that (Ml, Ni) is a phase is contradicted. For the same 
reasons, if u and w are both in subgraph (M2, Nz) of (M, N), then (u, w) 
must be in Sz. It is impossible that one node of u and w is in (M,, NJ and 
the other node is in (Mz, Nz), since it implies that (Ml, Ni) and (M,, Nz) do 
not terminate properly. Therefore no other node pair (u, w) of (M, N) can 
be an exit node pair of (M, N). 

This completes the proof that (& - C) U Sz is the exit set of the safe network 
(M, N). Clearly, every final node in M or N appears in exactly one exit node pair 
in the exit set of (M, N). Therefore (M, N) is a phase. q 

PROOF OF THEOREM 2. Let p = (M, N) and (p, C) = (M*, N*). As illustrated 
in Figure 13, (M*, N*) is equivalent to an infinite chain of identical phases, 
Pl,PZ, * *. 9 connected by joining the exit node pairs of Ci to the initial node pair 
ofpi+, (i 1 l), such that: 

(i) each phase pi is isomorphic to phase (M, N), and 
(ii) each Ci is isomorphic to C. 

Notice that the first n phases in this chain, along with the connections Ci, 
. . . , Cn--l, constitute a phase (by Theorem 1). We denote this phase (M”, N”). 

Now, to show that (M*, N*) is a phase, we first prove, by contradiction, that 
(M*, N*) terminates properly. Assume that (M*, N*) does not terminate 
properly, that is, it can reach a state s that satisfies condition (i), (ii), (iii), or 
(iv) in the proof of Theorem 1. Let paths (Y and p be the two paths that lead the 
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$ ------ pm-- phase PI 
--- ----_---___--_ _-___ 

t t 
C 

Q ------ Q--- phase Pa 
--- -------------- ----- 1 t C 

Q ------ $!$ phase p3 
--- ----_--_------ _---- 

t t C 

b ------ & --- phase p4 

Fig. 13. Proof of Theorem 2. (a) Network (M*, N*). (b) Infinite chain. 

execution of (M*, N*) from initial state to state s. Assume that (Y ends at a node 
in machine Mi and that p ends at a node in machine Nj; without loss of generality, 
assume that i is greater than or equal to j. Since both paths (Y and @ are in 
(M’, N’), the network (M’, N’) can reach state s. This contradicts the fact that 
(M’, N’) is a phase. Therefore (M*, N*) must terminate properly. By similar 
arguments we can prove that (M*, N*) is free from deadlocks and unspecified 
receptions. This completes the proof that (M*, N*) is a safe network. 

We now prove that S - C is the exit set of (M*, N*). Referring to the infinite 
chain of phases in Figure 13, let S1, Sz, . . . be the exit sets for phases pl, p2, . . . , 
respectively. Since each p; is isomorphic to (M, N), then select each Si to be 
isomorphic to the exit set S of (M, N) and select each Ci to be isomorphic to C. 
From Theorem 1, (Si - Ci) U (S2 - C2) U . . . U (S, - C,) is the exit set for 
(M”, N”), for any n. By folding the infinite chain into (M*, N*), the exit set of 
(M*, N*) becomes S - C. 

It is easy to see that every final node in M* or N* appears in exactly one exit 
node pair in the exit set of (M*, N*). Therefore (M*, N*) is a phase. Cl 

PROOF OF THEOREM 3. Let K,, . . . , K, be the communication bounds for the 
constituent phases of (M, N), and assume that each directed cycle in h?l has at 
least one plus edge and one minus edge. We prove, by contradiction, that the 
communication of (M, N) is bounded by K = Crcl Ki. 

Assume that there exists a reachable state [u, w, X, y] where ] y ] = K + 1, that 
is, y = y1 . . . yK+l. Assume that the messages in y are sent during the execution 
of a sequence of phases, pl, . . . , p,,. Since ] y ] > Cr=i Ki, at least two of these 
phases in the phase sequence must be the same. Without loss of generality, 
assume that phase p1 occurs twice and the phase sequence becomes pl, . . . , pm, 

ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 



340 l C.-H. Chow, M. G. Gouda, and S. S. Lam 

Pl, --*, pn. Let pi = (Mi, NJ, i = 1, . . . , n. Since phase pi occurs twice in the 
phase sequence, it implies that there exists a directed cycle in a. Let fi be the 
last directed edge that is executed by machine Mi, i = 1, . . . , m. According to the 
assumption that each directed cycle of it? has at least one plus edge and one 
minus edge, one edge in the edge sequence, fi, . . . , f,,, must be a receiving edge. 
(See Figure 14 for the relationship between string y, the phase sequence, and the 
edge sequence.) By definition of proper termination, the following proposition 
is true. 

PROPOSITION. Let p = (M, N) be a phase. If the lust executed edge f of a 
machine M is a receiving edge, then all the messages sent by machine M in phase 
p must have already been received by machine N when the receiving edge f is 
executed. 

On the basis of this proposition, if edge fi is a receiving edge, then all the 
messages in y, which have been sent out before fi is executed, must have already 
been received by machine N when fi is executed. Therefore ] y ] # K + 1, since 
some of the messages in y must have already been received, contradiction. 0 

PROOF OF THEOREM Al. Let (M, N) be a network with a closed cover C. 
From [14], the communication of (M, N) is free from deadlocks and unspecified 
receptions. It remains now to show that the communication of (M, N) terminates 
properly. The proof is by contradiction. 

Assume that s = [v, w, x, y] is a reachable improper terminating state of 
(M, N). Then there are four cases to consider: 

(i) v is a final node and x # E. 
(ii) v is a final node and y # E. 

(iii) v is a final node and x = E, but there does not exist a directed path of all 
receiving edges from node w to a final node w’ in N where the string y is 
received. 

(iv) w is a final node and y = E, but there does not exist a directed path of all 
recieving edges from node v to a final node u’ in N where the string x is 
received. 

We prove that case (i) leads to a contradiction. (Similar proofs can show that 
cases (ii)- also lead to contradictions.) 

Since s = [v, w, X, y] is reachable, there is a sequence so, sl, . . . , sr of reachable 
states of (M, N) such that so is the initial state, s, = s, and for i = 0, 1, . . . , 
r - 1, si+l follows ai. This state sequence corresponds to two directed paths (Y and 
Bin machines M and N, respectively, such that the following condition is satisfied: 
Path LY (/3) starts with the initial node u. (wo) and ends with node IJ (w) in 
M WI. 

Let the nodes in path (Y referenced in some state in the closed cover C 
be vo, vl, . . . , urn, and let the nodes in path p referened in some state in C be 
wo,w,*~~, w,. There are two cases to consider: 

(1) m 5 n. 
(2) m > n. 

We prove that case (1) leads to a contradiction. (A similar proof can show that 
case (2) also leads to a contradiction.) 
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I 
I I I I I 

message sequence y = y 1 . . . . .I.. . . . . 4.. . . ( . . . . :. . .I.. . . .I.. . . .I.. . . . .yK+l 
I I I I I I I I I I I I I I 

phase sequence PI j P2 I - - - - j Pm I Pi 1. - * - .I 
I 1 

I 
I 

Pn 
I I 

I I 
I I 

I 
I 

I I 
edge sequence el...fli . . . . . IL& . . . . i . . . . . . f+ . . . . . I..... j . . . . . . es 

I I I I I 
I 

where yl is the message label of seriding edge el , 

‘K+l 
is the message label of sendfng edge e,. 

phase Pi p (Ni.Ni), i-l ,..., n, and 

fi is the last executed edge in Hi. i-l,...,m. 

Fig. 14. Proof of Theorem 3. 

From conditions (i)-(iv) of closed covers, the closed cover C must have the 
states So = [Uo, Wo, X0, Yol, 81 = [h, WI, XI, 351, . . . , Sm = [Urn, Wrn, &, Yml, 
wherexo = y. = E, and for i = 1, 2, . . . , m, xi (yi) is the string xi-1 (yi-1) after 
adding to its right side the string of sent messages along path @ from node 
wi-1 (Vi-i) to wi (vi), and after removing from its left side the string of received 
messages along path a! (p) from node Vi-1 (wi-1) to ui (wi). 

If un = u, then by condition (iv) of closed covers, w,,, is a final node and 
&I = ynl = E. In this case the network cannot reach any other state after reaching 
the state s,,, = [u,, wm, x,, ym]. Since s = [u, w, X, y] is not reached before s,,,, 
then s = s,,, and x = x,,, = E, contradicting the assumption that x # E. 

On the other hand, if urn # u, then the network (M, N) starting at the state 
sm = [bn, wn, xm, y,,,] must reach a state s’ = [u, w’, x’, y’], where x’ # E, 
after which no other state is reachable. However state s’ cannot be in C since 
x’ # E contradicting condition (iii) of closed covers. El 

PROOF OF THEOREM A2. Let (M, N) be a network whose closed cover C 
satisfies the following condition. For any final node u (w) in M (N), there exists 
exactly one final node w (u) in N (M) such that [u, w, E, E] is in C. 

From Theorem Al, (M, N) is a safe network. To show that it is a phase, it is 
sufficient to prove that for any exit node pair (u, w) of (M, N) there is a state 
[u, w, E, E] in C. 

Let (u, w) be any exit node pair of (M, N). This implies that the state 
s = [u, w, E, E] of (M, N) is reachable, that is, there exists a sequence so, sl, . . . , 
sr of reachable states of (M, N) such that so is the initial state, s = s,., and for 
i= 0, 1, . . . . r - 1, si+l follows si. This sequence corresponds to two directed 
paths (Y and /3 in M and N, respectively, such that the following condition is 
satisfied: Path (Y (p) starts with the initial node u. (wo) and ends with node u (w) 
in M (N). 
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Let the nodes in path (Y referenced in some state in the closed cover, C 
be uo, Q, . . . , urn, and let the nodes in path p referenced in some state in C be 
WO,WI,*-*, w,. There are three cases to consider: 

(1) m < n. 
(2) m = n. 
(3) m > n. 

Using the definition of closed covers and using an argument similar to that of 
Theorem Al, it is straightforward to show that cases (1) and (3) lead to 
contradictions. It is also straightforward to show that case (2) leads to the fact 
that state [u, w, E, E] must be in C. This completes the proof that (M, N) is a 
phase. El 
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