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ABSTRACT. A sample dynamic scaling technique is shown that avoids both the overflow and underflow 
problems that are often encountered in the evaluation of normalization constants of closed product-form 
queuing networks W~th dynamic scaling, normalization constants for very large routing chain population 
sizes can be evaluated within the bounds of a relauvely small range of numbers. It is shown that the 
product-form solution possesses a local balance property and the M ~,  M property with respect to routing 
chains. The relationships between normahzaUon constants of closed networks and certain equilibrium 
aggregate state probabdities in networks that permit external arrivals and departures are examined. The 
growth behavior of normalization constants is shown to be modeled by a birth-death process traversing 
over the set of chain population vectors 

Categories and Subject Descriptors: C 2 4 [Competer-Conununicatinn Networks]: Distributed Systems-- 
network operating systems; D.4.4 [Operating Systems]: Communications Management--network commu- 
mcatwn; D.4.8 [Operating Systems]: Performance--modeling and pred~ction; queuing theory 
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1. Introduction 

Que u ing  ne tworks  have  been  used  extens ively  a n d  successful ly in  the  m o d e l i n g  o f  
c o m p u t e r  systems a n d  c o m m u n i c a t i o n  networks .  J ackson  [7] first showed  tha t  the 
equ i l i b r i um p r o b a b i l i t y  d i s t r ibu t ion  P(S)  o f  the  state S o f  a ne tw ork  o f  f i r s t -come-  
f i rs t -served queues  is in  the  fo rm o f  a p roduc t  o f  te rms tha t  co r r e spond  to the  state 
p robab i l i t i e s  o f  the  i nd iv idua l  queues  cons ide red  in  isolat ion.  Present ly ,  mos t  k n o w n  
ne tworks  wi th  an  exact  so lu t ion  for  P (S)  be long  to the  class o f  B C M P  ne tworks  
d i scovered  a n d  charac te r ized  b y  Baskett ,  Chandy ,  Muntz ,  a n d  Pa lac ios  [1, 3, 11]. 
F o u r  types  o f  service centers  as wel l  as open  and  c losed rou t ing  chains  are  a l lowed.  

B C M P  ne tworks  have  a p r o d u c t - f o r m  solu t ion  for  P(S) .  Th is  p r o d u c t - f o r m  so lu t ion  
was  la te r  shown to be app l i cab le  also to an  ex t ended  class o f  B C M P  ne tworks  wi th  
const ra in ts  on  cha in  p o p u l a t i o n  sizes [8]. 

T h e  p r o d u c t - f o r m  solu t ion  needs  to be  d iv ided  b y  a no rma l i za t i on  cons tan t  to 
fo rm a p r o p e r  p robab i l i t y  d i s t r ibu t ion  for  P(S) .  The  no rma l i z a t i on  cons tan t  is s imply  
the  sum o f  the  p r o d u c t - f o r m  so lu t ion  over  a l l  feas ible  ne twork  states. Since the  
n u m b e r  o f  feas ible  ne twork  states is typ ica l ly  very  large,  the  s u m m a t i o n  is a non t r iv ia l  
process.  
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Several computational algorithms are available for the class of  BCMP networks 
[2, 5, 10, 14, 15]. The convolution algorithm was first discovered by Buzen [2] for 
single-chain networks and extended by Reiser and Kobayashi [14] to multichain 
networks. The LBANC and CCNC algorithms were recently proposed by Chandy 
and Sauer [5]. These algorithms all attempt first to evaluate the normalization 
constants of networks of closed chains. Network performance measures are then 
computed from the normalization constants. A major difficulty often encountered in 
the evaluation of the normalization constant G(N) of a network with population 
vector N using any of these algorithms is that as the chain population sizes in N 
become large, G(N) may become too large (causing a floating-point overflow) or too 
small (causing a floating-point underflow) [5, 13]. A scaling technique was described 
by Reiser [13] that can avoid the overflow problem. However, the bound used is not 
very tight, and no solution is provided for the underflow problem. The mean-value- 
analysis (MVA) algorithm proposed by Reiser and Lavenberg [15] bypasses the 
evaluation of G(N) and computes various network performance measures directly. 

SUMMARY OF OUR RESULTS. The overflow and underflow problems encoun- 
tered in the evaluation of G(N) using current algorithm implementations result from 
the use of a fLxed set of"scaling factors" for the entire range of values of  N of interest. 
We found that the scaling factors can be factored out of the expression for G(N) so 
that one can easily use different sets of scaling factors for different values of N with 
just small amounts of space and computation overheads. As a result, the scaling 
factors can be changed to smaller values when G(N) is about to encounter an 
overflow and to larger values when G(N) is about to encounter an underflow. Since 
changes in the values of scaling factors can be made repeatedly during the execution 
of a computational algorithm, it is now possible to evaluate G(N) for a wide range of 
values of N using a small range of floating-point numbers or even fixed-point 
numbers! The scaling technique and related results are covered in Section 3. 

External Poisson arrivals at rates that may depend upon routing chain population 
sizes are allowed in BCMP networks [1] and the extended class of BCMP networks 
with population size constraints [8]. In such a network the population vector N 
changes as a result of external arrivals into the network or customer departures from 
the network. We have shown that class local balance [1, 3] implies chain local 
balance. Furthermore, routing chains possess the M =* M property [11]. The 
equilibrium probability of the aggregate of feasible network states with population 
vector N is related to the normalization constant of a closed network with the same 
population vector. These equilibrium probabilities are equal to the equilibrium state 
probabilities of a birth-death process traversing over the set of population vectors. 
The growth behavior of normalization constants is thus modeled by such a birth- 
death process with birth rates equal to scaling factors and state-dependent death 
rates. These results are covered in Section 4. 

2. Definitions and Notation 

Service centers are indexed by m = 1, 2, . . . ,  M. Customers belong to different chains 
with different routing behaviors and service requirements. Chains are indexed by 
k = 1, 2, . . . ,  K. Let there be C classes in the network. At any time each customer 
must be in one of the C classes but may make a transition to another class some time 
later. Classes are used to model a customer's routing behavior and service require- 
ments with/'mite memory. 

The set of classes { 1, 2 . . . . .  C) is partitioned in two different ways. First, they are 
partitioned over the set of M service centers. We let SC(m) denote the partition of 
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classes belonging to service center m. Thus the class of  a customer, say, c in SC(m), 
uniquely identifies the service center he is in. A customer makes a transition from 
class c to class d with probability pod. The transition from class c to class d may 
correspond to a transition o f  the customer from one service center to another i f  c and 
d belong to different service centers, or it may correspond to a transition of  the 
customer from one class to another within the same center. 

The set o f  classes {1, 2 . . . . .  C} is also partitioned over the set o f  K chains. We let 
RC(k) denote the partition of  classes belonging to routing chain k. Customers cannot 
make transitions between classes belonging to two different chains. (Otherwise, the 
two different chains "communicate" and should be treated as just one chain.) In 
other words, pcd= 0 if C and d are in different chains. Moreover, each chain is 
irreducible, that is, the transition probabilities {pcd; C, d in RC(k)} are 'such that 
every class can reach every other class in the same chain in a finite number of  
transitions with nonzero probability. 

For  each chain k ffi 1, 2 . . . . .  K, the relative arrival rates of  customers to the 
different classes can be determined (to within a multiplicative constant) by solving 
the set of  equations 

Vd •ffi ~,, I~cpcd, d in RC(k). (1) 
c in RC(k) 

Summing over the different classes in a service center, the relative arrival rate of  
chain-k customers to center m is 

~,~= Y vo. (2) 
c in SC(m) 
and RC(k) 

Suppose that the multiplicative constant in (1) is chosen such that 

~ l k  ~ffi Otk. 

For  ak ffi 1, ?l,~ is equal to the mean number of  visits to center m by a chain-k 
customer between successive visits to center 1. ctk is called the scalingfacwr of  chain 
k. (Note that since the labeling o f  the service centers is arbitrarily done, the choice of  
center 1 is arbitrary.) 

Let 1re denote the mean service time of  a customer in class c (assuming that he is 
served at the rate of  I second o f  work required per second). The mean service time 
of  chain-k customers at center m is 

vc 
~',nk = ~ ~ I"c. (3) 

c in SC(m) mk 
and RC(k) 

The traffic intensity of  chain-k customers through center m is defined to be 

pink ---- Xmk~'mk = ~ Vc~c. (4) 
c in SC(m) 
and RC(k) 

We define the nominal traffic intensity to be 

Wink ~-" ~mkTmk  

Thus we have 

for ~k---- 1. (5) 

pink ~- ~]tkWmk. (6) 
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The service rate of a service center may depend upon the number of  customers 
currently in the center. Let #m(0 denote the service rate of  center m containing i 
customers. A service center is said to befixed-rate if/1re(i) = 1. 

For the moment we consider only networks with closed chains. (Networks that 
permit departures and external arrivals are introduced in Section 4.) We let Ark be 
the number of  customers in chain k. The network population vector is 

N = (N1,  N2 . . . .  , ARK). 

The normalization constant for a closed network with population vector N is denoted 
G(N). 

Let nmk denote the number of  chain-k customers in center m. Define the network 
state 

where 

n = ( n l ,  n2 . . . . .  r im) ,  

nm = (nma, nine . . . .  , nmK), m = 1, 2 . . . .  , M .  

(We note that n is non-Markovian and corresponds to an aggregation of detailed 
network states that are Markovian.) The product-form solution for a BCMP closed 
network with population vector N [1] is 

M n P(n) - Hm=lpm(m) 
G(N) ' (7) 

where 

where 

f = z  1 "1 U pmknmk 
pm(nm ) = i till ~----~ ~ rim' 

k = l  nmk! ' 
(8) 

nm ~ nml + rim2 -I- • • • + nmK. 

The form of  eq. (8) ~s the same for all four types of  service centers considered in 
[11; they are: first-come-first-served (FCFS), processor-sharing (PS), last-come-first- 
served preemptive resume (LCFSPR), and infimte servers (IS). However, in an FCFS 
center it is necessary for the mean service time to be independent of  class membership, 
that is, ~'c = ~'m for any c in SC(m). Also, an IS center, say m, assumes that #m(0 = i 
for all feasible i. 

Finally, the normalization constant is by definition 
M 

G(N) = E H pro(rim). (9) 
n such that rn=l 
EmM~l n m f N  

In addition to service-rate functions of  the form #m(0 described above, two other 
forms of  state-dependent service rates are allowed in BCMP networks [1]. The second 
form of  state-dependent service rates distinguishes customers belonging to different 
classes. The service rate of customers belonging to a specific class may be a function 
of  the number of  customers in that class (this form does not apply to classes within 
a FCFS service center). The third form of  state-dependent service rates involves the 
total number of  customers in a set, say I, of  service centers. The service rates of  
customers in different service centers in I may be functions of  the total number of  
customers in those centers, that is, ~mzl rim. TO accommodate these two other forms 
of  state-dependent service rates, the product-form solution needs to be generalized 
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slightly. (Hence, eqs. (7)-(9) above, as well as eqs. (22), (25), and (27) below need to 
be generalized slightly; see [1].). 

To keep the notation and equations simple in this paper, we shall not explicitly 
consider these other forms of  service-rate functions. It is, however, easy to show that 
the new results and observations presented in this paper are applicable to networks 
with any or all of  the three forms of  state-dependent service rates. 

3. Growth Behavior and Dynamic Scaling of  Normalization Constants 

Examining eqs. (8) and (9), we note that G(N) is a function of N, M, the service rate 
functions {#-,(0}, and the traffic intensities (pm~}. Recall that p,~k is the product of  
the scaling factor ak and the nominal traffic intensity w,,k. Let 

tX ~ (0/1, Or2, . - - ,  O/K). 

In what follows we shall often use the notation G(iX, N) or G(iX, M, N) instead of 
G(N) to explicitly indicate the parameters IX and M assumed in the normalization 
constant. Our scaling technique, to be described later, makes use of  the following 
lemma. 

LEMMA 1 

G(iX, M, N) --- IXlNla~ 2 . . .  O/~-~G(l, M, N), (10) 

where 1 is a K-vector of  ones denoting that the scaling factor is equal to unity for each 
chain. 

A useful corollary of  the above lemma is 

G(fl, M, N) = r(fl, IX, N)G(IX, M, N), (11) 

where 

k=~ \o/k/ 

The above lemma is obvious from a careful inspection of the definition of 
G(N) in eq. (9) and noting that the summation is over those values of n such that 

M n Xmsl m = N. 
It is instructive, however, to demonstrate the above lemma by a different approach. 

It is well known that the throughput rate of chain-k customers at center m for a 
network with population vector N [2, 5, 14] is given by 

G(N - lk) 
Trek(N) = ?~,~k for any m and N _> lk, (12) 

G(N) 

where lk is a K-vector with the kth element equal to one and all others equal to zero. 
The relation >_ between two vectors is satisfied if it is satisfied for each pair of 
corresponding components in the vectors. Equation (12) can be rewritten as 

k,nk 
G ( N ) - - - G ( N - l k )  for any m and N>_lh.  

Trek(N) 

A consequence of eq. (12) is that the ratio ~,mk/Tmk(N) is constant over m. Let us 
consider m = 1. Recall that Alk is equal to the scaling factor O/k by defmition. To 
simplify our notation, we shall write Tk(N) for Tlk(N). The above equation can now 
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be rewritten as 

OLk 
G(N) - - -  G(N - lk), N >_ lk. (13) 

Tk(N) 

Traditionally, we first compute G(N) and then derive Tk(N) from G(N) and 
G(N - lk). Now since we are interested in the behavior of  G(N), we consider the 
reverse process. Note that Tk(N) can be obtained from the MVA algorithm directly 
and is independent of  the scaling factor ak [l 5]. 

We need some additional notation at this point. Consider, in the K-dimensional 
space of  population vectors, a path leading from the vector 0 of  all zeros to N. The 
path has 

N = N~ + N2 + . . .  + NK 

steps. Step i in the path corresponds to the addition of  a chain-k, customer to the 
current population vector N (~-1). The increasing sequence of  population vectors along 
the path is 

N (°) = 0 
N (1) = N (°) + lhl, 

N (2) _-- N,)  + l k  2, 

is 

N (N) = N (N-l) + lhN = N. 

Given any such path, a solution for G(N) using the recursive relation in eq. (13) 

G(N) =- ~ .~.(,)~ , (14) 
Tk,(1~ , 

where G(0) = I by definition. We have thus provided an alternate proof of 
Lemma I. 

Note that there are many different paths leading from 0 to N. Since G(N) is a 
constant, the next lemma is immediately obvious. 

LEMMA 2. For any path from 0 to N consisting of an increasing sequence of 
population vectors N (1), N (2) . . . . .  N (N-l), N (N), 

N 
H Tk,(N")) = constant. (15) 

Let us set aside the above result until Section 4. We shah now consider the special 
case of  K = 1, that is, networks with a single chain, and introduce a dynamic scaling 
technique for avoiding the overflow/underflow problems. The scaling technique for 
networks with multiple chains is similar and will be considered afterward. 

For  a network with a single closed chain our previous notation is simplified as 
follows: 

G(N) normalization constant for N customers in the chain; 
a scaling factor (relative arrival rate at center 1); 
T(N) throughput rate at center 1 for N customers in the chain. 

We now have 

OL 
G ( N ) -  G ( N -  I), N _> I, 

T(N) 
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and with G(0) = 1 by definition, we have 

N 1 

G(N) -- ~N ,zlI] T(i)" (16) 

To characterize the behavior of  T(i), we assume for the moment that service-rate 
functions are limited to 

= i~ I <__ i<_jm, 
#re(i) (17) 

tim , i>_jrn, 

for any m, and state the following result. 

PROPOSITION. T(N) is monotonically nondecreasing in N. 

The above proposition was proved by Chang and Lavenberg [6] for a network o f  
FCFS centers. Their proof is also valid for IS centers, sincejrn can be greater than N. 
Moreover, we note that any BCMP single-chain network with the same set of service- 
center traffic intensities (prn} has the same marginal probability distributions Prn(nrn), 
m = 1, 2 . . . . .  M, which together with #rn(i) determine the service-center throughput 
rates. Consequently, the above proposition applies to any product-form network with 
a single chain and the service-rate functions o f  eqs. (17). 

We can also calculate the limiting value of  T(N) as N + oo. Recall that wrn denotes 
the nominal traffic intensity of  center m. The relative utilization of  center m is 
defined to be 

W m  
Urn ~-  "":'-~ 

J= 
where jrn is the maximum service rate of  center m. Let m* denote the service center 
with the largest relative utilization, that is, 

urn* = max urn. 
rn 

As N + 0% center m* becomes the bottleneck in the network with an infinite queue 
and an actual utilization of  unity [12]. The limiting throughput of  center m is thus 

lim T,n(N)-  urn jrn, 
N---* oo /./rn * Trn 

in customers served per second. Specifically, we have for center 1 

ul j l  
T(N) _< h _  _-a Tm~x. (18) 

Urn* q ' l  

The typical behavior of  T(N) as a function of  N is plotted in Figure 1. 
Referring back to eq. (16), we can now show that the behavior of  the normalization 

constant G(N) depends upon the relative magnitudes of  the scaling factor a and 
Tmax. The three general cases of  behavior are illustrated in Figure 2. We see that if 
a _ Tm~x, we can potentially have an overflow problem due to G(N) getting very 
large. I f  a < Tmax and as N increases, we can potentially first encounter an overflow 
as G(N) increases and then an underflow problem as G(N) subsequently decreases. 

EXAMPLES ILLUSTRATING DYNAMIC SCALING. Current computational algorithms 
assume the use of  the same scaling factor a to compute G(N) for the full range of  N 
values of  interest. Lemma 1 and eq. (1 l) show that the scaling factor can be easily 
changed at any time during the computational process. We only need to remember 
what values of a were used for specific values of  N. To illustrate such a dynamic 
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FIG 1. Throughput rate versus popula- 
tion size m a single-chain network. 
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scaling technique, we use an example considered by Chandy and Sauer in [5] and 
illustrated in Figure 3. Center 4 is an IS center that models a population o f  terminals. 
Centers 1-3 are all fixed-rate centers. The relative arrival rates )~,~ (at a -- 1) and 
mean service times Tm are as follows: 

m )km Tm 

1 1 0.020 
2 0.2 0.044 
3 0.8 0.008 
4 0.2 15 

In Figure 4, G(N) is shown as a function of  N for different values of  a. Suppose 
we need to compute G(100) on a computer that can only represent floating numbers 
between l0 -1° to l01°. A dynamic scaling approach then is to start with an arbitrary 
scaling factor, say a = 50, as shown in Figure 4. When a floating-point overflow is 
about to occur, a is changed to a smaller value using eq. (l  1). When a floating-point 
underflow is about to occur, a is changed to a larger value. As shown in Figure 4, 
after several changes in a we finally found G(100) = 0.1430 for a = 12.5 without 
exceeding the 10-1°10 ~° floating-point range. It was not unlikely that we ended up 
with a scaling factor that we used earlier, but the scaling technique enabled us to 
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bypass the interval of  N values within which we cannot represent G(N) using that 
scaling factor. 

We next consider networks with more than one routing chain. In this case the 
above proposition no longer applies. We note, however, that the monotone property 
in the proposition is not necessary for doing dynamic scaling. 

Consider the following example o f  a network o f  three fixed-rate centers with two 
routing chains. The nominal traffic intensities w,~ (for al = a2 = 1) are 

center 1 center 2 center 3 

chain 1 2 4 2 
chain 2 2 4 1 
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TABLE I. NORMALIZATION CONSTANTS AND THEIR SCALING FACTORS FOR THE 
Two-CHAIN NETWORK EXAMPLE 
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(N~, N2) 

(0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 0) (1, 2) (2, 1) (2, 2) 
m =  1 G 1 2 2 8 4 4 24 24 64 

ot (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) 

G ! 6 6 56 28 28 30 20 30-40 

( ~ )  ( !  1 ) ( 1  1) a O,t) (t,t) (t , l)  (t,t) O,t) (t,t) ½,1 ~"~ ~"~ 

G l 7 8 78 35 44 211 ~ 411- ~ 

vt ( l , l )  ( l , l )  (1, , ,  ( , ,1)  (1,1) ( l , l ) ( 1  ) ( l  ~ ) ( 1 , . ~ )  

m=2  

m = 3  

Let us employ the convolution algorithm for fixed-rate servers from [14]. Let 
G(a, m, N) denote the normalization constant for the first m centers with scaling 
factors a and population vector N. We have 

K 
G(a, m, N) = G(a, m - 1, N) + Y, G(a, m, N - lk)pmk for m --> 2, 

k=l 
and 

G(a, I, N) = m! Il • 
k--1 him 

The above recursive equation can be rewritten as 

G(a, m, N) = r(vt, fl, N)G(fl, m - 1, N) 
K 

+ ~ r(a, ~,, N - l , )G(y,  m, N - l~)akwmk, (19) 
4--1 

where r(a,  fl, N) was defined earlier. Suppose in the two-chain network example we 
want the normalization constant for N = (2, 2). However, the largest value of  the 
normalization constant that we can store is 100. By dynamically changing the scaling 
factors and employing eq. (19) we arrived at the results tabulated in Table I. 

COMPUTATION OF PERFORMANC~ MF.ASURES. As illustrated in the above example, 
when the normalization constants of  more than one population vector are used in the 
same formula, they need to have the same scaling factors. 

Service-center throughput rates can be computed using the formula 

Trek(N) ffi ~-,k G(a, M, N - lk) 
r(a, fl, N)GQS, M, N) '  (20) 

where it is assumed that ~lk ~ O~k. The mean queue size qmk(N) for a fixed-rate service 
center can be computed using the formula 

Gm+(a, M, N - lk) 
qmh(N) = akw,~h r(a,  fl, N)G(fl, M, N) '  (21) 

where Gm+ is the output of  the convolution algorithm over centers 1 - M but with 
center m convolved twice [14]. In both cases, since the normalization constants 
needed range over population vectors that differ by one customer, finding a set of  
scaling factors to fit the normalization constants within a given floating-point range 
should not pose much of  a problem. 
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A difficulty may arise in the calculation of the mean queue length for a service 
center for which #,,,(i) is not a constant. In this case the marginal queue-length 
distribution may need to be first computed as follows: 

P,~(n,,)) --p,,,(nm)Gm-(a, M, N -nm)  
r((~, fl, N)a(fl, M, N) ' (22) 

where p,n(n.,) was defined earlier. Gin- is the output of the convolution algorithm 
over centers 1 - M but skipping over center m. Since nm may range from 0 to N, it 
will then be likely that we cannot fit the normalization constants of N - nm and N 
within a given floating-point range using the same scaling factors. However, we 
observe that if the floating-point range is of reasonable size, then the mean queue 
length can still be computed accurately by simply discarding those marginal queue- 
length probabilities Pm(n.,) that are too small and will cause underflows! Let 
SMALLEST (LARGEST) denote the smallest (largest) floating-point number avail- 
able. The error introduced in the mean queue length is negligible if 

(~-'1 n)SMALLEST << LARGEST for any k. 

The above will hold given any nontrivial floating-point range and reasonable chain 
population sizes. 

SPACE OVERI-IEAD CONSIDERATIONS. The additional space overhead of dynamic 
scaling depends upon the computational algorithm and its implementation. In a 
convolution algorithm the recursion is done over the service centers. Consequently, 
an entire array of normalization constants for all population vectors between 0 and 
N is needed. A straightforward way to provide a mapping between population vectors 
and their corresponding scaling factors is to provide an entire array of  a values. 
However, an inspection of the example in Table I suggests that since changes occur 
infrequently, it is possible to provide the mapping between population vectors and 
scaling factors with substantially less memory than that of an entire array. In the 
LBANC algorithm the recursion is done over the population vectors; hence additional 
saving is possible, since an entire array, indexed from 0 to N, of normalization 
constants is not needed. 

The amount of space overhead of dynamic scaling for any computational algorithm 
can be reduced significantly with the use of the same scaling factor, say or, for all 
chains (at the expense of, perhaps, some flexibility). This way, only the mapping 
between N (-- N1 + N2 + . . .  + N r )  and ot needs to be remembered and can be 
accomplished with a minimal amount of space overhead; specifically, only the values 
of  N at which a scaling change occurs need be remembered. In this case let 
G(~t, M, N) be the normalization constant that we want to scale down (or up). Scaling 
can be simply accomplished by updating the pair of values of G and ~t for the given 
M and N as follows: 

where N = Nx + N2 + . . .  + N r .  Let LARGE and SMALL be floating numbers 
such that 

SMALLEST < SMALL < 1 < LARGE < LARGEST. 

Suppose we want to keep G within the range (SMALL, LARGE). When G exceeds 
LARGE, it can be scaled down to near unity with the choice of 

1 
fl <-- (LARGE)Ira- 
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When G drops below SMALL, it can be scaled up to near unity with the choice of 

1 
fl ~-- (SMALL)I/N. 

TIME OVERHEAD CONSIDERATIONS. The additional time overhead of dynamic 
scaling depends upon its implementation which, in turn, depends upon the compu- 
tational algorithm and the programming language involved. 

The implementation of dynamic scaling is simplest if the programming language 
has provisions for detecting underflows/overflows and recovering from them. In this 
case the additional time overhead of dynamic scaling is rather insignificant. Each 
time the scaling factors are changed, eq. (11) needs to be computed. Assuming that 
the available floating-point range is not too small and G(N) does not fluctuate greatly 
as a function of N (owing to fluctuations in #re(i)), the frequency of encountering 
overflow or underflow conditions requiring a change in scaling factors should be 
very low. 

If overflows/underflows cannot be easily detected and recovered from, then it is 
necessary to prevent their occurrence by testing the magnitude of operands before 
operations. Upper and lower bounds, LARGE and SMALL, respectively, are needed. 
Rescaling is required if not all operands lie within these bounds. The basic trade-off 
in the design of an implementation algorithm is then as follows. In the extreme case, 
if operands are tested before every arithmetic operation, then the range (SMALL, 
LARGE) can be chosen to be close to the floating-point range of (SMALLEST, 
LARGEST). However, given network parameters, bounds may be obtained for 
SMALL and LARGE so that the testing of operands needs to be performed only 
once for each group of operations (e.g., subroutine for one convolution, subroutine 
for mean-queue-length computatmn, etc.). 

4. A General Queuing Network Model 

The queuing network model described in Section 2 is for closed routing chains, each 
w~th a fixed number of circulating customers. The model will now be extended to 
include chains that can have external arrivals and departures. External customer 
arrival streams to the chains are assumed to be Poisson processes. It is also assumed 
that a new external arrival to chain k joins class c with probability qc, so that 

q c = l .  
C In R C ( k  ) 

To determine the set of arrival rates (?~mk) for use in the traffic intensities (p,,k), the 
following set of equations should be used (instead of eq. (1)): 

va = qd + ~ Vcpca, d in RC(k), (23) 
c m  RC~'k) 

k,nk = ~ Vc. (24) 
c m S C  (m)  
a n d  R C ( k )  

There can be two types of Poisson arrival processes. 

Type I. The arrival rate of chain-k customers is a function of the total network 
population N, -/k(N), k = 1, 2 . . . . .  K. Define 

y(N) ---- y,(N) + y2(N) + . - .  + yK(N). 

Type 2. The arrival rate of chain-k customers is a function of the number of 
chain-k customers in the network, yk(Nk), k -- 1, 2 , . . . ,  K. 
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For networks with K chains, each of which may be open or dosed, Baskett et al. 
[1] showed that the product-form solution in eq. (7) becomes 

a(n) M 
e(n) -- "---G-" , ,~ pm(n,~), (25) 

wherepm(n,,,) was given by eq. (8), G is the normalization constant and is equal to the 
sum of the unnormalized solution in eq. (25) over all feasible n states, and 

I N(n)--I 

,~0 y(i) for type-1 arrivals, 

a(n) = (26) 

/ ~ Nk~-~ ~'k(i) for type-2 arrivals, 
k~l t~0 

where N(u) is the total number of  customers and N~(n) is the total number of chain- 
k customers in the network for network state n. Note that if all chains are closed, 
a(n) - l by definition. I f  at least one chain is open, then the product-form solution 
given by eqs. (25) and (26) is applicable if  for each closed chain, say chain j,  ~,~(i) is 
set equal to zero in y(i) for networks with type-I arrivals or 3,j(i) is set equal to l for 
all i in eq. (26) for type-2 arrivals. 

One way to view a closed network is that it is an open network, but the routing 
chain population sizes are kept fixed by two mechanisms: 

(l) a loss mechanism whereby a new external arrival is discarded and lost forever; 
(2) a trigger mechanism whereby a departure from the network triggers the instan- 

taneous injection of a customer into the same chain as the departed customer 
(from an infinite supply of  customers). 

A dosed network is thus equivalent to a network of  open chains with the above two 
mechanisms in place all the time. 

The above mechanisms can be invoked or revoked as a function of the population 
vector N corresponding to the current state of  the network. This strategy gives rise to 
networks with arbitrary sets of feasible population vectors (see Figure 5). Such 
networks are said to have population size constraints, and it was shown by this author 
[8] that if V is an irreducible set of feasible population vectors, then a sufficient 
condition for the product-form solution in eqs. (25) and (26) to remain valid is: For 
any k, and population vectors N and N + lk in V, the loss mechanism is invoked for 
a chain-k external arrival in any network state with population vector N if and only 
if the trigger mechanism is invoked for a chain-k external departure in any network 
state with population vector N + lk. (In other words, feasible transitions between 
adjacent feasible population vectors in Figure 5 are paired.) 

The class of networks with population size constraints provides a general model 
that includes networks with closed chains, networks with open chains, and networks 
with mixed open and closed chains as special cases. The normalization constant G is 
given by the sum of  the unnormalized product-form solution in eq. (25) over all 
feasible u states for each feasible population vector in the set V. 

Let S denote a detailed network state that is Markovian (see [1]), 

s = (s1,  s2, . . . ,  s~ , ) ,  

where Sm is the state description of service center m. 
Let A a be the set of  all feasible Markovian network states and :T(N) be the set of 

feasible Markovian network states with population vector N. Since V is the set of 
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FIG 5. Examples of two-chain networks wtth external arrivals 
and departures 

feasible population vectors, we have 

6f = O ha(N). 
N m  V 

Note that :T(N) is also the set of feasible states of a closed network with population 
vector N. We explore below the relationship between the normalization constant 
G(N) of a dosed network and the equilibrium probability of the aggregate state 
6a(N) in a general network. We have found that they are also related to equilibrium 
state probabilities of a birth-death process traversing over the feasible population 
vectors in V. 

It is shown in [ 1] that the equilibrium probability of a Markovian network state 
has the product form, 

P(S) a II*(S) ~ a(N)I-I(S) 
= G = G 

= a(N)l'Ii(Sl)Yl2(S2) . . .  I IM(SM)  
G ' (27) 

where N is the population vector of Markovian network state S, Hm(Sm) is defined 
in [1], and 

N - 1  

I ,=I-I ° 7(0 for type-I arrivals, 

a(N) = , (28) 

/ I~ ~v~ 7k(i) for type-2 arrivals. 
k = l  ~=0 
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LOCAL BALANCE AND THE M =* M PROPERTY. Chandy [3] first observed that the 
product-form solution P(S )  of  many queuing networks has a local balance property, 
that is, it satisfies certain local balance equations in addition to the global balance 
equations [1, 8]. This observation has proved to be very useful in the discovery and 
characterization of  the class of  BCMP networks [1]. (Another treatment of  local 
balance can be found in the work of  Chandy et al. [4].) 

Muntz [11] found that individual service centers in BCMP networks have the 
M =* M property, which can be explained and related to the local balance property 
as follows. Consider class c in service center m (viewed in isolation). Center m has 
the M ==~ M property if given that the arrival process of  customers to class c is a 
Poisson process, the departure process of  customers from class c is also a Poisson 
process. Let class c be in chain k. Consider network state S in 6f(N). Let S ~+~ be the 
set of  network states in 6P(N + lk) that are the same as network state S but with an 
extra class-c customer in service center m. Sm is the mth component of  S describ- 
ing service center m. S+~ ~ is the ruth component of  network state S +~ in 5e+c; it de- 
scribes service center m with the extra class-c customer. IIm(S,,) in the product-form 
solution was found to satisfy the following sufficient condition for the M ~ M 
property [11]: 

+ +e X rlm(Sme)Rm(Sm - .  S~) = v~, (29) 

where vc was defined in eq. (23), ~L~ is the set of  center-m components of  network 
states in 6 e+~, and R,,(S~ c ---) Sin) is the transition rate from S,+, ¢ to Sm corresponding 
to the departure of  the extra class-c customer from center m. Equation (29) can be 
rewritten as 

= II~(s~ )R~(s~ ~ s~), r~(s~)vo E + "  + "  (30) 

where we can interpret 

(a) the left-hand side of  eq. (30) to be the "flow" out of  state Sm due to class-c 
arrivals, and 

(b) the fight-hand side of  eq. (30) to be the flow into state S,, due to dass-c 
departures. 

Equation (30) is an example of  a local balance equation. Since it is with respect to 
the arrivals and departures of  a specific class, it will be referred to as a class local 
balance equation [1, 3]. 

Since II(S)  has a product form, the previous equation can be rewritten as 

II(S)vo = E II(S+C)R~(S~ ~ ~ Sin). (31) 
S + c  i n  5 a + e  

We next employ eq. (31) to demonstrate a local balance property of  H*(S)  with 
respect to external arrivals and departures of  a routing chain; this will be referred to 
as chain local balance. Consider chain k. Suppose the population vectors N and 
N + lk are in V with transitions between them allowed. 

The following identity, 

1--  ~ v e i l -  ~ p c a l ,  (32) 
cmRC(k)  dmRC(k)  .J 

can be easily demonstrated using eq. (23) and ~c,.Rc(k)qc = 1. NOW replace vc in the 
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fight-hand side of the above using eq. (31) and get 

2S+~m..~ c I I ( S  )Rm(Sm -'> Sin) 
1"~" 2 l-[(S) 1-- ~. p e a .  

c in Re(k) dinRC(k) 

Let N be the population vector of network state S, and define 

f~,k(N) for type-1 arrivals, (33) 
yk(N) = [ yk(Nk) for type-2 arrivals. 

Multiplying both sides of the previous equation by yk(N) and rewriting II(S+~)/II(S) 
as rI*(S*3/[~h(N)rI*(S)], w e  get  

II*(S)~'.(N) Z 2 " +° +° [ ] = I I  (S  )Rm(Sm "'> Sen) 1 -  2 pod , (34)  
cm RC(k) S+Cm5 a+c din RC(k) .1 

which then is a local balance equation satisfied by II*(S) with respect to chain k; 
note that [ 1 - E d  in RC(k)pcd I is the probability that the extra class-c customer departing 
from center m leaves the network instead of joining another service center. We can 
interpret 

(a) the left-hand side of eq. (34) to be the flow out of state S due to chain-k arrivals, 
and 

(b) the right-hand side of eq. (34) to be the flow into state S due to ehain-k 
departures. 

Note that eq. (34) is applicable only if transitions between N and N + lk are feasible. 
We have thus shown the following lemma. 

LEMMA 3. The class local balance property of rim(Sin) in the product-form solution 
P( S) implies that P( S) satisfies the chain local balance equation 04). 

The chain local balance property of the product-form solution is the key for 
demonstrating its applicability to the extended class of BCMP networks with popu- 
lation size constraints in [8]. It also has the following immediate consequence. 

LEMMA 4 (M =* M PROPERTY FOR A ROUTING CHAIN), I f  external arrivals to 
chain k form a Poisson process with a constant rate Tk, then chain-k customers departing 
from the network form a Poisson process at the same rate. 

The above lemma is easily proved using eq. (34) and Muntz's arguments [11]. Note 
that any subnetwork of M =* M service centers will have the M =* M property with 
respect to each chain's external arrivals to the subnetwork and departures from the 
subnetwork. Hence the subnetwork behaves like a single (composite) M =~ M service 
center to the rest of the network. (This observation, however, does not apply to 
networks with the third form of state-dependent service rates if the subnetwork and 
the set I of service centers overlap partially.) 

AGGREGATE STATES AND THEIR OCCUPANCY STATISTICS. Let P(N) denote the 
equilibriu m probability of the aggregate state 6a(N), defined to be 

P(N) = • P(S). 
SinSa(N) 

Let S(t) denote the network state at time t. Consider the case of t ---> oo. We define 
the conditional throughput rate of chain k as 

Tg(N + ID == lira 1 a-~o -A P[S(t) in 6P(N)[ S(t - A) in SP(N + lk)] (35) 
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The next theorem characterizes the occupancy statistics of the aggregate states of 
a network with population size constraints and relates them to normalization con- 
stants of  networks which are identical to the given network except that their chains 
are closed (to be referred to as equivalent closed networks). 

THEOREM 

(i) The equilibrium aggregate state probabilities are given by 

a(N) 
P(N) -- --G--- G(a, N) for  N in V, (36) 

where a(N) was defined in eq. (28), G(a, N) is the normalization constant o f  an 
equivalent closed network with population vector N and scaling factors OZk = ?~lk, 
k = 1, 2 . . . .  , K, given by eqs. (23) and (24), and 

G =  ~,, a(N)G(a, N). (37) 
N m  V 

(ii) I f  N and N + Is are in V with transitions permitted between them, then the 
conditional throughput rate is given by 

G(a, N) 
T~(N + Is) - G(~, N + lk)' (38) 

and P(N) satisfies the chain local balance equation, 

P(N)ys(N) = P(N + Is)T~(N + lk). (39) 

PROOF. To show part (i) of the theorem, consider the improper aggregate state 
probability, 

¢r(N) ffi X 1-I*(S) = a(N) Y, II(S). 
S in..9° (N) S m.9'(N) 

Since FI(S) is the (improper) product-form solution of a dosed network [1] with 
scaling factors ak = Alk, k = 1, 2 . . . . .  K, and 6Q(N) is the set of feasible network 
states with population vector N, we have 

~r(N) -- a(N)G(a, N) for N in V. 

Normalizing these improper probabilities to sum to one, eqs. (36) and (37) immedi- 
ately follow. 

To show eq. (38) in part (ii) of  the theorem, we rewrite eq. (35) as 

T~(N + lk) = lim 1 e [ s ( t  - A) in 5a(N + ls) and S( t )  in SO(N)] 

Taking the limit ~ --> 0 and multiplying both numerator and demoninator by G, we 
have 

T~(N + lk) 

= a(N + l~) Y, o m ~  E~m~N~ XS+°m~+° II(s+°)Rm(S+~ °-o Sm)[l -- E ~ m ~ p ~ ]  

where 

~r(N + lk) 

~r(N + lk) = a(N + lk)G(a, N). 
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Cancel the term a(N + lk) in both the numerator and denominator and note that the 
expression in the numerator, 

E E II(S+~)R~(S +~ --, S~), 
S m 5,~ (N)  S + c  m . q  "+c 

divided by G(a, N + ID, is by definition equal to the throughput rate of class-c 
customers in an equivalent closed network with population vector N + lk and scaling 
factors a, which is 

v~G(a, N) 
To(N + lk) -- 

G(a, N + lk)" 

We then have 

r t  (N + lh) = Tc(N + 1~) [1 - ~ p~d] 
c m R C ( k )  d m R C ( k )  

2 C , ( a , N + l k )  V~ 1 -  Y. pod 
c i n  R e ( k )  d m  R e ( h i  

G(a, N) 
G(a, N + lk)' 

which is eq. (38) in which we have made use of the identity in (32). 
Equation (39) is a consequence of eqs. (28), (36), and (38). It can also be shown by 

summing the chain local balance equation (34) over S in ~(N) and recognizing that 
the resulting equation is 

GP(N)yk(N) * --- GTk (N + 1DP(N + 1D. [] 

We can interpret eq. (39) as a chain local balance equation satisfied by P(N), since 
it equates the flow out of the aggregate state ~(N) due to chain-k arrivals to the 
flows into ~(N) due to chain-k departures. 

Let us relate the conditional throughput rate in eq. (38) to previous results. Recall 
that the throughput rate of a closed network with population vector N + lh is defined 
to be the throughput rate of service center 1, which is arbitrarily chosen. It is given 
by 

G(a, N) 
Tk(N + ID ffi ak 

G(a, N + 1D' 

where ak is equal to the relative arrival rate ?qk of chain-k customers to center 1. The 
throughput rate of chain-k customers at service center m is given by 
(~,,~h/~,lh)Tk(N + 10. 

Consider chain k which permits external arrivals and departures. Note that h ~  
given by eqs. (23) and (24) can be interpreted as the mean number of  visits by a 
chain-k customer to service center m between successive visits to a service center 
outside the network introduced to act as the source and sink of chain-k customers. 
For an "open" chain it is physically meaningful to define its throughput rate to be 
that of its source/sink center. With the set of relative arrival rates defined in eqs. (23) 
and (24), the relative arrival rate to the source/sink center is unity. Hence 

1 
Tt (N + Ik) = ~ Tk(N + I D, 

which is eq. (38). 
We make the following additional observations. 
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FIG. 6l An example of a two-chain net- 
work with population size constraints. 
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COROLLARY 

(0 The equilibrium aggregate state probabilities are the same as the equilibrium state 
probabilities of  a birth-death process with state space V, birth rates ~,(N), and death 
rates T~ (N + lk) for N and N + 14 in V. 

(it) The equilibrium aggregate state probabilities are independent o f f  easible transitions 
in V imposed by the loss and trigger mechanisms. 

Part (ii) of  the corollary is obvious from Lemma 2. It also implies that P(S) is 
independent  of  feasible transitions in V. It does, however, depend upon the set V 
through the normalization constant G. 

AN EXAMPLE. Consider a network with two chains. The set V of  feasible 
population vectors consists o f ( l ,  1), (2, 1), (1, 2), and (2, 2). Type-2 arrival processes 
are assumed. The feasible transitions in V are shown in Figure 6. 

Instead of  applying eq. (36), we shall solve for P(N~, N2) directly using the local 
balance eq. (39), from which we get the relationships ~, 

Xl(1) 1), 
P(2, 1) -- T~(2, 1) P(I '  

P(2, 2) = A2(I) 1), 
T2(2, 2) P(2, 

~1(1) 
P(2, 2) = T1(2, 2) P(I '  2). 

Letting P(1, 1) = C and solving for the others in terms of  C, we get 

P0, I)= C, 

P(2, l)= XI(1) 
7"1(2, 1) C' 

X2(l)~l(1) 
/'(2, 2) -- 7"2(2, 2)T1(2, 1) C' 

7"1(2, 2) A.2(1)A.~(1) 
P(l ,  2) - X~(1) T2(2, 2)T~(2, 1) C" 

For sLmplicity we have omitted the * notatton from T~ and T2. 
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Applying Lemma 2 to the two paths of  increasing sequences of  population vectors 
from (1, 1) to (2, 2), we have 

/"2(1, 2)/'1(2, 2) = T2(2, 2)Tff2, 1). 

We can then rewrite the solution for P(I,  2) as 

P(1, 2) - ),2(1) 
7"2(1, 2~ C" 

The constant C can then be determined from 

P(1, 1) + P(2, 1) + P(1, 2) + P(2, 2) -- 1. 

E V A L U A T I O N  O F  T H E  N O R M A L I Z A T I O N  C O N S T A N T  G .  The normalization constant 
G in eq. (37) is evaluated as a summation over the set V o f  feasible population 
vectors. For open chains without population size constraints the set V is infinite. I f  
the external arrival rates to the open chains are constants, that is, 

Tk(N) = yk, 

then G can be found easily. First, if  all chains in the network are open, then it is well 
known [ 1 ] that 

M 1 
G = II , where pm = X pink. 

m = l  1 - -  pm k 

Second, if some of  the chains in the network are open while the rest are closed, then 
it has been shown [14] that 

G = Gope, • G(N), 

where 
M 1 

Gope.= II 1 po, pO= E pink. 
m =  1 - -  k open 

The normalization constant for the closed chains with population vector N can then 
be evaluated separately with some modifications to account for interactions (if any) 
between open and closed chains at individual service centers. Let 

k closed 

(1) At an IS center, open and closed chains do not interact. No modification is 
necessary in the computation of  G(N) with respect to the IS center. 

(2) At a fixed-rate center the closed-chain traffic intensity should be modified as 
follows in the computation of  G(N): 

p~ 
P ~  l _ p O ,  

to account for the effect of  the open chains on the closed chains at this center. 
(3) At a queue-dependent-service-rate center, the interactions are more complex 

than the above, and the effect of the open-chain traffic intensity pO needs to be 
accounted for by a convolution operation (see [14]). 

I f  the chain arrival rates "/k(N) depend upon the population vector and /o r  the 
network has population size constraints, then G must be evaluated from eq. (37), 
repeated here: 

G = Y~ a(N)G(a, M, N). 
N m  V 
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Note that all normalization constants G(a, M, N) of the equivalent closed networks 
must use the same set of scaling factors, Hence it is likely that no single set of scaling 
factors can be found so that G(a, M, N), N in V, will fit into a given range of floating- 
point numbers. Since we are dealing with a summation of terms, if some terms in the 
sum are too small relative to the others (i.e., underflow occurs), they can be discarded. 
The error introduced in G is negligible if [ V[ SMALLEST << LARGEST, where I VI 
denotes the cardinality of V. 

5. Conclusions 

We have found that previous difficulties with evaluating the normalization constants 
of closed BCMP queuing networks are due to the use of a fixed set of scaling factors. 
Normalization constants G(a, M, N) and G(~, M, N) based upon different scaling 
factors were found to be related very simply by 

G(a, M, N) = ak G(~, M, N). 
k=l 

As a result, in the course of evaluating a set of normalization constants (using any 
computational algorithm) one can repeatedly change the set of scaling factors to 
avoid overflow or underflow problems that might be encountered. Hence normali- 
zation constants for very large population sizes can be obtained with computers 
having just a modest range of floating-point numbers. 

The MVA algorithm of Reiser and Lavenberg [15] bypasses normalization con- 
stants and computes various network performance measures directly. It is sometimes 
desirable to solve a queuing network problem using a hybrid solution method that 
employs more than one computational algorithm, for example, MVA for fixed-rate 
servers and convolution for queue-dependent servers. In this case normalization 
constants are needed and can be computed from the outputs of the MVA algorithm, 
using eq. (13), for example. Dynamic scaling will then be necessary. 

We have also considered BCMP networks with external arrivals, departures, and 
population size constraints. We have shown that the class local balance property 
possessed by the product-form solution implies several interesting properties for 
chains. In particular, external arrivals to a chain and departures from the chain are 
characterized by the M ~ M property. The relationships between normalization 
constants of closed networks and equilibrium aggregate state probabilities of networks 
that permit external arrivals and departures have been examined. We have found 
that the growth behavior of normalization constants can be modeled by a birth-death 
process traversing over the set of population vectors. 

To show that the results presented in this paper (Lemmas 1-4 and the theorem) 
are applicable to networks with any or all three forms of state-dependent service 
rates allowed in BCMP networks, we note that the class local balance equation in eq. 
(31) is valid for all three forms of state-dependent service rates. Note also that 
Lemmas 1 and 2 are based on eq. (12), which may be derived from eq. (31). Lemmas 
3 and 4 and the theorem are all based on eq. (31). 
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