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Abstract 

Packet switching networks with flow controlled 
virtual channels are modeled by closed multi-chain 
queueing networks. The tree convolution algorithm 
for an exact analysis of such models is discussed. 
The algorithm is very efficient when routing chains 
have sparseness and locality properties that are 
typical of communication network models. The ac- 
curacy of an approximate model of equivalent open 
chains was investigated. An optimal routing cri- 
terion for adding a virtual channel (with a window 
size of one) to an existing network is explored. 

i. INTRODUCTION 

The early store-and-forward packet switching 
networks are mostly datagram networks. In these 
networks, each packet carries its own source- 
destination addresses. It is treated as an inde- 
pendent entity with regard to its acceptance into 
the network and subsequent movement through the 
network. The current generation of packet switch- 
ing networks, however, are mostly virtual channel 
networks [ROBE 78]. In these networks, packets are 
associated with logical source-destination connec- 
tions called virtual (or logical) channels. Each 
packet is identified by its virtual channel ID. 
Among other attributes, virtual channels are indi- 
vidually end-to-end flow controlled. Examples of 
end-to-end flow controls are SNA pacing [IBM 75], 
RFNM in ARPANET [OPDE 74] and various window mech- 
anisms [POUZ 73, CERF 74]. All of them work by 
limiting the number of packets that a virtual 
channel can have in transit within the network. 
(This number will be referred to as the virtual 
channel window size.) An important function of 
end-to-end flow controls is the synchronization of 
the data source input rate to the data sink accep- 
tance rate. They also provide, to some extent, a 
form of congestion control capability for the 
network. 

We will+not dwell upon the details and relative 
merits of datagram and virtual channel networks 
[ROBE 78]. Our main interest here is on models for 
network performance analysis and design. Datagram 
networks are modeled as an open queueing network 
given the independence assumption of Kleinrock 
[KLEI 64]. Such a model forms the basis of exten- 
sive studies on the design and analysis of store- 
and-forward packet switching networks [KLEI 64, 
KLEI 76, GERL 77, SCHW 77, GALL 77]. 

* The work was supported by National Science 
Foundation Grant No. ECS78-01803. 

Packet switching networks with flow-controlled 
virtual channels, on the other hand, are modeled as 
a queueing network with closed routing chains; each 
closed chain represents a flow-controlled virtual 
channel and the chain population size is equal to 
the virtual channel window size. Although in prac- 
tice, virtual channel networks are becoming the 
dominant form of networks, available tools for net- 
work analysis and design are still mainly based 
upon the open queueing network model suitable for 
datagram networks. The reason for this situation 
is simple. Open queueing networks have a closed- 
form solution, while only an algorithmic solution 
is available for closed multi-chain queueing net- 
works. Furthermore, the time and space complexity 
of the existing computational algorithms [REIS 75, 
REIS 80] grow exponentially with the number of 
chains (virtual channels) thus rendering closed 
multi-chain network models practically unsolvable 
except with the use of approximate solution tech- 
niques [PENN 75, REIS 79]. 

Summary of this paper 

In Section 2, we shall next describe our 
queueing network model for packet switching net- 
works with flow controlled virtual channels. The 
time and space complexity of existing computational 
algorithms and prior work on approximate solutions 
are briefly reviewed. A computational algorithm 
recently developed by us [LAM 81a], called the tree 
convolution algorithm, is next described in Section 
3. It is a general algorithm for the solution of 
product-form queueing networks. It is very effi- 
cient for networks with many queues and many 
"sparse" routing chains, such as models of communi- 
cation networks. 

Optimization procedures in network design 
require a relatively fast solution technique for 
evaluating perturbations in a traffic pattern. In 
Section 4, the tree convolution algorithm is used 
to examine the accuracy of the approximation of 
closed chains by open chains. Conditions for a 
good approximation are explored. Lastly, in Section 
5, we consider the (flow deviation) routing problem 
of adding a flow-controlled virtual channel with 
window size equal to 1 to an existing network. 

2. THE MODEL AND SOLUTION TECHNIQUES 

The model to be considered follows from dis- 
cussions in [REIS 79, LAM 81b]. The assumptions 
are summarized below: 
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i. Processing delays within packet switching 
nodes are ignored since they are typically 
much smaller than channel delays. This 
assumption can be easily relaxed as done in 
[KLEI 76]. We also assume that packet switch- 
ing nodes have sufficient buffers so that 
blocking due to buffer overflow has negligible 
probability. (The problem of buffer overflow 
was considered in [LAM 76].) 

2. The nodes are connected by uni-directional 
communication channels. Each channel is 
modeled as a FIFO queue with exponentially 
distributed service times. The independence 
assumption of packet transmission time is 
needed [KLEI 64]. 

3. There are K uni-directional virtual channels 
between pairs of nodes. Each virtual channel 
has a source and a sink both of which are also 
modeled as FIFO queues with exponentially dis- 
tributed service times. Packets in the same 
virtual channel follow a fixed route which 
may be chosen probabilistically from a finite 
set of routes between source and sink. 

4. The delay for the return of an end-to-end (ETE) 
acknowledgement from the sink to the source 
indicating receipt of a packet is modeled by 
an independent random variable, the distribu- 
tion of which may be different for different 
virtual channels. ETE acknowledgements are 
typically either piggy-backed in data packets 
or, if sent separately, very short. Thus, 
they consume relatively small amounts of 
buffer and channel resources in the network, 
which may be accounted for separately. Reiser 
considered models which are more general than 
the above; his models, however, can only be 
handled by an approximate analysis [REIS 79]. 

5. The flow control window size of a virtual 
channel is the maximum number of packets that 
it can have in transit within the communica- 
tion network at the same time. Let N k denote 

the window size of virtual channel k, for 
k = I,..., K. The number of available "slots" 
in the window is decremented by i whenever the 
source inputs a packet into the network. When 
the window is full, the data source is quiesced. 
The number of available slots is incremented 
by 1 when an ETE acknowledgement is received 
from the sink. If the window is not full, a 
new packet is generated by source k for input 
into the network at the rate ¥k" The physical 

interpretation of Yk depends upon the loading 

on the virtual channels. For a lightly loaded 
network, yk is the external arrival rate of 

packets to virtual channel k. For a heavily 
loaded network such that the source queue is 
non-empty most of the time, Yk is the reaction 

speed of the data source to a signal (or 
message) from the network interface of the 
virtual channel authorizing new input. (See 
Fig. i.) 
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Fig. i. An illustration of the queueing 
network model. 

In summary, a packet switching network with 
flow controlled virtual channels is modeled by a 
closed multi-chain queueing network. Each closed 
routing chain corresponds to a virtual channel 
with the chain population size equal to the vir- 
tual channel window size. Given the above assump- 
tions, the equilibrium probability distribution of 
queue lengths in the network is given by the 
product-form solution [BASK 75]. Let nmk denote 

the number of chain k customers (packets) at 
server m. Define 

n m = (nml, nm2 ..... nmK) 

and (i) 

= (~l' ~2 .... ~) 
where M is the total number of servers in the 
model. (Note that the ETE acknowledgement delay 
is considered to be a server in the model.) Define 

= (NI, N 2 ..... N K) (2) 

where N k is the population size of chain k in the 

network (window size of virtual channel k). The 
product form solution is 

P (~) 
P(n) = 

Pl (n--l) P2 (~2)'" "PM (~M) (3) 
= for n feasible 

G (N) 

where n is feasible if nmk ~ 0 for all m and k and 

M 
Z n = N, Pm(nm ) is the (improper) equilibrium 

m= 1 1 -- 

probability distribution of queue lengths at ser- 
ver m and G(N) is the normalization constant 
obtained by summing p(n) over all feasible ~. 

Note that Pm is a K-dimensional array indexed 

between O and N, where O is a K-vector of all 
zeros. The convolution of two such functions, say 
Pl and P2' defines a real-valued function, say g2' 

over the same domain, as follows 
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i I i K 

g2(i) = ~ ... Y~ pl(j)p2(i--j) 
Jl=0 JK=0 

for 0 < i < N (4) 

In shorthand notation, (4) will be written as 

g2 = Pl @ P2 = P2 ~ PI" (5) 

We note that G(N) is simply an element of the 
array 

g{l,2 ..... M} = Pl ~ P2 ~ "'" ~ PM" (6) 

The convolution algorithm in [REIS 75] solves for 
G(N) by performing the convolutions in (6) sequen- 
tially as follows 

g{l,2 ..... m} = g{l,2 ..... m-l} ~ Pm 

for m = 2,3 ..... M (7) 

The time requirement to compute the array 
g{l,2 ..... M} and hence G(N) is of the order of 

K (Nk+2) (Nk+l) 
(M- l )  II 

2 
k : l  

while the space requirement is of the order of 
K 

2 ~ (NI+I). Note that both requirements grow 
k=l 

K ~  

exponentially with K. Given that the servers in 
the network have fixed service rates (i.e. 
independent of queue length), the convolution 
operation can be performed much faster than (4) 
by the technique of feedback filtering [REIS 75] ; 
the time and space requirements are then of the 

K K 
order of MK ~ (Nk+l) and ~ (Nk+l) respectively, 

k=l k=l 
which is a substantial improvement, but still 
growing exponentially with K. The MVA algorithm 
of Reiser and Lavenberg [REIS 80] bypasses the 
evaluation of the normalization constant G(N) and 
computes the performance measures of mean queue 
lengths and chain throughputs directly. (It 
avoids a problem of the convolution algorithm, 
namely, the occurrence of overflows/underflows 
[LAM 80].) For fixed-rate servers, its time and 
space requirements are both of the order 

K 
MK ~ (Nk+l) which also grow exponentially with K. 

k=l 

With either the convolution or MVA algorithm 
(or any one of their variants), the time and space 
requirements will be beyond the limits of present 
computers when network models with i0 or more 
virtual channels are considered. Some approximate 
solution techniques have been considered. 
Pennotti and Schwartz [PENN 75] analyzed the model 
of a single flow-controlled virtual channel with 
the traffic of all other virtual channels combined 
and modeled by an open chain. Reiser proposed an 
efficient heuristic solution technique based upon 
the MVA algorithm and reported accuracies in the 
neighborhood of 5% for virtual channel throughputs 
and 10% for virtual channel transit delays. (The 
networks considered have 18 communication channels 
and 42 virtual channels.) [REIS 79]. 

A computational algorithm, called the tree 
convolution algorithm, was recently reported by 
these authors in [LAM 81a]. It is intended for 
the solution of networks in which routing chains 
do not visit all servers (or service centers) in 
the network. In models of communication networks 
and distributed systems, it is often true that 
chains visit only a small fraction of all queues 
in the network (sparseness property). Furthermore, 
chains are often clustered in certain parts of the 
network and their routes are constrained by the 
network topology (locality property). By making 
use of the routing information of chains, the time 
and space requirements of the tree convolution 
algorithm can be made substantially less than 
those of the (sequential) convolution and MVA 
algorithms. The number of routing chains that can 
be handled varies depending upon the extent of 
sparseness and locality present in their routes. 
We have solved many numerical examples with 32-50 
routing chains. In some cases, the solution of 
networks with up to i00 routing chains has been 
found to be possible. 

3. FX<ACT ANALYSIS BY THE TREE CONVOLUTION ALGORITHM 

The tree convolution algorithm provides an 
exact solution of normalization constants and 
performance measures for product-form queueing 
networks. It is based upon two ideas. First, we 
note that the convolution in (6) can be performed 
in any order to obtain g{l,2,...,M}" Specifically, 

in the tree convolution algorithm, the arrays {pm } 

are placed at the leaf nodes of a tree. (See 
Figure 2.) 

~ 0 b ranch  
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Fig. 2. A tree. 

Each node in the tree corresponds to a subset of 
service centers that are descendants of that node. 
To compute the array g{l,2,...,M}' visit all nodes 

in the tree according to some order of tree 
traversal. The root node is visited last. A 
branch node may be visited only after all its sons 
have been visited. When a branch node is visited, 

an array gSUBNET is computed for the node from the 

arrays gSUBNETI and gSUBNET2 of its sons by 

gSUBNET = gSUBMETI ~ gSUBNET2 (8) 

where SUBNET = SUBNETI U SUBNET2. If the node has 
more than two sons, then convolutions are perform- 
ed sequentially one after the other. Finally, 
when the root node is visited, the array 

g{l,2,...,M} is obtained. 

Both the tree convolution algorithm and the 
sequential convolution algorithm require M-I 
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convolutions. In fact, the sequential convolution 
algorithm is just a special case of the tree algo- 
rithm for the tree shown in Figure 3. However, 
substantial time and space savings can be achieved 
by the general tree algorithm by making use of 
the following additional observation. 

3 M-I 

I 2 

Fig. 3. Tree for the sequential 
convolution algorithm. 

Consider routing chain k. Let CENTERS(k) be 
the set of service centers visited by chain k. 
Let SUBNET denote a subset of the M service cen- 
ters. With respect to SUBNET, chain k is said to 
be fully covered if CENTERS(k) c SUBNET; chain k 
is said to be noncovered if the intersection of 
CENTERS(k) and SUBNET is null; otherwise, chain k 
is said to be partially covered. 

Partition the set of K chains into the 
following 3 sets with respect to SUBNET: 

= {klchain k is partially covered by SUBNET} 
pc 

Ofc = {klchain k is fully covered by SUBNET} 

= {kIcha%n k is noncovered by SUBNET} 
nc 

Now make the observation that only those elements 
of gSUBNET corresponding to the following index 

values are needed for further convolutions to 
arrive at G(N), 

{i k = 0,1,2 ..... Nk, k~Opc; i k = Nk, kgOfc; 

i k = o,  k~%c}... 
Let [0[ denote the cardinality of set o. For the 
purpose of computing G(N), it is sufficient to 
store gSUBNET as an array with dimensionality 

P[OcI indexed by i = {ik, kC~ }. Such an array 
--pc pc 

is termed a partially covered array. The amount 
of space needed for a partially covered array is 

H (Nk+l) locations. (Additionally, a small 
kgO 

pc 
amount of space is also needed to store One. The 

time requirement of the convolution in (8) using 
partially covered arrays is shown in [LAM 81a].) 

Given a subset of centers in a network that 
has many centers and sparse routing chains, it is 
highly likely that only a few chains will be par- 
tially covered by the subset. Thus, for queueing 
networks with properties of sparseness and local- 
ity, the time and space savings from the use of 
partially covered arrays instead of K-dimensional 
arrays can be very substantial. 

The actual time and space needed for the tree 
convolution algorithm depend upon the following 
"tree planting" decisions: the tree configuratio~ 
the order of tree traversal and the placement of 
service centers at leaf nodes. The objective of 
tree planting is to minimize the overall space and 
time needed by the algorithm by minimizing the 
numbers of partially covered chains in subnets 
associated with branch nodes in the tree. 

In our current implementation of the tree 
algorithm, we employ a preprocessor to plant the 
tree as well as to calculate the total space and 
time requirements of that tree prior to actually 
performing convolutions. Tree planting algorithms 
are addressed in [LAM 81a, LIEN 81]. 

In addition to substantial space and time 
savings, the tree convolution algorithm has 
several significant advantages over the other 
algorithms. First, the tree of partially covered 
arrays employed by the algorithm provides a very 
flexible data structure for tailoring time-space 
tradeoffs to individual queueing networks in the 
calculation of network performance measures. It 
will also facilitate the solution of very large 
queueing networks with the help of storage manage- 
ment techniques or by means of parallel computa- 
tion on a multi-processor machine. Furthermore, 
the computation of the marginal distribution of 
queue lengths in a service center is obtained 
with (log2M)-i convolutions instead of M-1 convo- 

lutions needed by a sequential convolution algori- 
thm, where M is the total number of service 
centers and a balanced binary tree is assumed. 

An illustration of the time and space savings 
of the tree convolution algorithm for an exact 
solution of a communication network model with 64 
queues and 32 closed routing chains (flow-control- 
led virtual channels) is shown in Table 1. An 
analysis of the expected time and space require- 
ments of the algorithm as a function of the 
sparseness of routing chains is presented in 
[hAM 81e]. 

4. APPROXIMATE MODELING WITH EQUIVALENT OPEN CHAINS 

With the tree convolution algorithm, communi- 
cation network models with many queues and a 
relatively large number of sparse routing chains 
can be solved. (Chains are said to be sparse if 
the average number of queues visited by a chain 
is much smaller than the number of queues in the 
network.) Both throughputs and mean transit 
delays for individual chains can be calculated 
exactly with time and space requirements within 
the limits of present computers. However, these 
time and space requriements are still fairly large. 
Hence, the tree algorithm is not very practical 
for use within optimization procedures for network 
design or routing assignment. Approximate models 
are needed for such purposes, The tree convolu- 
tion algorithm, however, facilitates checking the 
accuracy of such approximate models. An exact 
analysis may be performed using the tree convolu- 
tion algorithm only at various "checkpoints" of 
the optimization procedures instead of at every 
perturbation step. 
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An approximate model that has been considered 
by Pennotti and Schwartz [PENN 75] as well as 
Gerla and Nilsson [GERL 80] is that of a queueing 
network with open chains; the throughput of each 
open chain is made equal to that of the correspon- 
ding closed chain, which can be calculated exact- 
ly using the tree convolution algorithm. The 
question we address next is: how good is such an 
approximation? We shall measure the accuracy of 
the approximate model by comparing the mean net- 
work transit delays for individual chains given 
by the tree convolution algorithm and delay es- 
timates calculated using the M/M/I delay formula 
for the approximate model of open chains. 

One set of such results is shown in Table 2. 
The network model considered has 64 communication 
channels and 32 virtual channels. The source 
arrival rate is assumed to be y = 1 packet/second 
for all chains. The service rate for each . 
communication channel is assumed to be ~ = i0 
packets/second. The mean ETE acknowledgement delay 

for virtual channel k is assumed to be hk/~, where 

h k is the number of channels in the route of 

virtual channel k. The virtual channel window 
size is N k = 3 for all k. The throughputs, mean 

delays and delay estimates of the 32 virtual 
channels are shown in Table 2. The average util- 
ization of the 64 communication channels is 0.185, 
with a maximum utilization of 0.281 and a minimum 
utilization of 0.082 and a standard deviation of 
0.066. (The tree convolution algorithm employed 
an unbalanced binary tree and had a space re- 
quirement of 2048 array locations and a time 
requirement of 66,298 operations (multiplica- 
tions and divisions).) 

The percentage errors in the mean delay es- 
timates are quite small in this case. We next 
proceed to investigate the effect of varying the 
relative source and channel speeds y and ~. We 
vary y from i0 to .5 while keeping ~ and all the 
other parameters constant. The results are shown 
in Table 3. Note that the channel utilizations 
are highest at y = i0 and lowest at y = 0.5. The 
accuracy of the approximate model is very poor for 
y = i0 (same value as ~) and improves as y decrea- 
ses. There are two possible reasons for this be- 
havior. First, when the utilization of a M/M/I 
queue is high, its delay distribution has a long 
tail, which gives rise to a poor estimate of the 
delay in a closed network where the queue lengths 
are bounded. Second, when y = ~, the bottleneck 
in a routing chain is at one of the communication 
channels within the network. On the other hand, 
when ~ is much smaller than y, the source is the 
bottleneck in a routing chain and it behaves like 
a Poisson source at rate y much of the time (i.e. 
like an open chain). 

We next investigate the effect of varying 
the virtual channel window size. Window sizes of 
2, 3 and 4 are considered. (See Table 4.) All 
other parameters remain the same as for Table 2. 
Note that as the window size increases, the 
accuracy of the approximate model improves, 
despite increases in the channel utilizations. 
Our results complement the results of Lavenberg in 
[LAVE 80a] for a somewhat different approximation 

technique. He considered only one or two routing 
chains but with hundreds of customers in each 
chain. We have considered a large number of 
chains but only a few customers in each chain. 

Finally, we consider the effect of poor route 
assignments. We took the same network considered 
above and rerouted some of the chains to give rise 
to a bigger variance in the chain utilizations. 
Results for y = 1 or 2 and a window size of 2 or 3 
are shown in Table 5. In these cases, we note 
that the accuracy of the approximate model suffers 
from the new route assignment, in particular for 
the cases of y = 2. 

An important observation from these numerical 
results is that in almost all cases considered 
the mean delay estimates are larger than the 
actual mean delays. (The only exception was 
observed in the case of y = ~ that gives rise to 
errors of a few hundred percent, thus rendering 
the approximate model meaningless.) There are 
two reasons for the approximate model to over- 
estimate mean delays. First, delay estimates are 
obtained from M/M/I queue delay distributions 
that have long tails. Second, the mean-value 
analysis shows that the mean delay encountered by 
a closed chain customer is determined by the mean 
queue lengths of a network with that customer 
removed [REIS 80]. The approximate model as des- 
cribed above does not account for this behavior. 

In light of the above observation and the 
results in Table 5, we see that the impact of 
bottlenecks on chain delays in the approximate 
model of open chains is exaggerated compared to 
that in the original model of closed chains. This 
behavior should be kept in mind when the approxi- 
mate model is used for route optimization. 

5. AN OPTIMAL ROUTING CRITERION 

The Flow Deviation Method [FRAT 73, GERL 73, 
KLEI 76] provides a distance metric for selecting 
the shortest path for the addition of an infini- 
tesimal amount of traffic into a network. It was 
shown that if the distance metric of a communica- 
tion channel is chosen to be the derivative of 
the mean network transit delay T with respect to 
the flow in the channel, then the infinitesimal 
change in delay AT caused by the added traffic is 
minimized. 

We next pose a similar problem for networks 
with flow-controlled virtual channels. We shall 
consider the perturbation due to the addition of 
a new virtual channel with a window size of one 
to an existing network (instead of an infinitesi- 
mal amount of flow). 

It is obvious that the mean network transit 
delay T may be calculated using the tree convolu- 
tion algorithm for the network both with and 
without the additional virtual channel (given a 
specific route for it). However, to determine 
the optimal route would require numerous appli- 
cations of the tree convolution algorithm and 
would be very expensive in terms of computational 
time. 

Our approach is to consider a model of the 
network with equivalent open chains representing 
the existing flow-controlled virtual channels 
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(such as described in Section 4). The new virtual 
channel to be added is represented by a closed 
chain. 

Let there be M c queues in the model represen- 
ting communication channels. The aggregate arri- 
val rate of the open chain, representing existing 
traffic in the network, to channel m is denoted by 
A packets/second. The service rate of channel m 
m 

is uC packets/second where I/U is the average 
m 

length of a packet in bits and C is the channel 
m 

speed in bits/second. Define 

0 m = Am/(UCm). 

The total throughput rate at which open chain pack- 
ets leave (or enter) the network is Yo packets/sec- 

ond. The closed chain representing the virtual 
channel being added has a population size of one 
(i.e. window size is one), a source rate of y pack- 
ets/second and a mean ETE acknowledgement delay of 
T seconds. The source and sink nodes of the vir- 
tual channel are known but its route is to be 
determined. 

Let Q denote the set of communication channels 
constituting a route chosen for the new virtual 
channel. From the arrival theorem [SEVC 79, LAVE 
80b], the mean delay encountered by the new virtual 
channel's packet at channel mgQ is i/(~Cm-Am). The 

mean network transit delay of the new virtual 
channel is 

T = Z i 
C 

m~Q uC m - A m 

Applying Little's formula [LITT 61], the through- 
put rate of the new virtual channel is 

1 
Yc = (l/y) + T + T (9) 

C 

Let T be the mean network transit delay and n be 
o O 

the mean number of packets in the network before 
the addition of the new virtual channel. The in- 
crease in the mean delay due to the new virtual 
channel is 

Z An + n + Yc Tc 
AT = meQ m,o o 

- T (i0) 
Yo + Yc o 

where A~ is the increase in the mean queue 
• m,o 

length of the open chain at channel m due to the 
new virtual channel, and is given by [PENN 75] 

A 
A~ m ~ (Ii) 

m,o uC m - A m,c 
m 

where n is the mean number of new packets (be- 
m,c 

longing to the added virtual channel) at channel m. 
An application of Little's formula yields 

n =Yc/(~C m - %m ). (12) m~c 

Finally, we have 

Am Y c 

msQ (~C m - A )2 + ¥c Tc - Yc To 
AT = m 

Yo + Yc 

E m )2 + i 
meQ[(UC - % - % 

] T 
m m UCm m O 

= 

(yo/Ye) + i 

~C m 

meQ (uC m - Xm )2 - To 
= 

1 1 
¥o  ( -  ¥ + T + - A~) + 1 (13) 

meQ HCm 

To minimize AT, the route should be chosen to try 
to minimize the numerator and to maximize the de- 
nominator if possible. Minimizing the numerator 
implies the choice of a shortest path from source 
to destination using UCm/(UC m - Im )2 as the dis- 

tance metric. Note that this is essentially the 
same as the distance metric of 

C 

(C m _mfm)2 where fm = Am/U 

given by the Flow Deviation method. 

Maximizing the denominator, on the other hand, 
implies that the longest path should be chosen with 
I/(UC - A ) as the distance metric. 

m m 
It seems reasonable to impose a maximum delay 

bound T on the mean delay of the new virtual 
max 

channel to be added. If such a bound is desired, 
then the optimal routing problem can be posed as 
follows: 

Min Z ~Cm 

Q mgQ (~C m - Am)2 (14) 

subject to, 

l i 
meQ ~C m - A m < Tmax. (15) 

A straightforward approach to solve the above prob- 

lem is to find the i th shortest path using 
UC 

mAm)2 as a metric for i = 1 2, and select 
(uC m . . . . .  

the first one that meets the delay bound of (15). 

6. CONCLUSIONS 

Packet switching networks with flow-controlled 
virtual channels are modeled as queueing networks 
with closed routing chains. We discussed the com- 
putational difficulties of such models. The tree 
convolution algorithm recently developed by these 
authors [LAM 81a] was introduced for the exact 
solution of such models with a large number of 
queues and chains. The algorithm derives its ef- 
ficiency from exploiting the sparseness and local- 
ity properties of routes typically present in 
communication networks. 

An approximate model of equivalent open 
chains was examined and found to be applicable 
given certain conditions are met. The problem of 
adding a new virtual channel with a window size of 
one to an existing network was considered. The 
optimal routing criterion was found to be akin to 
the criterion given by the Flow Deviation Method. 
Additional work on this problem is being done. 
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Time 
(multiplications 
and divisions) 

Space 
(array locations) 

Tree 
convolution 

1,065,008 

1,376 

Convolution 

3.78 x 1022 

1.84 x 1019 

MVA 

7.62 x 1022 

9.89 x 1021 
(upper bound) 

Table i. Time and space requirements for a network 
example with 64 queues and 32 closed chains. 

chain 

1 
2 
3 
4 
5 
b 
7 
8 
9 

i0  
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

th roughput  r a t e  mean delag delag es t imate  

9.20e-01 6.02e-01 6. 15e-01 
9.20e-01 6.02e-01 b. 15e-01 
9. 17e-01 6.25e-01 6.41e-01 
9. 17e-01 &25e-01  6.41e-01 
9.20e-01 6.03e-01 6. 17e-01 
9.20e-01 6.03e-01 6. 17e-01 
9.47e-01 4.96e-01 5.07e-01 
9.47e-01 4.96e-01 5.07e-01 
9.41e-01 5.3&e-01 5.49e-01 
9.41e-01 5.36e-01 5.49e-01 
9.45e-01 5.06e-01 5. 18e-01 
9.45e-01 5.0&e-01 5. 18e-01 
8. 18e-01 9.91e-01 1.02e+00 
8. 18e-01 9.91e-01 1.02e+00 
9.86e-01 2.73e-01 2.78e-01 
9.86e-01 2.73e-01 2.78e-01 
9.88e-01 2.44e-01 2.47e-01 
9.88e-01 2.44e-01 2.47e-01 
9.89e-01 2.33e-01 2.35e-01 
9.89e-01 2.33e-01 2 3 5 e - 0 1  
9.89e-01 2.32e-01 2.35e-01 
9.89e-01 2.32e-01 2.35e-01 
9.97e-01 1.23e-01 1.24e-01 
9.97e-01 1.23e-01 1.24e-01 
9. 17e-01 6,25e-01 6.40e-01 
9. 17e-01 6.25e-01 &.4Oe-01 
9.70e-01 3.79e-01 3.86e-01 
9.70e-01 3.79e-01 3.86e-01 
8.56e-01 8.46e-01 8.68e-01 
8.56e-01 8.4&e-01 8.68e-01 
8.84e-01 7.57e-01 7.78e-01 
8.84e-01 7.57e-01 7.78e-01 

e ~ r o r  

2 . 2 8 e + 0 0  
2 . 2 8 e + 0 0  
2 . 4 9 e + 0 0  
2 . 4 9 e + 0 0  
2 . 2 7 e + 0 0  
2 . 2 7 e + 0 0  
2.11e+00 
2.11e+00 
2. 57e+00 
2. 57e+00 
2.29e+00 
2.29e+00 
2.85e+00 
2.85e+00 
1.74e+00 
1/ 74e+00 
1.21e+00 
1.21e+00 
1.01e+00 
1.01e+00 
1.03e+00 
1.03e+00 
7.36e-01 
7.37e-01 
2.50e+00 
2. 50e+O0 
1.84e+00 
1.84e+00 
2.60e+00 
2.60e+00 
2.73e+00 
2.73e+00 

Er ro r s  in delag es t imates  
Average : 

Var iance : 
Standard D e v i a t i o n  : 

2.02e+00 
4.32e-01 
6.57e-01 

Table 2. Mean delays and delay estimates for y = i 
and a window size of 3. 
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utilizations of communication 
channels 

Case 
of 

mean max. min. st. dev. 

y = i0 0.466 0.808 0.134 0.188 

y = 2 0.299 0.469 0.112 0.107 

y = i 0.185 0.281 0.082 0.066 

y = 2/3 0.130 0.195 0.061 0.047 

y = 1/2 0.i00 0.148 0.048 0.036 

Table 3. 

% errors in delay estimates 

• mean max. min. st. dev. 

40.3 127 15.3 26.3 

7.34 9.86 4.74 1.37 

2.02 2.85 0.74 0.66 

0.80 1.39 0.22 0.34 

0.40 0.77 0.09 0.19 

Channel utilizations and errors in chain 
delays for different values of y. 

Case 
of 

window size 
= 2 

window size 
= 3 

window size 
= 4 

mean 

0.159 

0.185 

0.197 

utilizations of communication 
channels 

max. 

0.248 

0.281 

0.294 

min. 

0.064 

0.082 

0.092 

st. dev. 

0.057 

0.066 

0.070 

% errors in delay estimates 

mean max. min. st. dev. 

4.02 4.73 2.94 0.46 

2.02 2.85 

0.88 1.72 

Table 4. Channel utilizations and errors in chain 
delays for different window sizes. 

0.74 0.66 

0.18 0.45 
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Case 
of 

y = i and 

window size = 2 

y = 1 and 
window size = 3 

y = 2 and 
window size = 2 

y = 2 and 
window size = 3 

utilizations of communication 
channels 

mean 

0.159 

0.185 

0.236 

0.297 

max. 

0.321 

0.281 

0.493 

0.596 

min. 

0.064 

0.082 

0.082 

0.ii 

st. dev. 

0.064 

0.074 

0.098 

0.12 

% errors in delay estimates 

mean max. 

4.16 5.03 

2.11 2.96 

9.75 16.8 

8.17 13.6 

min. st. dev. 

3.35 0.43 

1.01 0.60 

7.02 2.35 

5.30 2.07 

Table 5. Channel utilizations and errors in chain delays 
for a network with some poor routes. 
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