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Abstract 

Packet switching networks with flow-controlled 
virtual channels are naturally modeled as queueing 
networks with closed chains. Available network de- 
sign and analysis techniques, however, are mostly 
based upon an open-chain queueing network model. 
In this paper, we first examine the traffic condi- 
tions under which an open-chain model accurately 
predicts the mean end-to-end delays of a closed- 
chain model having the same chain throughputs. We 
next consider the problem of optimally routing a 
small amount of incremental traffic corresponding 
to the addition of a new virtual channel (with a 
window size of one) to a network. We model the 
new virtual channel as a closed chain. Existing 
flows in the network are modeled as open chains. 
An optimal routing algorithm is then presented. 
The algorithm solves a constrained optimization 
problem that is a compromise between problems of 
unconstrained individual-optimization and uncon- 
strained network-optimization. 

i. INTRODUCTION 

The early store-and-forward packet switching 
networks are mostly datagram networks. In these 
networks, each packet carries its own source- 
destination addresses. It is treated as an inde- 
pendent entity with regard to its acceptance into 
the network and subsequent movement through the 
network. The current generation of packet switch- 
ing networks, however, are mostly virtual channel 
networks [ROBE 78]. In these networks, packets 
are associated with logical source-destination 
connections called virtual (or logical) channels. 
Each packet is identified by its virtual channel 
ID. Among other attributes, virtual channels are 
individually end-to-end flow-controlled. Examples 
of flow controls are SNA pacing [IBM 75], RFNM in 
ARPANET [OPDE 74] and various window mechanisms 
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[POUZ 73, CERF 74]. All of them work by limiting 
the number of packets that a virtual channel can 
have in transit within the network. (This number 
will be referred to as the virtual channel window 
size.) An important function of end-to-end flow 
controls is the synchronization of the data source 
input rate to the data sink acceptance rate. They 
also provide, to some extent, a form of congestion 
control capability for the network. 

We will not dwell upon the details and rela- 
tive merits of datagram and virtual channel net- 
works [ROBE 78]. Our main interest here is on 
models for network performance analysis and design. 
Datagram networks are naturally modeled as open- 
chain queueing networks given the independence 
assumption of Kleinrock [KLEI 64]. Such a model 
forms the basis of extensive studies on the design 
and analysis of store-and-forward packet switching 
networks [KLEI64, KLEI 76, GERL77, SCHW77, GALL 77]. 

Packet switching networks with flow-controlled 
virtual channels, on the other hand, are naturally 
modeled as queueing networks with closed routing 
chains [BASK 75]; each closed chain represents a 
flow-controlled virtual channel and the chain 
population size is equal to the virtual channel 
window size [REIS 79, LAM 82]. In practice, 
virtual channel net~works are becoming the dominant 
form of networks. However, available tools for 
network analysis and design are still mainly based 
upon open-chain queueing network models. A 
serious drawback of closed-chain models is the 
large computational time and space needed to cal- 
culate network performance measures (chain 
throughputs and mean end-to-end delays). Some 
progress has been made recently to reduce these 
computational requirements and the solution of 
networks with many virtual channels is feasible 
[LAM 81a, LAM 81b]. Nevertheless, the computation- 
al requriements remain substantially more than 
those of open-chain models. 

We propose an approach to incorporate the 
behavior of flow-controlled virtual channels in 
network design and optimization tools using a 
combination of both closed-chain and open-chain 
models. A closed-chain model is first solved to 
provide chain throughputs and mean end-to-end 
delays. Given chain throughputs, an open-chain 
model is then employed for a sequence of inter- 
mediate optimization steps (such as, for example, 
the routing of incremental flows to be considered 
later on in this paper). To avoid the accumulation 
of errors, the closed-chain model is applied at 
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various checkpoints of the optimization procedure 
to re-calculate chain throughputs and mean delays. 

Two related problems are investigated in this 
paper. First, we examine the traffic conditions 
under which an open-chain model accurately pre- 
dicts the mean end-to-end delays of a closed-chain 
model having the same chain throughputs. We found 
that in general the approximation is fairly 
accurate when communication channels in the net- 
work are not heavily utilized. Second, we consi- 
der the problem of optimally routing a small 
amount of incremental traffic corresponding to the 
addition of a new virtual channel (with a window 
size of one) to a network. We model the new vir- 
tual channel as a closed chain. Existing flows, 
on the other hand, are modeled as open chains. An 
optimal routing algorithm to solve a constrained 
optimization problem is presented. 

Our optimization problem is similar to the 
classical flow deviation problem [FRAT 73, GERL 73, 
KLEI 76, GALL 77] in that the objective is to min- 
imize the impact of a small amount of incremental 
flow on the mean transit delay of all packets in 
the network. But unlike flow deviation the incre- 
mental flow in our model is not infinitesimal, and 
our optimization is constrained by a bound on the 
mean end-to-end delay of the new virtual channel. 

The balance of this paper is organized as 
follows. In Section 2, open-chain and closed-chain 
queueing network models are described. The accuracy 
of approximating a closed-chain model by an open- 
chain model is then examined. In Section 3, the 
optimal routing problem is formulated. In Section 
4, an optimal routing algorithm is presented. 

2. OPEN-CHAIN AND CLOSED-CHAIN MODELS 

In a packet switching network, communication 
channels and nodal processors can be modeled as FIFO 
queues with exponentially distributed service times 
given the independence assumption of Kleinrock 
[KLEI 64]. We shall assume that the packet switch- 
ing network has sufficient buffers so that blocking 
due to buffer overflow has negligible probability. 
(The problem of buffer requirements and loss prob- 
abilities have been considered in [LAM 76].) 

Suppose that there are K uni-directional vir- 
tual channels between pairs of nodes. Packets in 
the same virtual channel follow a fixed route 
(which may be chosen probabilistically from a 
finite set of routes between source and sink). 

Open-chain model 

A model in which each virtual channel is 
represented as an open chain assumes that the 
external packet arrivals to the source node of a 
virtual channel constitute a Poisson process at a 
known constant rate. (An open-chain model also 
assumes that the number of packets belonging to a 
virtual channel that are travelling within the 
network is not limited.) Let the rate of all 
packet arrivals to server m be % packets/second. 

m 
The work rate of server m is C bits/second and 

m 
the average length of a packet is i/~ bits. The 
traffic intensity of server m is defined to be 

= ~m/(~Cm). Given that Pm < I for all m, the Pm 

throughput of each virtual channel is the same as 
its external input rate and the mean end-to-end 
delay of its packets is the sum of mean delays of 

the servers along its route. The mean delay of 
server m is given by the M/M/I mean delay formula 
and is equal to i/(uC m - %m ). Thus, both the 

throughputs and mean end-to-end delays of virtual 
channels can be obtained very easily for an open- 
chain model. 

Closed-chain model 

The flow-control window size of a virtual 
channel limits the maximum number of packets that 
it can have in transit within the communication 
network at the same time. Let there be K virtual 
channels and N k denote the window size of virtual 

channel k, for k = 1,2,...,K. We model the 
handling of external arrivals before they are 
admitted into the network by an additional FIFO 
server that works at a rate of Yk packets/second. 

(See Figure i.) If the number of packets in 
transit within a virtual channel is equal to its 
window size, then the source server is "blocked." 
A blocked source server is later unblocked when an 
end-to-end acknowledgment returns from the sink 
indicating receipt of a packet. It is assumed 
that the queue of external arrivals waiting to 
enter the network is never empty. Thus, the 
actual input rate of virtual channel k is deter- 
mined by Yk and the fraction of time its source 

server is unblocked. 

The blocking behavior is naturally modeled in 
a queueing network by a closed chain with a fixed 
number of circulating customers. Each customer 
corresponds to an "access token." Initially, N k 

tokens are placed at the source server of virtual 
channel k. Each packet admitted into the network 
carries a token with it. When there is no more 
token at the source server, it is blocked. A 
packet arriving at the sink node of the virtual 
channel releases its token which is then carried 
back by the end-to-end acknowledgment to the 
source server to be reused again. Thus, the N k 

circulating tokens of a virtual channel correspond 
to N k circulating customers of a closed chain. 

We model the delay incurred by the return of 
an end-to-end acknowledgment from the sink to the 
source by an infinite-server (IS) service center 
[REIS 79, LAM 82]; the distribution of such random 
delays may be different for different virtual 
channels. It is not really important to model the 
route of the acknowledgments explicitly because 
these acknowledgements typically either are piggy- 
backed in data packets, or if sent separately, are 
very short. Thus, they consume relatively small 
amounts of buffer and channel resources in the 
network, which may be accounted for separately in 
a straightforward manner. 

To solve for the performance measures (virtual 
channel throughputs and mean end-to-end delays) of 
a closed-chain model, the computational time and 
space requirements of both the (sequential) convo- 
lution algorithm [REIS 75] and the MVA algorithm 
[REIS 80] grow exponentially with K; specifically, 

K 
they are proportional to ~ (Nk+l). These 

k=l 
requirements are thus beyond the limits of present 
computers when network models with I0 or more 
virtual channels are considered. 
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The tree convolution algorithm, developed by 
these authors [LAM 81a, LAM 81b], is intended for 
the solution of networks in which chains do not 
visit all servers in the network. In models of 
communication networks and distributed systems, it 
is often true that chains visit only a small 
fraction of all queues in the network (sparseness 
property). Furthermore, chains are often clustered 
in certain parts of the network and their routes 
are constrained by the network topology (locality 
property). By making use of the routing informa- 
tion of chains, the time and space requirements 
of the tree convolution algorithm can be made 
substantially less than those of the (sequential) 
convolution and MVA algorithms. The number of 
closed chains that can be handled varies depending 
upon the extent of sparseness and locality present 
in their routes. We have solved numerically many 
network examples with 32-50 routing chains. In 
some extreme cases, the solution of networks with 
up to i00 routing chains has been found to be 
possible [LIEN 81]. 

Network design_using both open~chai ~ and closed- 
chain models 

The large computational requirements of 
closed-chain models make them unattractive for use 
in network design procedures. Both Pennotti and 
Schwartz [PENN 75] and Gerla and Nilsson [GERL 80] 
suggested the use of open chains to approximately 
model flow-controlled virtual channels. The 
difficulty encountered is that the throughputs of 
the flow-controlled virtual channels needed as 
input parameters of an open-chain model are not 
known. We propose to use a combination of both 
open-chain and closed-chain models in design pro- 
cedures for networks with flow-controlled virtual 
channels. A closed-chain model is first employed 
and chain throughputs and mean delays are computed 
exactly using the tree convolution algorithm. An 
open-chain model with the same chain throughputs 
is then employed for a sequence of intermediate 
optimization steps in the network design procedure 
(e.g., the routing of incremental flows to be 
studied below). To avoid the accumulation of 
errors, the closed-chain model is employed at 
various checkpoints of the design procedure to 
recompute chain throughputs and mean delays. 

Traffic conditions under which an open-chain model 
is applicable 

With the tree convolution algorithm we can 
solve models with many closed chains. Suppose that 
the throughputs of flow-controlled virtual channels 
in a network are first computed using a closed- 
chain model and an open-chain model with the same 
throughputs is specified. The mean end-to-end 
delays predicted by the open-chain model can then 
be compared with those given by the closed-chain 
model. The results of such a comparative study for 
a network example with 64 communication channels 
and 32 virtual channels are next presented. 

In the network example, the source server 
work-rate is assumed to be y = 1 packet/second for 
all chains. The service rate of each communication 
channel is assumed to be ~C = i0 packets/second. 
The mean end-to-end acknowledgment delay for virtual 
channel k is assumed to be hk/~C , where h k is the 

number of communication channels in the route of 
virtual channel k. The virtual channel window 

size is N k = 3 for all k. The average utilization 

of the 64 communication channels is 0.185, with a 
maximum utilization ~f 0.281 and a minimum utili- 
zation of 0.082 and a standard deviation of 0.066. 
Table 1 shows the throughputs, mean delays and 
delay estimates of the 32 virtual channels. The 
mean delays are given by the closed-chain model. 
The delay estimates are mean delays given by the 
open-chain model. The percentage errors in the 
delay estimates are quite small in this case. 

We next proceed to investigate the effect of 
varying the relative source and channel speeds, ¥ 
and ~C. We vary y from i0 to 0.5 while keeping ~C 
and all the other parameters constant. The 
results are shown in Table 2. Note that the 
channel utilizations are highest at ¥ = i0 and 
lowest at y = 0.5. The accuracy of the open-chain 
model is very poor for y = i0 (same value as ~C) 
and improves as y decreases. 

Observe that when y << ~C, the source server 
is the "bottleneck" in each routing chain; thus, 
it behaves like a Poisson source at rate y much of 
the time (i.e., like an open chain). However, 
when ¥ approached ~C in magnitude, the open-chain 
model gave very large errors. This behavior may 
be explained as follows. When y is almost the 
same as ~C, the bottleneck in each routing chain 
is at one of the communication channels within the 
network. Note that when the utilization of an 
M/M/i queue is high, its delay distribution has a 
long tail, which gives rise to a poor estimate of 
the delay in a closed-chain model where the queue 
lengths are bounded. 

The effect of varying the virtual channel 
window size was also investigated. Window sizes 
of 2, 3 and 4 were considered. It was found that 
as the window size was increased, the accuracy of 
the open-chain model improved, despite increases 
in the channel utilizations. 

We also considered the effect of routing. In 
general, we found that the accuracy of the open- 
chain model suffers from the presence of highly 
utilized servers within the packet switching net- 
work, either due to poor routing or due to a 
high-level of input traffic (large y). 

It was also found that in almost all cases 
considered, the delay estimates of the open-chain 
model were larger than the mean delays of the 
closed-chain model. There are two possible 
reasons for the overestimates. First, the delay 
estimates are obtained from M/M/i delay distribu- 
tions that have long tails. Second, the mean-value 
analysis shows that the mean delay encountered by 
a closed-chain customer is determined by the mean 
queue lengths of a network with that customer 
removed [REIS 80]. The open-chain model as des- 
cribed above does not account for this behavior. 
A consequence of the overestimation of delays is 
that the impact of bottlenecks on chain delays in 
an open-chain model is exaggerated compared to that 
in a closed-chain model. This means that if an 
open-chain model is used for the routing of 
incremental flows (see the following section), 
bottlenecks will be avoided more "rigorously" 
than if a closed-chain model is employed. 
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3. OPTIMAL ROUTING OF INCREMENTAL FLOWS 

We consider the problem of introducing a 
small amount of incremental flow from a source 
node to a destination node into a network with 
existing flows. Several optimal routing problems 
may be formulated depending upon the nature of the 
incremental flow and the optimization objective. 
We next review the underlying objectives of 
ARPANET routing and flow deviation in this context. 
A new optimal routing problem is then formulated. 

The objective of the ARPANET routing algorithm 
[MCQU 78] is to minimize the (estimated) delay of 
an individual packet from its source node to its 
destination node. Let t be the (estimated) delay 

m 

of communication channel m. The optimal route is 
given by the path Q for which Z t is minimized 

m 
m£Q 

over all paths from the given source node to the 
given destination node. In other words the 
(estimated) communication channel delays constitute 
the distance metric for shortest path routing. We 
observe that in ARPANET routing, the incremental 
flow is an individual packet and the individual- 
optimization objective is pursued. 

It has been observed by several authors[AGNE 
76, GALL 77] that routing algorithms with the ob- 
jective of individual-optimization do not necessar- 
ily lead to network-optimization, i.e., minimizing 
the mean delay of all packets in the network. The 
flow deviation method [FRAT 73, GERL 73, KLEI 76] 
considers an incremental flow that is infinitesimal 
relative to existing flows in the network. The 
network-optimization objective is pursued; 
specifically, the route for the incremental flow 
is chosen to minimize the (infinitesimal) increase 
AT in the mean network transit delay T of all 
packets. Let f denote the flow in communication 

m 
channel m (in bits per second) and d denote the 

m 

value of the partial derivative of T with respect 
to f evaluated at the existing flow value. It 

m 
was shown that the optimal route for the incremen- 
tal flow is given by the shortest path using {d } 

m 

as the distance metric. 

We next pose a similar problem for networks 
with flow-controlled virtual channels. The incre- 
mental flow corresponds to the addition of a new 
virtual channel with a window size of one (not 
necessarily an infinitesimal amount of flow). The 
network-optimization objective is first considered. 

One method to evaluate AT is to calculate T 
using the tree convolution algorithm for the 
network both with and without the additional 
virtual channel (given a specific route for it). 
However, to determine the optimal route with this 
approach would require numerous applications of 
the tree convolution algorithm and would be very 
expensive in terms of computation time. 

We shall adopt the solution approach proposed 
in Section 2. A closed-chain model is initially 
used to calculate the throughputs of the existing 
flow-controlled virtual channels. These are then 
modeled as open chains. The new virtual channel to 
be added is modeled as a closed chain. 

Let the aggregate arrival rate of the existing 
traffic in the network to communication channel m 

be denoted by % packets/second. The service rate 
m 

of channel m is uC packets/second where i/U is 
m 

the average length of a packet in bits and C is 
m 

the channel speed in bits/second. Define 
pm = %m/(UCm). The total throughput rate at which 

open chain packets leave (or enter) the network is 
Yo packets/second. The closed chain representing 

the virtual channel being added has a population 
size of one (i.e. window size is one), a source 
server work-rate of y packets/second and a mean 
end-to-end acknowledgment delay of T seconds. The 
source and sink nodes of the virtual channel are 
known but its route is to be determined. 

Let 0 denote the set of communication channels 
constituting a route chosen for the new virtual 
channel. From the arrival theorem [SEVC 79, 
LAVE 80], the mean delay encountered by the new 
virtual channel's packet at channel mgQ is 
i/(~C -% ). The mean network transit delay of the 

mm 
new virtual channel is 

T = Z 1 (i) 
c 

msQ uC - 
m m 

Applying Little's formula [LITT 61], the through- 
put rate of the new virtual channel is 

i = 
Y c (l/y) + T + r (2) 

C 

Let T be the mean network transit delay and 
o 

be the mean number of packets in the network 
O 

before the addition of the new virtual channel. 
The increase in the mean delay due to the new 
virtual channel is 

An +n +Yc T 
AT = msQ m~o o c _ T (3) 

Yo + Yc o 

where An is the increase in the mean queue 
m,o 

length of the open chains at channel m due to the 
new virtual channel, and is given by 

An m ~ (4) 
m,o UCm - %m m,c 

where n is the mean number of new packets 
m,c 

(belonging to the added virtual channel) at channel 
m. A derivation of (4) is given in [PENN 75]. It 
may also be obtained by differentiating the moment 
generating function of the product-form solution 
for networks with both open and closed chains 
[REIS 75, LAM 82]. An application of Little's 
formula yields 

nm,c = Yc/(UCm - %m )" (5) 

Finally, we have 

Z lm Y c 
meQ (UC m - lm)2 +Yc Tc - Yc To 

AT = 
Yo + Yc 

Z m I 
m e Q [ ( U C m - -  t m )  2 + uC m - t m ] - T o 

~oI¥c ) + 1 
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E ~Cm 

meQ (~C m - Xm)2 - To 

yo (~ Y + T + i %m) + 1 (6) 
mgQ HCm - 

To m i n i m i z e  AT, t h e  r o u t e  s h o u l d  be  c h o s e n  t o  t r y  
t o  m i n i m i z e  t h e  n u m e r a t o r  and  t o  m a x i m i z e  t h e  d e -  
n o m i n a t o r  i f  p o s s i b l e .  M i n i m i z i n g  t h e  n u m e r a t o r  
i m p l i e s  t h e  c h o i c e  o f  a s h o r t e s t  p a t h  f r o m  s o u r c e  
t o  d e s t i n a t i o n  u s i n g  ~Cm/(~C m - tm)2  a s  t h e  d i s -  

t a n c e  metric. Note that this is essentially the 
same as the distance metric of 

C 
m 

(C m _ fm)2 where fm = Im/~ (7) 

given by the flow deviation method for an open- 
chain model. This similarity is interesting since 
the derivation of (6) above and the derivation of 
(7) in the flow deviation method are based upon 
different models. 

Maximizing the denominator, on the other hand, 
implies that the longest path should be chosen 
with i/(~C - I ) as the distance metric• Note 

m m 
that the incremental flow Y c is much smaller than 

the existing network throughput Yo in the objective 

function AT in (6). To minimize AT, a route may 
possibly be selected with a very long delay for 
the incremental flow. Since we are considering 
an amount of incremental traffic that is not 
infinitesimal, it makes sense to impose a maximum 
delay bound T on the mean delay of the new 

max 

virtual channel. (Most likely, the user requesting 
for the new virtual channel will want his mean 
delay to be bounded.) Hence, we formulate the 
following constrained optimization problem: 

Min AT subject to Z 1 < 

Q msQ ~C m - %m "max''S"~ ( ] 

A dual of the above problem is 

Min Z i subject to AT < A (9) 
Q meQ ~C l max 

m m 

where A is a bound on AT. An algorithm to solve 
max 

the problem in (8) is presented in Section 4. 

We can interpret the constrained problem in 
(8) or (9) as a compromise between the objectives 
of individual-optimization and network-optimizatlon. 
Note that the individual-optimization objective of 
ARPANET routing does not consider the impact of 
the incremental flow on the network. On the other 
hand, the network-optimization objective of flow 
deviation ignores the performance of the incremen- 
tal flow (since it is assumed to be infinitesimal). 
The constrained problems in (8) and (9) take into 
account both considerations. 

Let us reexamine the mean end-to-end acknow- 
ledgment delay which has been assumed to be a 
constant ~. This corresponds to the assumption 
that virtual channels (in opposite directions) 
between any two nodes employ routes that are chosen 
independently. A different but equally plausible 
assumption that one can make is that flows in the 
network are symmetric and virtual channels between 
any two nodes employ the same route (traversed in 

opposite directions). In this case, T in Eqs. (2) 
and (6) should be c:hanged to T . 

C 

4. AN OPTIMAL ROUTING ALGORITHM 

Our algorithm to solve the constrained 
problem in (8) is based upon a branch-and-bound 
technique. 

Consider the packet switching network as a 
directed graph described by (V,E) where V is a 
set of vertices (network nodes) and E is a set of 
directed arcs (communication channels). A path in 
the network is a sequence of distinct nodes 

• such that is an arc in Q = v0,v I .... v n (vi,vi+ I) 

E for i = 0,1,...,n-l. We shall only consider 
acyclic paths. 

Let v be the source node and v d be the 
s 

destination node of the virtual channel for which 
a path (or route) is desired• We shall consider 
only those paths that originate at v and either 

s 
end at v d or do not contain v d. A path is said to 

be complete if it ends at v d. A path is said to 

be incomplete if it does not contain v d. 

Each complete path Q from v to v d is 
S 

associated with two measures: 

(i) its cost COST(Q) given by Eq. (6), and 
(ii) its mean end-to-end delay DELAY(Q) 

given by 

1 
DELAY(Q) = ~ (10)  

m~Q DCm - tm 

Each  i n c o m p l e t e  p a t h  Q i s  a l s o  a s s o c i a t e d  w i t h  two 
m e a s u r e s :  

( i )  i t s  e s t i m a t e d  c o s t  ECOST(Q) g i v e n  b y  

E ~Cm 

mEQ (DC m - Im)2 - To (ii) 
ECOST(Q) = 

! + T +  + I  Yo ( Y Tma x) 

(ii) its mean end-to-end delay DSLAY(Q) 
.given by Eq. (10)• 

If the network is assumed to have symmetric 
flows and symmetric routes so that T is replaced 
by T in (2) and (6), then T should be replaced by 

C 

T in (Ii). 
max 

The following data structures are used in 
the algorithm below: 

C PATHS the set of complete paths constructed 

I PATHS the set of incomplete paths constructed 

R NODES the set of nodes that have not been 
visited by an incomplete path. 

Given a path Q = v0,vl,...,Vn, it is said to 

be extendable to Vn+ 1 to form a new path v0,vl,..., 

Vn,Vn+ 1 if Vn+ I is not already in the path, a 

communication channel exists from v n to Vn+ I, and 

DELAY of the extended path is less than T 
max 
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Algorithm {to find an optimal path} 

begin 
use a shortest path algorithm to find a mini- 

mum delay path Q' from v to Vd; 
s 

if DELAY(Q') ~ T then 
max-- 

quit {comment: no feasible solution exists}; 
initialize CPATHS to be the empty set, 

IPATHS to contain the path consisting of 
v only, and R NODES to be V - {v }; 

S -- S 

repeat 

Consider all paths that can be formed by 
extending a path in I PATHS to a node in 
R NODES and select Q in I PATHS that is 
extendable to v in R NODES to form Qnew 

such that ECOST(Qnew) is minimized; 

if Qne w is incomplete then 

begin 

add Qnew to I PATHS; 

delete v from R NODES 
end 

else ~comment: Qnew is complete and v is v d} 

begin 

add Qnew to C PATHS; 

label Q in I PATHS to be nonextendable 

to v d 
end 

until one of the following conditions is true 
or both are true: 

i. Qnew is complete and COST of Qnew is 

less than COST of any path in C PATHS 
and is less than ECOST of any extendable 
path in I PATHS 
{comment:--Qnew is the optimal solution} 

2. no more path in I PATHS is extendable 
to a node in R NODES 
{comment: the path in C PATHS with 
minimum COST is the optimal solution} 

end 

Theorem. If a feasible solution exists, the 
algorithm terminates with an optimal path Q* for 
the problem in (8). 

We provide only a proof outline of the above 
theorem. If a feasible solution exists, termina- 
tion of the algorithm is due to the assumption of 
a finite graph with a finite number of acyclic 
paths from Vs to v d. The optimality of the path 

Q* is guaranteed by the termination conditions of 
the algorithm. It is sufficient to show that Q* 
is better than all complete paths that may be 
extended from the paths in I PATHS. Consider Q in 
1PATHS. Suppose that it is extendable by channel 
f to a new path Q'. Consider two cases. First, 
Q' is a complete path. We have 

COST(Q') 

Z PCm ~Cf 

msQ (DC m - ~m) z + (DCf - %f)2 - T O 

i i 
V o ( ~ +  T + Z - t  ) + 1 

mEQ' NCm m 

Z PCm 

mEQ (~C m- ~m)2 - T o 
> = ECOST(Q) > COST(Q*) 

1 
Yo (~ + T + Tma x) + 1 

The second case is that Q' is incomplete, we 
then have 

Z ~Cm DCf 

msQ (pC m - %m )2 + (pCf - ~f)2 - T o 
ECOST(Q') = 

1 

~+ • + ) + 1 Y o Tmax 

> ECOST(Q) > COST(Q*) 

In this case, Q' is added to I PATHS. Extend 
incomplete paths in I PATHS to nodes in R NODES 
until all paths in I PATHS become nonextendable. 
The proof is completed by applying induction. 

5. CONCLUSIONS 

Both open-chain queueing networks and 
closed-chain queueing networks have been employed 
in the past to model packet switching networks 
with flow-controlled virtual channels. A closed- 
chain model is the more natural of the two. 
Despite some recent advances in computational 
techniques (such as the tree convolution algo- 
rithm), the computational requirements of a 
closed-chain model are still too large to be used 
in network design procedures. An open-chain 
model, on the other hand, encounters the diffi- 
culty that the throughputs of flow-controlled 
virtual channels, needed as input parameters for 
the model, are not known. 

We examined the traffic conditions under 
which an open-chain model accurately predicts the 
mean end-to-end delays of a closed-chain model. 
We then proposed an approach to employ both 
closed-chain and open-chain models in network 
design procedures. A closed-chain model is used 
to compute virtual channel throughputs. An open- 
chain model is used for intermediate optimization 
steps. 

The problems of optimally routing incremental 
flows were explored. We observed that the under- 
lying objectives of ARPANET routing and flow 
deviation correspond to unconstrained individual- 
optimization and network-optimization problems 
(respectively). We formulated a constrained 
optimal routing problem that is a compromise 
between the two objectives. An algorithm that 
finds an optimal solution to the problem has 
been presented. 
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Fig. I. An illustration of the closed-chain queueing network model. 

chain throughput rate mean delay delay estimate 

9.20e-01 6.02e-01 6.15e-01 
9.20e-01 6.02e-01 6.15e-01 
9.17e-01 6.25e-01 6.41e-01 
9.17e-01 6.25e-01 6.41e-01 
9.20e-01 6.03e-01 6.17e-01 
9.20e-01 6.03e-01 6.17e-01 
9.47e-01 4.96e-01 5.07e-01 
9.47e-01 4.96e-01 5.07e-01 
9.41e-01 5.36e-01 5.49e-01 
9.41e-01 5.36e-01 5.49e-01 
9.45e-01 5.06e-01 5.18e-01 
9.45e-01 5.06e-01 5.18e-01 
8.18e-01 9.91e-01 io02e+00 
8.18e-01 9.91e-01 1.02e+00 
9.86e-01 2.73e-01 2.78e-01 
9.86e-01 2.73e-01 2.78e-01 
9.88e-01 2.44e-01 2.47e-01 
9.88e-01 2.44e-01 2.47e-01 
9.89e-01 2.33e-01 2.35e-01 
9.89e-01 2.33e-01 2.35e-01 
9.89e-01 2.32e-01 2.35e-01 
9.89e-01 2.32e-01 2.35e-01 
9.97e-01 1.23e-01 1.24e-01 
9.97e-01 1.23e-01 1.24e-01 
9.17e-01 6.25e-01 6.40e-01 
9.17e-01 6.25e-01 6.40e-01 
9.70e-01 3.79e-01 3.86e-01 
9.70e-01 3.79e-01 3.86e-01 
8o56e-01 8.46e-01 8.68e-01 
8.56e-01 8.46e-01 8.68e-01 
8.84e-01 7.57e-01 7.78e-01 
8.84e-01 7.57e-01 7.78e-01 

1 
2 
3 
4 
5 
6 
7 
8 

9 
i0 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 
31 
32 

Errors in delay estimates 
Average : 

Variance : 
Standard Deviation : 

2.02e+O0 
4.32e-01 
6.57e-01 

% error 

2.28e+00 
2.28e+00 
2.49e+00 
2.49e+00 
2.27e+00 
2.27e+00 
2.11e+O0 
2.11e+00 
2.57e+00 
2.57e+00 
2.29e+00 
2.29e+00 
2.85e+00 
2.85e+00 
1.74e+00 
1.74e+00 
1.21e+00 
1.21e+O0 
l.Ole+O0 
l.Ole+O0 
1.03e+O0 
1.03e+00 
7.36e-01 
7.37e-01 
2.50e+00 
2.50e+00 
1.84e+00 
1.84e+00 
2.60e+00 
2.60e+00 
2.73e+00 
2.73e+00 

Table i. Mean delays and delay estimates for the network example. 
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Case 
of 

y = i0 

y = 2 

y = i 

y = 2/3 

y = 112 

utilizations of communication 
channels 

mean 

0.466 

0.299 

0.185 

0.130 

0.i00 

max. min. st. dev. 

0.808 0.134 0.188 

0.469 0.112 0.107 

0.281 0.082 0.066 

0.195 0.061 0.047 

0.148 0.048 0.036 

% errors in delay estimates 

mean max. min. st. dev. 

40.3 127 15.3 26.3 

7.34 9.86 4.74 1.37 

2.02 2.85 0.74 0.66 

0.80 1.39 0.22 0.34 

0.40 0.77 0.09 0.19 

Table 2. Channel utilizations and errors in delay 
estimates for different values of y. 

Case 
of 

window size 
= 2 

window size 
= 3 

window size 

= 4 

utilizations of communication 
channels 

mean 

0.159 

0.185 

0. 197 

max. min. st. dev. 

0.248 0.064 0.057 

0.281 0.082 0.066 

0.294 0.092 0.070 

% errors in delay estimates 

mean max. min. st. dev. 

4.02 4.73 2.94 0.46 

2.02 2.85 0.74 0.66 

0.88 1.72 0.18 0.45 

Table 3. Channel utilizations and errors in delay 
estimates for different window sizes. 
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