
RESES£8~

gsiw~si~J~aa
J

A Tree Convolution
Algorithm for the
Solution of
Queueing Networks
SIMON S. LAM AND Y. LUKE LIEN University of Texas at Aus t in

The current research inter-
ests of Simon S. Lain include

specification and verification
of communication protocols,

resource allocation tech-
niques and algorithms for

networks, and systems model-
•ng and analysis methods.

Lain received the 1975 IEEE
Communications Society's

Leonard G. Abrahams Best
Paper in Communications

Systems Award, and is pro-
gram chairman of ACM

SIGCOMM Symposium on
Communications, Architec-

tures, and Protocols.
Y. Luke Lien's research in-

terests include modeling and
analysis of communication

networks and database systems.

This work was supported by
National Science Foundation

Grant No. ECS78-01803.
Authors' Present Addresses:

Simon S. Lain, Department of
Computer Sciences,

University of Texas at
Austin, Austin, TX 78712,

CS.LAM. UTEXAS-20;
Y. Luke Lien, IBM Thomas J.

Watson Research Center,
Yorktown Heights, New York

10598.
Permission to copy without

fee all or part of this material
is granted provided that the

copies are not made or
distributed for direct

commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying is

by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/0300-0203 75¢.

1. I N T R O D U C T I O N
Queueing ne tworks have been wide ly and successfu l ly
used in the model ing of compu te r sys tems and c o m m u n i -
cat ion networks . 1 Presently, most k n o w n ne tworks that
are analyt ica l ly t ractable belong to the class of BCMP
ne tworks that have a p roduc t - fo rm solut ion [2]. The prod-
uct - form solut ion gives the improper equi l ib r ium proba-
bilities of ne twork states. These improper probabi l i t ies
need to be d iv ided by a normal iza t ion cons tan t to fo rm a
proper probabi l i ty distr ibution. The normal i za t ion con-
stant is given by the sum of the imprope r probabi l i t ies
over all feasible ne twork states. For a n e t w o r k consis t ing
of only open rout ing chains wi th cons tan t ar r ival rates,
the summat ion yields a s imple c losed- form express ion for
the normal iza t ion constant . For o ther ne tworks (such as
those wi th closed chains and those wi th cha in popula t ion
size constra ints [10]) the t ime and space computa t iona l
requi rements of the normal iza t ion cons tan t m a y be very
large owing to the large n u m b e r of feasible ne twork states
present in any nontr iv ia l model .

The convolu t ion a lgor i thm for p roduc t - fo rm queue ing
ne tworks was first d i scovered by Buzen [4] for single-
chain ne tworks and was ex t ended by Chandy, Herzog,
and Woo [5] and by Reiser and Kobayash i [22] to mult i -
chain networks . Cons ider a ne twork of M service centers
wi th K closed rout ing chains. Let N~ be the popula t ion
size of chain k. The convo lu t ion a lgor i thm encoun te r s
diff icult ies w h e n the cha in popula t ion sizes in N = (N1,
N2, . . - . , Nr) become large or w h e n K becomes large. First,
w h e n chain popula t ion sizes become large, the normal iza -
tion cons tan t G(N) m a y become too large (causing a float-
ing point overf low) or too smal l (causing a f loat ing point
underf low) [7, 19]. A d y n a m i c scal ing t echn ique to solve
this p rob lem was recent ly p roposed [11], Second, the al-
gor i thm's t ime and space r equ i r emen t s increase exponen-
tially wi th K; more specif ical ly, t hey are p ropor t iona l to
II~=~ (Nk + 1). Hence, the a lgor i thm is not appl icable to
ne tworks wi th more than a f ew chains.

] See the September 1978 special issue of ACM Computing Surveys on queueing
network models of computer system performance. A survey of queueing
network models of computer communication networks is available in [16, 26].

ABSTRACT: A n e w algorithm
called the tree convolut ion algo-
rithm, for the computation of nor-
malization constants and perform-
ance measures o f product-form
queueing networks, is presented.
Compared to existing algorithms,
the algorithm is very efficient in
the solution of networks with
many service centers and m a n y
sparse routing chains. (A network
is said to have sparse routing
chains if the chains visit, on the
average, only a small fraction of
all centers in the network.) In
such a network, substantial time
and space savings can be
achieved by exploiting the net-
work's routing information.
The time and space reductions are
made possible by two features of
the algorithm: (1) the sequence of
array convolutions to compute a
normalization constant is deter-
mined according to the traversal
of a tree; (2) the convolutions are
performed between arrays that are
smaller than arrays used by exist-
ing algorithms. The routing infor-
mation of a given network is used
to configure the tree to reduce the
algorithm's time and space re-
quirements; some effective heuris-
tics for optimization are de-
scribed. An exact solution of a
communication network model
with 64 queues and 32 routing
chains is illustrated.

March 1983 Volume 26 Number 3 Communicat ions of the ACM 203

RESEARCH CONTRIBUTIONS

The mean value analysis (MVA) algorithm of Reiser
and Lavenberg [23] bypasses the evaluation of G(N) and
computes the performance measures of mean queue
lengths and chain throughputs directly. It avoids the prob-
lem of floating point overflows. (Floating point under-
flows may still occur [21].) However, its time and space
requirements also grow exponential ly with K.

The other computat ional algorithms available (such as
LBANC and CCNC in [7, 24] and NCA in [21]) are var-
iants of the basic convolution and MVA algorithms and
thus also suffer from the exponent ial growth in space and
time requirements as K increases. (It is shown in [12] that
the recursions in the MVA, LBANC, and convolution al-
gorithms are closely related.)

The modeling of distr ibuted systems and communica-
tion networks often require the use of a large number of
routing chains in the model. The time and space require-
ments are so large that none of the previously ment ioned
algorithms is applicable. Various approximate solution
techniques based upon the convolution algorithm [27] or
upon a mean value analysis [1, 6, 17, 20, 25] have been
proposed for such models as well as models involving
large chain population sizes.

We present a new computat ional algorithm based upon
convolutions, called the tree c o n v o l u t i o n a l g o r i t h m or the
tree a l g o r i t h m . The algorithm exploits information on the
sets of centers visited by chains (routing i n f o r m a t i o n) that
has not been utilized by other algorithms. Such exploita-
tion can give rise to very substantial savings in computa-
tional time and space requirements for networks with
many centers and many routing chains that visit, on the
average, only a small fraction of all centers in the net-
work (s p a r s e n e s s property). In a network with the sparse-
ness property, if the chains are also clustered in certain
parts of the network (l o c a l i t y property), then the compu-
tational time and space requirements can be further re-
duced.

Both the sparseness and locali ty propert ies are often
present in models of large communicat ion networks and
distributed systems. For example, consider the modeling
of a s tore-and-forward packet switching network. Such a
network typical ly has tens of s tore-and-forward nodes.
Each node has several queues, one for each communica-
tion channel connecting the node to a neighboring node.
The network provides virtual channels from external
packet sources to external packet sinks. The virtual chan-
nels are f low-controlled and are modeled by closed rout-
ing chains [15, 16, 18, 20]. Each such closed chain typi-
cally traverses just a few communicat ion channels from
its source to its destination. In a 1973 ARPANET meas-
urement study, the average path length of packets was
measured to be 3.24 communicat ion channels [9]. Hence,
the network has very sparse routing chains. The locali ty
property is also evident from the observed phenomena of
dis tance-dependence of traffic, incest, favorite sites, etc.,
described in [9].

Several new ideas are present in the tree algorithm.
First, the sequence of a r ray convolutions to compute a
normalizat ion constant is determined by the traversal of a
tree whose leaf nodes correspond to service centers in the
network model. Second, the concept of part ial covering of
chains by a subset of centers is introduced. As a result,
convolutions are performed between arrays that are
smaller than the K-dimensional ar rays used by existing
algorithms. The routing information of a given network is
utilized to construct the tree; tree construction heurist ics

are designed with the objective of minimizing the tree
convolution algori thm's space and time requirements. A
tree data structure also facilitates different space- t ime
tradeoffs for different networks and the incorporat ion of
storage management techniques for the solution of very
large networks.

In Sec. 2, some definitions and the notat ion for product-
form queueing networks are reviewed. In Sec. 3, the basic
ideas of tree traversal and array convolutions are dis-
cussed and illustrated. A preprocessor for the tree algo-
ri thm is then described. The preprocessor has two func-
tions: (1) to use the routing information of a given net-
work to construct a tree, and (2) to calculate the algo-
r i thm's time and space requirements for a given tree prior
to tree traversals and array convolutions. In Sec. 4, the
computat ion of network performance measures is dis-
cussed. Time-space tradeoffs of the algorithm as well as
storage management considerat ions are addressed. In Sec.
5, a high-level descript ion of the entire algori thm is pre-
sented. In Sec. 6, an exact solution of a communicat ion
network model with 64 queues and 32 routing chains is
illustrated.

2. DEFINITIONS AND NOTATION
Consider a BCMP network with M service centers and K
closed routing chains. Let Nk denote the populat ion size of
chain k. The network populat ion vector is

N ~-- (N1, N2, " ' " , N I ¢)

The normalizat ion constant for this ne twork populat ion
vector is G(N).

Let nmk denote the number of chain k customers in
center m. Define the network state

n - - (n l , n2 , - - . , rim)
where

n m ---- (n m l , rim2, " ' " , nmK) m = 1, 2, . . . , M.

The product-form solution for the equil ibrium probabi l i ty
of network state n is [2]

P(n) = l'IM=l pm(nm) (1)
G(N)

where

where

pro(B in) = [1-Iin ml lnm' YI K
?tm(i) J " k-1 nmk"

n m ~ n m l "4- rim2 "4- • • • "J¢ n m K

p m k =)kmk "rmk

where ¢,,~ is the mean service time of a chain k customer
in center m (assuming that he is served at the rate of
I second of work required per second) and Xmk is the
relative arrival rate of chain k customers to center m
determined by the routing behavior of chain k. (See [2]
for details.) Finally, ftm(i) is the service rate of center m
when it has a total of i customers. A center is said to be
queue-dependent if #,~ (i) varies wi th i. A center is said to
be fixed-rate if ttm(i) = 1 for all i ~ 0. For s implici ty and
without loss of generality, we omit the possibi l i ty of ser-
v ice ra te dependence on the number of customers in a
center belonging to different chains; that is permit ted in
[2]. The reader is also referred to [2] for a descr ipt ion of
the four types of service centers in BCMP networks.

(2)

2B4 C o m m u n i c a t i o n s o f t h e A C M M a r c h 1 9 8 3 V o l u m e 2 6 N u m b e r 3

The normalization constant G (N) is by definition

G(N) = E l-[mffixM pm(nm) (3)
n such that

The real-valued function pm, for m ---- 1, 2, . . . , M, has the
domain((h, j2, - " , jK)[0 _< jk --< N~, h = 1, 2, - . - , K} and
can be represented by a K-dimensional array indexed be-
tween 0 and N, where 0 is a K-vector of all zeroes. The
convolut ion of two such functions, say p~ and p2, defines
a real-valued function, say g2, over the same domain,

il /K

g2(i) : ~,, . - . E pl(j)p2(i -- j) f o r 0 ~ i _ < N (4)
j l~O JK 'O

where the binary relation ~ between two vectors is satis-
fied for each pair of corresponding components in the
vectors.

In shorthand notation, Eq. (4) will be written as

g2 : pl ® p2 = p2 ® pl

Define

g i n = g i n - l e p t a m = 2 , 3 , . . . , M (5)

where gl is pl by definition. Note that the normalization
constants for network population vectors between 0 and
N are contained in the array gu. Specifically G (N) defined
by Eq. (3) is given by gu(N).

Equations (4) and (5) define the convolution algorithm
[5, 22] and have a space requirement of the order of

r 2 l-Ik=~ (Nk + 1) and a time requirement of the order of
(M - 1) [[~:ffi~ [(Nk + 1)(Nk + 2)/2].

For a network of fixed-rate service centers, Eqs. (4) and
(5) reduce to

gin(i) = gm-l(i)+ ~rffi~ pmkgm(i -- lk) for 0 --< i _< N (6)

where lk is a K-vector with the hth component equal to
one and all others equal to zero, gin(O) = 1 by definition
and g,~(i - lk) is zero if ik = 0. The convolution operation
described by Eq. (6) is sometimes referred to as [eedbach
filtering [22]. Its space requirement to compute gM is of
the order of l-I~:ffil (Nk + 1) and its time requirement is of
the order of MK 1-Ir~l (Nk + 1). Each unit in the space
requirements is an array location. Each unit in the time
requirements corresponds approximately to the execution
time of one multiplication and one addition.

Note that given the functions p,~ for m = 1, 2, • • • , M,
both Eqs. (5) and (6) apply the convolution operation to
the functions sequentially one after another. We refer to
such an algorithm as a sequential convolut ion algorithm.

3. KEY ELEMENTS OF THE A L G O R I T H M
The key ideas and observations that motivated the algo-
rithm's development are first discussed in Sacs. 3.1 and
3.2. A small example is presented in Sec. 3.3. In Sec. 3.4, a
preprocessor for the tree algorithm is described. Time and
space requirements are discussed in Sec. 3.5.

3.1 Partially Covered Arrays
Consider routing chain h. Let CENTERS(k) be the set of
service centers visited by chain k. Let SUBNET denote a
subset of the M service centers. With respect to SUBNET,
chain k is said to be ~ully covered if CENTERS(k) ___
SUBNET; chain h is said to be noncovered if the intersec-

RESEARCH CONTRIBUTIONS

tion of CENTERS(k) and SUBNET is null; otherwise,
chain k is said to be part ial ly covered.

Let SUBNET = (mr, m2, . . . , m~) C (1, 2, . . . , M)

Define

g S U B N E T = pro, ® p m 2 ® " " " ® Pm~

Suppose that the array gSUBNET has been computed as an
intermediate step towards the computation of the net-
work normalization constant G(N) for population vector
N. The key observation here is that if some chains are
noncovered or fully covered with respect to SUBNET,
then only some of the elements in the array gSUBNET are
needed for the computation of G(N); the amount of space
required to store the necessary elements in gSUBNET may
be made substantially less than I]kg~x (Nk + 1) locations.

Partition the set of K chains into the following three
sets with respect to SUBNET.

Opc = (k [chain k is partially covered by SUBNET)

arc = (h [chain k is fully covered by SUBNET}

o,c = (h [chain h is noncovered by SUBNET)

Now note that only those elements of gSUBNET with index
values in the following set are needed for further convolu-
tions to arrive at G(N).

{i = (i l , . . . , iK) [ik = O, . . . , Nk if k • Opo

ik = Nk if k • arc,

ik = 0 if h • one)

Let I o I denote the cardinality of set o. For the purpose of
computing G(N), it is sufficient to store gSUBNET as an
array with dimensionality I Opt I indexed by ipc = (ik, k
opt). Such an array is termed a part ial ly covered array.
The amount of space needed for a partially covered array
is [Ik,op,(Nk + 1) locations. (Additionally, a small amount
of space is also needed to store Opt.)

For queueing networks with properties of sparseness
and locality, the space savings from the use of partially
covered arrays instead of K-dimensional arrays can be
very substantial. A programming language that provides
for dynamic allocation of storage for arrays (such as PL/I)
will facilitate the implementation of partially covered ar-
rays. However, it is often possible to realize much of the
space savings of partially covered arrays even with static
storage allocation (see the discussion on space require-
ments of the network example in Sec. 6).

Let SUBNET be partitioned into two subsets, SUBNET1
and SUBNET2. We then have

gSUBNET = gSUBNET1 ® gSUBNET2 (7)

Chain h is said to be overlapped if it is partially covered
with respect to SUBNET1 and SUBNET2. Partition the set
of K chains into four sets, o0o, ool, olo and o11. A chain
belongs to one of the four sets depending upon its status
with respect to SUBNET (partially covered or not) and its
status with respect to SUBNET1 and SUBNET2 (over-
lapped or not), such as shown in Table I.

If partially covered arrays are employed for the convo-
lution operation in Eq. (7), then the time requirement of
Eq. (7) is
time(SUBNET1, SUBNET2)

= 1-Ia,o,oOoo,(Nk + 1) 1-Ih (N, + 2)(Nk + 1) (8)
2

P

March 1983 Volume 26 Number 3 Communications of the ACM 21}§

RESEARCH coKrRIBIfflONS

Table I. Definition of the Sets ooo, ool, olo, and o-11.

Status of chain k
Chain k

belongs to Overlapped by Partially covered
SUBNET1 and SUBNET2? by SUBNET?

~® no no
o0~ no yes
0"10 yes no
0". yes yes

Equation (8) gives the actual number of mult ipl icat ions
required for Eq. (7). Almost the same number of addi t ions
are also needed for Eq. (7); specifically, Hk~oo, Uo,,(Nk + 1)
fewer addit ions are needed than multiplications. We shall
use Eq. (8) as a measure of the time requirement of the
convolution operat ion in Eq. (7). Each time unit in Eq. (8)
is interpreted to be the time needed to execute 1 multipli-
cation and 1 addition. (A derivat ion of Eq. (8) is given in
Appendix I.)

We have shown that with the use of par t ia l ly covered
arrays, the convolution operat ion in Eq. (7) can be per-
formed with very substant ial t ime and space savings
when there are few part ia l ly covered chains in SUBNET1,
SUBNET2, and SUBNET. Given a subset of centers in a
network that has many centers and sparse routing chains,
it is highly likely that only a few chains will be par t ia l ly
covered by the subset.

3.2 Ordering of Array Convolutions
Consider now the sequential convolution algori thm de-
fined by Eq. (5). The algorithm begins with the subnet (1}
consisting of center 1 and then sequential ly "merging" the
subnet with other service centers one after another. The
algorithm ends when all centers have been merged. Par-
tially covered arrays can be employed to implement the
sequential convolution algori thm and realize some time
and space savings. However, if we are free to merge ser-
vice centers into small subnets, and small subnets into
large subnets in any order, we can achieve substant ia l ly
more time and space savings than a sequential algorithm.
The object ive is to find a sequence of mergers to mini-
mize the number of part ial ly covered chains in intermedi-
ate subnets by exploit ing routing information.

FIGURE 1. A Binary Tree.

FIGURE 2. Tree for the Sequential Convolution Algorithm.

An implementat ion of the above idea using a binary
tree is described next. Place the service centers at the leaf
nodes of the tree. (An example is shown in Figure 1.)
Each node in the tree corresponds to a subset of service
centers (a subnet) that are descendents of that node.
Thus, the root node corresponds to the entire network.
Visit all nodes in the tree according to some order of tree
traversal. The root node is visited last. A branch node
may be visited only after its two sons have both been
visited. When a branch node is visited, its g array is
computed from the g ar rays of the node 's sons using Eq.
(7). (The g ar ray of a leaf node is defined below.) Finally,
when the root node is visited, the normalizat ion constant
G(N) for the whole network is obtained.

Note that the sequential convolution algori thm is a spe-
cial case of the tree convolution algorithm. It corresponds
to the tree shown in Figure 2. With both the sequential
algorithm and a general tree algorithm, the number of
convolutions required to compute G(N) is M - 1. The tree
algorithm, however, permits greater f lexibil i ty for reduc-
ing the size of part ial ly covered arrays by exploit ing rout-
ing information (see Sec. 3.4).

Unless otherwise stated, we refer to the sequential algo-
ri thm with the implicit assumption that K-dimensional
arrays are implemented; we refer to the general tree algo-
ri thm with the implicit assumption that par t ia l ly covered
arrays are implemented.

The g arrays for the leaf nodes (individual service cen-
ters) are evaluated using a modif icat ion of Eq. (2). Let (m)
denote a subnet consisting of center m only, apc denote its
set of part ial ly covered chains, and oft denote its set of
fully covered chains. The g array of (m) is given by

. 1 O mk H o ~
g{m)(i,c) = Hi= ~, ~ rim! H~o~ ~ ,,1~0,, Nk'---[

for ipc, where ik = 0, 1, . . . , Nk, k~opc (9)

In Eq. 9, the product over the set arc is equal to 1 if oft is
void, and

n m = ~,k,Op,. ik + ~,A,of,. Nk

The computat ion of Eq. (9) requires 4 1-Ik~o,~V,,fo(Nk + 1)
multiplications.

The g array of a subnet consisting of two leaf nodes
can be obtained using the recursion in Eq. (6) if one of the
leaf nodes corresponds to a f ixed-rate service center. The
time requirement of Eq. (6) is less than Eq. (8) if the
populat ion sizes of over lapped chains are large. (See Ap-
pendix II.)

3.3 An Example
Consider a network of four centers, each consist ing of a
fixed-rate server. Suppose that there are four closed rout-
ing chains. The number of customers in each chain is 2.
The (relative) traffic intensities Pink for m = 1, 2, 3, 4 and
k = 1, 2, 3, 4 are shown in Table II.

Suppose that the service centers are placed at the leaf
nodes of a binary tree as shown in Figure 3 and postorder

Table II. Traffic Intensities in the Small Example.

Traffic intensity p~,

m = l m = 2 m - 3 m - 4

k = 1 0.5 1.0 0 0
k = 2 0.5 1.0 0.5 0
k = 3 0 0 0.5 1.0
k = 4 0 0 0.5 0

2~6 Communications of the ACM March 1983 Volume 26 Number 3

tree traversal is adopted. The set of part ial ly covered
chains at a node is shown next to the node in Figure 3.
Note that chain 4 is fully covered by {3). There are three
mergers altogether. The set of overlapped chains for each
merger and a list of fully covered chains after a merger
are shown in Table III.

FIGURE 3. Binary Tree and Partially Covered Chains in the
Small Example.

The g arrays at leaf nodes are shown in Table IV. The
convolutions and g arrays at the two branch nodes are
shown in Table V.

Finally, the normalizat ion constant G(N), where N =
(2, 2, 2, 2), is given by the convolution

G(N) = g{1,2)(0)g{3,4}(2) + gtl,2}(1)g{3,4}(1)

+ g{1,2}(2)g{3,4}(0)

-- 27.984375.

3.4 A Preprocessor for Constructing a Tree
A closed product-form queueing network is completely
specified by its traffic intensities (p,.k), service rate func-
tions (#,.), population vector N, and routing information
(CENTERS(k)). Given such information, the time and
space needed by the tree algorithm to compute a normali-
zation constant depend upon the sequence of mergers of
subnets (a merger corresponds to-an array convolution).
The merger sequence is determined by the tree configura-
tion, the placement of centers at leaf nodes, and tree tra-
versal order. It is easy to see that any merger sequence
can be specified by specifying just the tree (both its con-
figuration and the placement of centers) with the tree
traversal order fixed. We have adopted the use of postor-
der tree traversals. The construction of a tree with the
objective of minimizing the time and space requirements
of subsequent tree traversals and array convolutions
will be referred to as tree p lant ing. No efficient algorithm
has been found to solve such an optimizat ion problem,
We have, however, found many efficient and effective
heuristics [18].

Table IV. g Arrays at Leaf Nodes in the Small Example.

R E S E A R C H C O N T R I B U T I O N S

Table III. Overlapped and Fully Covered Chains in the
Small Example.

Chains fully
Overlapped covered after Subnets being merged chains

merger
I1}, {2} 1,2 1
13}, {4} 3 3, 4

{1,2}, 13,4} 2 1,2,3,4

The tree algorithm employs two procedures. The first
procedure, referred to as the preprocessor, is used for
planting trees and evaluating the time and space require-
ments (needed to compute specified performance meas-
ures) of the planted trees. The second procedure performs
the main function of the tree algorithm, namely, tree trav-
ersals and array convolutions (for the computat ion of per-
formance measures). The preprocessor has time and
space requirements that are much smaller than the re-
quirements of ar ray convolutions (see below). In this pa-
per, the time and space requirements of the tree algorithm
refer only to the requirements of the second procedure.

Note that the tree algori thm's computat ional require-
ments are different for different networks. Given a net-
work, the preprocessor provides us with accurate a priori
estimates that can be compared with the requirements of
other computat ional algorithms; more importantly, we
can determine if the requirements are feasible for the
computer being used.

We have investigated many heuristic procedures for
tree planting. An exper imental s tudy of the tree algo-
r i thm's time and space requirements as well as a family
of effective tree planting procedures are presented in [18].
The basic algorithm that is common to all procedures in
the family is the following:
Algorithm I (basic tree planting procedure)

begin
initialization;
while at least two subnets are present do
begin

perform superset merger;
sort subnets according to a size criterion;
select two subnets for merger according to a cost

criterion;
merge the selected subnets into one
(comment: a tree node is formed)

end
end
Initially, there are M subnets with each center constitut-
ing a subnet (a leaf node). In general, the algorithm to
determine the sequence of mergers is as follows. First, it
checks for superset relationships between subnets. A su-
perset relationship exists if the set of part ial ly covered
chains of a subnet contains the set of part ial ly covered

(il,/2) glll(il,/2) (il,/2) g121(il,/2) (i=,i3) gzal(i=, i=) ia gi41(i3)
(0, O) 1 (0, O) 1 (0, O) 0.25
(0,1) 0.5 (0,1) 1 (0,1) 0.375
(1, O) 0.5 (1, O) 1 (1, O) 0.375
(1, 1) 0.5 (1, 1) 2 (1, 1) 0.75
(2, O) 0.25 (2, O) 1 (2, O) 0.375
(0, 2) 0.25 (0, 2) 1 (0, 2) 0.375
(1,2) 0.375 (1,2) 3 (1,2) 0.9375
(2, 1) 0.375 (2, 1) 3 (2, 1) 0.9375
(2, 2) 0.375 (2, 2) 6 (2, 2) 1.40625

0 1
1 1
2 1

March 1983 Volume 26 Number 3 Communications of the ACM 207

RESEARCH CONTRIBUTIONS

Table V. g Arrays at Branch Nodes in the Small Example.
(a) Convolution to merge {1} and {2}. (b) Convolution to
merge {31 and {4 I.

(a)
i~ gl,,21(i~)
0 g++l(0, 0)gin(2, 0) -I- gin(l, 0)gin(l, 0) + gl+l(2, 0)gin(0, 0)

= 1.75
1 gin(0, 0)gin(2,1) + gin(l, 0)gin(l, 1) + gin(2, 0)gin(0, 1) + gin(0, 1)gin(2, 0)

+ gin(l, 1)gin(l, 0) + gin(2, 1)gin(0, 0)
-- 5.625

2 gin(0, 0)gin(2, 2) + gill(l, 0)gin(l, 2) + gill(2, 0)gf2}(0, 2) + gin(0, 1)gin(2, 1)
+ gin(l, 1)gin(l, 1) + gill(2, 1)gin(0, 1) + gin(0, 2)gin(2, 0)
+ gin(l, 2)gin(l, 0) + gin(2, 2)gin(0, 0)
= 11.625

(b)
/2 gl~+l(i2)
0 gin(0, 0)gin(2) + glad(0, 1)gl,+(1) + gla+(0, 2)gin(0)

= 1.0
1 glal(1, 0)gin(2) + g+a=(1, 1)glal(1) + gla~(1,2)gl+~(0)

= 2.0625
2 gl3~(2, 0)gin(2) + gin(2, 1)gin(l) + gl31(2, 2)g+41(0)

= 2.71875

chains of another subnet. Subnets with superset relation-
ships are merged. In the absence of superset relationships,
two subnets are selected for the next merger according to
a cost criterion. The selection is facilitated by first sorting
subnets according to a size criterion.

Many cost and size criteria have been proposed and
studied experimentally [18]. We describe the criteria that
were used by the tree algorithm to solve the numerical
example in Sec. 6. The size criterion used is first de-
scribed. Let SUBNET be a subset of centers and ape be the
set of chains partially covered by SUBNET. The weight of
SUBNET is defined to be

weight(SUBNET) = ~, I CENTERS(k) - SUBNET I (10)
kEopc

where the notation I A - B [is the number of elements
that are in set A and not in set B.

Given that the tree planting procedure selects the first
candidate for the next merger by the weight criterion
such that the heaviest subnet is selected, the other candi-
date for the next merger is then selected to minimize a
cost function to be defined. Suppose that subnet A has
been selected and subnet B is a prospective partner. The
cost of a merger of the two subnets is calculated as fol-
lows. For every partially covered chain in B, its status in
A is checked and a cost is calculated. There are three
possible cases.

Case 1. The chain is not covered by A. The cost of the
chain is +1.

C a s e 2. The chain is partially covered by A but not fully
covered by A t3 B. The cost of the chain is -1 .

C a s e 3. The chain is partially covered by A and fully
covered by A U B. The cost of the chain is -2 .

Define the dimension of a subnet to be the number of
partially covered chains in it. Note that the change in the
dimension of A caused by a partially covered chain in B
following a merger with B is equal to +1, 0, and -1 ,
respectively, for the three cases. Instead of using the di-
mension changes, 0 and -1 , as the costs for case 2 and
case 3, respectively, we found that the use of smaller
costs (-1 and -2) made the tree planting procedure much
more effective [18].

The specific tree planting procedure that was used for
the numerical example in Sec. 6 is presented. It plants a
balanced binary tree and skips the step for superset
mergers. The number M of centers must be a power of 2.
Initially, each center constitutes a subnet (leaf node) at
the lowest level of the tree. The tree is then constructed
one level at a time.

Algorithm 2 (procedure to plant a balanced tree)

begin
initialization;
for each level of the tree from the leaves to the root do
begin

sort subnets by weight in decreasing order;
mark all subnets;
while some subnets are marked do
begin

choose the heaviest marked subnet as the first
candidate for the next merger;

choose from among the remaining marked subnets
the other candidate for the next merger such that
cost (first candidate, marked subnet) is
minimized

(comment: a tie is first broken by weight and
second by random selection);

merge the two candidates into a single subnet
(comment: an unmarked subnet corresponding to a

node at the next level is formed)
end

end
end

3.5 Time and Space Requirements
After a tree has been planted for a given network, the
preprocessor calculates the time and space requirements
of that tree (to compute specified performance measures).
The time required to compute G(N) is equal to the sum of
the time required to computer g arrays for all the leaf
nodes using either Eq. (9) or Eq. (A4) and the time re-
quirements given by Eq. (8) for the M - 1 convolutions.
The space requirement for the computation of G(N) is the
maximum value of the sum of space requirements of g
arrays that need to be saved by the algorithm at the same
time. The number of g arrays that need to be saved at the
same time depends upon the tree traversal order. For ex-
ample, with postorder traversal of a balanced binary tree,
the maximum number of arrays needed at the same time
is 2 + log2M. Note that since partially covered arrays are
of different sizes, the number of arrays needed does not
necessarily determine the space requirement. (For a de-
tailed treatment of the accounting of time and space re-
quirements, see [13]. See also Sec. 6 for an illustration.)

Since space is reusable, the space needed to compute
specified performance measures will be about the same as
that for computing G(N). However, the time needed to
compute specified performance measures will be substan-
tially more than the time to compute a single normaliza-
tion constant. Tree traversals to compute performance
measures efficiently and space-time tradeoffs are de-
scribed in Sec. 4.

The time and space requirements of tree planting pro-
cedures (those investigated in [18]) are very small com-
pared to the requirements of array convolutions. For ex-
ample, Algorithm 2 has a space requirement of O(KM)
and a time requirement of O(KM2). Also the operations
required are mostly additions and comparisons rather
than multiplications.

2Q8 Communications of the ACM March 1983 Volume 26 N u m b e r 3

RESEARCH CONTRIBUTIONS

4. COMPUTATION OF PERFORMANCE MEASURES
Since all chains are fully covered at the root node of a
tree, its g array degenerates to a single value, namely, the
normalization constant C(N). The computation of net-
work performance measures, such as chain throughputs
and mean queue lengths, requires the computation of var-
ious other normalization constants. (For a tutorial treat-
ment of this topic, see [3] or [24].)

The throughput of chain k at center m for a network of
closed chains with population vector N [4, 7, 22] is

Trek(N) = •rnk G(N -- lk)
G(N) (11)

for k = 1 , 2 K, m = 1 , 2 M, and N----lk

where C(N - lk) is the normalization constant of the
same network with population vector N - lk and)~,~k is
the relative arrival rate of chain k customers to center m
Equation (11) is applicable for both fixed-rate and queue-
dependent service centers.

The number of chain k customers in a service center
(say m) is equal to zero if chain k is noncovered and is
equal to Nk if chain k is fully covered by center m. To
compute qmk(N), the mean number of chain k customers
in center m, we need only to consider chains partially
covered by center m. If center m is a fixed-rate service
center, then the mean number of chain k customers in it
[22] is

Cm÷(N - lk)
qmk(N) = Pink

C(N) (12)

for k = 1 , 2 K, m = 1 , 2 M, and N ~ l k

where Gin+ is given by the convolution pm and

g{1,2,...,M/ = p l ® p2 ® ® p M

A queue-dependent service center with #re(i) = i is
called an Infinite Server (IS) sevice center. The mean
queue length of chain k here [22] is

C (N -- lk)
qmk(N) = p,,~ G(N) = T,~k(N)~'m~ (13)

which is available if the chain throughput has been ob-
tained. We will not consider this case separately any fur-
ther.

If center m is a queue-dependent server with a general
service rate function, qmk(N) needs to be calculated from
the marginal distribution of queue lengths in center m
given by

p m (n m) G m - (N - nm)
pro(rim) =

C(N) (14)
for m = 1 , 2 M, 0_<nm_<N

where pro(rim) was given by Eq. (2) and Gin- is the g array
of the subnet consisting of all service centers except cen-
ter m. The quantities

G(N - lk), Gm.(N - lk), and Gm-(N - n m)

needed for Eqs. (11), (12), and (14), respectively, can be
interpreted as the normalization constants of appropri-
ately defined networks with trees such as those illustrated
in Figure 4 for M ffi 8.

C(N - lk) is simply the normalization constant of the
original tree (i.e., queueing network) for the population
vector N - lk. G m . (N -- lk) is the normalization constant
for the population vector N - lk computed from a tree in
which center m appears twice at two leaf nodes. Note
that a chain that is fully covered by center m in the
original tree is fully covered by center m and its "clone"
in the modified tree but only partially covered by either
one. Gm-(N - n m) is computed from a tree that is the
original tree with center m deleted. As a result, the set of
chains partially covered by center m remains partially
covered at the root node. Hence, Gin- is an array indexed
over ik ---- 0, 1 Nk for all k partially covered by center
m .

The computation of each of G(N - lk), Gm÷(N - lk),
and Cm-(N - nm) for k = 1, 2 K and m E CENTERS(k)
separately from traversing an entire tree requires approxi-
mately the same amount of time and space as C(N). Thus
the computation of chain throughputs and mean queue
lengths can be done with (probably) no additional space,
compared to that of G(N), but with a time requirement up
to (M + 1)K times that of G(N).

If additional space is available, then some or all of the g
arrays from the computation of G(N) can be saved, and
the computation of the other normalization constants can
be accomplished without traversing an entire tree. We
found that some modest increase in space can give rise to
very substantial savings in time. These considerations are
ad~lressed in Secs. 4.1 to 4.4. An illustration of trading
space for time is shown in Sec. 6.

It is convenient for us to assume for the moment that
there is space to accommodate the entire tree of g arrays
computed in the process of getting G(N), in addition to
temporary space needed for tree traversal and array con-
volutions. The time and space tradeoff when only some of
the g arrays in the tree can be stored is addressed in Sec.
4.4 (see also [13]).

4.1 Marginal Distribution of Queue Lengths
If center m is a queue-dependent center, its mean queue
lengths have to be calculated from the marginal queue
length distribution of center m. We need the array G~_
first. Let opt be the set of partially covered chains in cen-
ter m. Gin- is an array indexed by ipc and is obtained by

FIGURE 4. Trees for G, G~,+, and Gin-.

March 1983 Volume 26 N u m b e r 3 Communica t ions of the ACM 209

RESEARCH CONTRIBUTIONS

redoing the convolutions along the path between center m
and the root of the tree. We illustrate this with a binary
tree in Figure 5. For a balanced tree, the number of convo-
lutions needed to get Gin- is (log2M) - 1. In Figure 5, the
sequence of convolutions needed is indicated by a dashed
line. The stored g arrays needed at various nodes are
labeled by g. Note that with a sequential convolution algo-
rithm, Gin- is available free for m = M but requires M - 1
convolutions to compute for m = 1, 2 M - 1.

FIGURE 5. Tree Traversal to Compute the Array G,.-.

4.2 Mean Queue Lengths for a Fixed-rate Service Center
To compute qmk(N), we need Gm÷(N - lk), which is ob-
tained by redoing the convolutions along the path from
center m to the root of the tree. (See Figure 6.) For a
balanced tree, the number of convolutions needed is
(log2M) + 1. The stored g arrays needed at various nodes
are labeled by g in Figure 6.

Let Opc be the set of partially covered chains in center
m. Note that Gm÷(N - 14) needs to be computed for every
k in Opc. Some additional space will enable the computa-
tion of Gm÷(N - 14) for all k e o~c to be performed at the
same time. Instead of computing a single g array at a node
along the path between center m and the root, multiple g
arrays are computed. Recall that in the computation of
G(N), when a chain, say h, becomes fully covered at a
node, the partially covered array computed for the node
consists of elements with index value is = Nh. If both
G(N) and G(N - 14) are desired, then two partially cov-
ered arrays need to be computed at the node; one array
contains elements with index value is = Nh and the other
contains elements with index value is = N ^ - 1.

FIGURE 6. Tree Traversal to Compute G,.+(N - 1,).

The method is best illustrated with an example. Let
op~ = (1, 2, 3). Referring to Figure 6, suppose that chain 1
is fully covered at node 2, chain 2 is fully covered at node
3, and chain 3 is fully covered at node 4. The partially cov-
ered arrays needed for each node are shown in Table VI.

For a fixed-rate service center, the method just de-
scribed to compute Gm+(N - lk), and thus mean queue
lengths in center m, is likely to require less time and
space than the computation of Gin- in the previous sec-

Table VI. Arrays Needed to Obtain G,.+(N - lk) for k =
1, 2, 3 in Example.

Index values of fully
Node Status of chains 1, 2 and 3 covered chains in partially

covered arrays
1 All partially covered ...
2 Chain 1 fully covered i, = N,, N, - 1
3 Chains 1 and 2 fully covered (i~, i2) = (N~, N2), (N1 - 1, N2),

(N,, N2 - 1)
4 Chains 1,2, and 3 fully covered (/1,/2, is) = (N, - 1, N2, N3),

and Root (N,, N2 - 1, N3), (N,, N2, Ns - 1)

tion. Two more convolutions are required in each tree
traversal here. However, when a chain, say h, becomes
fully covered, only array elements with index values Nh
and N^ - 1 are computed instead of elements for the full
range of index values (0, 1 Nh} needed in the compu-
tation of Gin-.

4.3 Chain Throughputs
We describe two methods for computing the normaliza-
tion constants G(N - lk) for k = 1, 2 K needed to
calculate chain throughputs.

Method 1. Consider chain k which is partially covered
by center m. Let NODE denote the (branch or root) node
at which chain k becomes fully covered. An array convo-
lution is performed at this node to obtain g array elements
with index value ik = Nk -- 1. Convolutions at nodes along
a path from NODE to the root node are then performed
sequentially. The resulting normalization constant at the
root node is G(N - lk). Consider the example illustrated
in Figure 7. Suppose that chain 1 visits centers 1, 14, and
16, and chain 2 visits centers 1, 3, and 7. Chain 1 does not
become fully covered until the root node. Hence, one
convolution (at the root node) is sufficient to compute
G(N - lk) for k = 1. Chain 2 becomes fully covered at
node 1. Two convolutions are thus needed, the first at
node 1 and the second at the root node, to compute
G(N - lk) for k = 2.

If chain k is fully covered by center m, then all convo-
lutions along the path from center m to the root node
need to be performed. The g array of center m, given by
Eq. (9), can be obtained from the stored g array at the leaf
node corresponding to center m as follows:

#(nm)Nk
g{m} (ipc) ~- g (,~} (ipc)

n~p,., (15)

for i~, where ih = 0, 1 Nh, h e opt

M e t h o d 2. The normalization constants G(N - l k) for
k = 1, 2 K are computed together in the same tree
traversal as G(N); this is similar to the computat ion of

FIGURE 7. Tree Traversal to Compute G(N - 1,).

210 Communications of the A C M : M a r c h 1983 V o l u m e 26 N u m b e r 3

FIGURE 8. An Example of Partitioning the Tree of g Arrays.

Gm+(N - 14) described earlier. Let arc denote the set of
fully covered chains at some node in the tree and ifc = {ik,
k ~ arc). At this node, [oft [+ 1 partially covered arrays are
computed corresponding to the index values ifc = Nrc and
iic : N[~ - lk for k c Ofc, where Nfc = (Nk, k E Ofc}. The
results at the root node will then be equal to the normali-
zation constants G(N) and G(N - 14) for k = 1, 2 K.

4.4 Space-Time Tradeoff
In the discussions on the computation of network per-
formance measures, it was assumed for ease of exposition
that the whole tree of g arrays from the computation of
G(N) was stored. It should be obvious from the methods
described for the computation of the normalization con-
stants G(N - 14) and Gm+(N - 14) and the array G,,_ that
g arrays at nodes near the root of the tree are fewer in
number and are used much more frequently than g arrays
at nodes near the leaves of the tree.

If space is limited so that only a few g arrays can be
stored, then the g arrays at nodes immediately below the
root node should be stored. In this case, when g arrays
not stored are required during a tree traversal, they are
recomputed. An interesting optimization problem is: given
an amount of space available, which g arrays should be
stored to minimize the time requirement to compute some
specified performance measures? The numerical example
in Sec. 6 shows that storing just the two g arrays of the
root's sons enabled us to reduce the time requirement of
computing chain throughputs very substantially.

Conceptually, we can think of partitioning the tree into
subtrees such as those shown in Figure 8. The subtree of
g arrays containing the root node (To in Figure 8) is saved
and stored in memory. The g arrays in the other subtrees
are not saved but are recomputed when needed. Alterna-
tively, for very large queueing networks whose time re-
quirements to recompute g arrays in these subtrees are
very large, we can save them in secondary storage and
swap them into memory when they are needed. The tree
of g arrays thus provides a convenient data structure for
implementing such storage management strategies to fa-
cilitate the solution of very large networks.

5. THE TREE ALGORITHM
All aspects of the tree convolution algorithm have been
discussed in Secs. 3 and 4. A high-level description of the
entire algorithm is presented here.

Algorithm 3 (the tree algorithm)

begin
1. input CENTERS(k), Nk, pink, and Pro, for k = 1, 2

K and m = 1, 2 M, and performance measures
desired by the analyst;

RESEARCH CONTRIBUTIONS

repeat
2. call a tree planting procedure;
3. evaluate the time and space needed to calculate

the specified performance measures
4. until the analyst quits
5. if a tree has been found with acceptable time and

space requirements then
begin

6. determine which nodes of the tree of g arrays from
the computation of G(N) should be saved

(comment: t ime-space tradeoff decision) ;
7. postorder tree traversal to compute G(N)

(comment: when a node is visited, its g array is
computed using Eq. (9) or Eq. (A4) for a leaf
node, and Eq. (A1) for a branch node or the root
node);

8. tree traversals to compute those normalization
constants G(N - lk), Gm+(N -- lk) and Gm-(N -
rim) that are needed to evaluate the specified per-
formance measures;

9. output results
end

end

Algorithm 3 is made up of two procedures. Steps 1-6
constitute the preprocessor described in Sec. 3.4. Our cur-
rent implementation of the preprocessor leaves some of
the decisions for the programmer. First, the programmer
specifies which tree planting procedure should be called
in step 2. In steps 4 and 5, the programmer decides
whether the time and space requirements of the tree algo-
rithm are acceptable. (Are they better than those of other
computational algorithms? Are they feasible for the com-
puter being used?) He may use a variety of tree planting
procedures to plant several trees and then pick the best
one. In step 6, the programmer decides whether some or
all of the g arrays from the computation of G(N) are saved
for subsequent tree traversals (as described in Sec. 4.4).

Steps 7-9 constitute the second procedure that carries
out the primary function of the tree algorithm, namely,
performance evaluation of a product-form queueing net-
work. The details of step 7 have been given in Secs. 3.1
and 3.2. The details of step 8 have been given in Secs. 4.1
to 4.3.

6. A NUMERICAL EXAMPLE
We illustrate the application of the tree algorithm to solve
a queueing network model of the store-and-forward
packet-switching network shown in Figure 9. The net-
work has 26 store-and-forward nodes and 64 communica-
tion channels (each link in Figure 9 consists of two com-
munication channels in opposite directions).

Since processor delays within store-and-forward nodes
are typically much smaller than communication channel
delays, they have been ignored in the queueing network
model [16, 20]. The queueing network model thus has 64
queues with fixed-rate servers, one for each of the 64
communication channels.

The network supports 32 virtual channels with routes
given in Table VII. Each virtual channel is modeled as a
closed chain with the chain population size corresponding
to the flow control window size of a virtual channel. For
simplicity, we have ignored the modeling of end-to-end
acknowledgements and the modeling of packet sources of
virtual channels. (The interested reader is referred to [15,
16, 18, 20] for discussions on these modeling issues.) It is

March 1983 Volume 26 N u m b e r 3 Communications of the ACM 211

RESEARCH CONTRIBUTIONS

assumed that every packet (customer) arriving at its desti-
nation node triggers instantaneously the arrival of a new
packet to the source node of the virtual channel. As a
result, the number of packets within each virtual channel
is fixed (closed chain model).

We provide solutions to the network example for two
cases. In the first case, we consider all virtual channels to
have a window size of 3, that is, Nk = 3 for all k. It has
been shown to be desirable to make the window size of a
virtual channel equal to its path length, that is, the num-
ber of communication channels along the route from the
source node to the destination node [8, 14, 20]. This is the
second case that we solved.

A communication channel in the network connecting
node i to node j is named by the ordered pair (i, j) or i ---,
j. The mapping between the 64 communicat ion channels
and the 64 service centers in the model indexed by m = 1,
2 64 is shown in Figure 10, which also shows the tree
planted by Algorithm 2. Each communication channel is
modeled as a fixed-rate server with a mean service time
of I sec for all servers and all chains.

The performance measures of interest in the network
example are the throughputs and mean end-to-end delays
of the individual virtual channels. Using the tree algo-
rithm, we computed G(N) and G(N - lk) for k -- 1, 2
64 for the two cases of window sizes. The throughput of a
virtual channel is computed using Eq. (11). The mean end-
to-end delay of a virtual channel is then obtained from
Little's formula. Results for the case of Nk equal to the
path length of chain k for all k are shown in Table VIII.

G(N - lk) was computed using two slightly different
methods. In the first method, none of the g arrays from
the computation of G(N) was saved. An entire tree of g
arrays is computed to get each G(N - lk). In the second
method, the two g arrays at the root's sons from the
computation of G(N) are saved and stored. The time re-
quirement of method 2 was found to be substantial ly less
than that of method 1. The amount of space required is
only slightly more. The actual number of multiplications,

FIGURE 9. Store-and-Forward Network of 26 Nodes and 64
Communication Channels.

Table VII. Virtual Channel Routes of the Store-and-
Forward Network Example.

Virtual Channel Route (In Node Sequence)

1 1234567
2 7654321
3 45625
4 1231716
5 1231718
6 131211 1098
7 1516173
8 23
9 32

10 3171615
11 1 13 14 1521 20
12 1 13 14 1521 22
13 22 23 24 10 9
14 22 23 24 1011
15 22 23 24 26
16 5419
17 2225678
18 22 21 15 14 1312
19 22 21 15 1617 18
20 25 6 5 4
21 1617321
22 1817321
23 891011 1213
24 2021 1514131
25 22 21 15 14 131
26 9 10 24 23 22
27 11 10242322
28 26 24 23 22
29 194 5
30 8762522
31 1213 14 1521 22
32 1817 16 15 21 22

divisions, and additions needed by the tree algorithm to
obtain the results for the two cases were counted and are
shown in Tables IX and X for the two methods.

We now explain the space requirements given the use
of static storage allocation or dynamic storage allocation
shown in Tables IX and X. D y n a m i c a l locat ion means
that each g array is allocated storage for the exact number
of array elements. Sta t ic a l locat ion means that all g ar-
rays are stored in data structures of the same type (size).
The type of the data structures is declared before per-
forming array convolutions and must be large enough to
accommodate the largest g array. In both c a s e s , storage is
allocated to an array only when needed. (The tree algo-
rithm is currently implemented in Pascal with static allo-
cation of storage for arrays.) With static allocation, the
space requirement is determined by the maximum num-
ber of arrays that the algorithm needs to store at the same
time. With dynamic allocation, the space requirement is
the space needed to store the maximum number of array
elements that the algorithm needs to store at the same
time. After a tree has been planted, the preprocessor has
sufficient information to calculate the space requirement
given the use of either dynamic or static allocation.

For the network example considered, the preprocessor
found that the maximum number of partially covered
chains is 4 at any node in the tree of Figure 10, and that
each g array can be stored in a data structure with 4 4
elements in case 1 and with 7 × 6 3 elements in case 2.
With method 1, the maximum number of g arrays that
need to be stored in the postorder tree traversal, is 2 +

212 Communications of the ACM March 1983 Volume 26 Number 3

RESEARCH CONTRIBUTIONS

FIGURE 10. Left and Right Subtrees Planted for the Network Example.

(log~M) = 8. Hence, the space requirement given static
allocation is 8 × 44 = 2048 locations for case 1 and 8 × 7 ×
6 ~ = 12,096 locations for case 2. With method 2, the two g
arrays at the root 's sons can be saved and G(N - lk)
computed with addit ional storage for one more array.
Hence, the space requirement given static allocation is 9
× 44 = 2304 locations for case 1 and 9 × 7 × 6 4 = 13,608
locations for case 2. Compare Table IX and X and note
that in this example a small increase in space buys a large
amount of saving in time.

To calculate the chain throughputs for the network ex-
ample using the sequential convolution algorithm and
MVA algorithm, the space and time requirements for the
case of Nk = 3 for all k are shown in Table XI. The results
in Table XI are based upon the original descript ions of
the two algorithms and Zahorjan 's analysis of them [27].
(Other algorithm implementat ions may have slightly dif-
ferent time and space requirements. Their orders of mag-
nitudes, however, are expected to be about the same. In
particular, the MVA space requirement shown in Table
XI may be reduced by about a factor of K.) Note that with
the MVA algorithm, mean queue lengths are also obtained
for the same time requirement shown in Table XI. With
the sequential or tree convolution algorithm, however, ad-
ditional time is needed to compute mean queue lengths.

7. CONCLUSIONS
We have presented the tree convolution algorithm for the
computation of normalizat ion constants and performance
measures of product-form queueing networks (Algorithm
3). The algorithm is very efficient, compared to existing
algorithms, in the solution of networks with many queues
and many routing chains that are character ized by a

sparseness property. It is noted that the sparseness prop-
erty and a locality proper ty are often encountered in
models of large communicat ion networks and distr ibuted
systems.

The tree algorithm exploits the routing information of a
given network to reduce the time and space requirements
of needed computations. The time and space savings are
made possible by two features of the algorithm. First, the
sequence of ar ray convolutions to compute a normaliza-
tion constant is determined by the traversal of a tree.
Second, convolutions are performed between part ial ly
covered arrays that are much smaller, for networks with
the sparseness property, than the K-dimensional arrays
used by existing algorithms.

Algorithm 1 presents the basic algorithm of a family of
heuristic procedures for tree planting. These procedures
have been found to be very effective by an exper imental
s tudy [18] in which hundreds of networks were generated
randomly and their computat ional time and space re-
quirements determined. An exact solution of a communi-
cation network model with 64 queues and 32 routing
chains is illustrated. Algori thm 2 presents the specific tree
planting procedure used for the solution. The large time
and space savings of the tree algorithm in the example,
compared to the requirements of the sequential convolu-
tion and MVA algorithms, is typical of models of large
communication networks that are often character ized by
strong sparseness and local~ity properties.

A tree is used because it is a convenient structure for
representing an arbi t rary sequence of a r ray convolutions
to compute normalizat ion constants. Furthermore, a tree
of arrays provides a flexible data structure for achieving
space- t ime tradeoffs and for the incorporat ion of storage

March1983 Volume26 Number3 Communications of the ACM 213

RESEARCH CONTRIBUTIONS

Table VIII. Chain Throughputs and Mean End-to-End
Delays for the Network Example (N, = path length of
chain k for all k).

Chain Throughput Rate Delay
1 0.559 10.74
2 0.559 10.74
3 0.634 4.73
4 0.463 8.64
5 0.524 7.64
6 0.914 5.47
7 0.698 4.30
8 0.456 2.20
9 0.456 2.20

10 0.698 4.30
11 0.526 9.51
12 0.475 10.53
13 0.577 6.93
14 0.577 6.93
15 0.604 4.97
16 0.746 2.68
17 0.945 4.23
18 0.461 10.85
19 0.501 9.98
20 0.634 4.73
21 0.463 8.64
22 0.524 7.64
23 0.914 5.47
24 0.526 9.51
25 0.475 10.53
26 0.577 6.93
27 0.577 6.93
28 0.604 4.97
29 0.746 2.68
30 0.945 4.23
31 0.461 10.85
32 0.501 9.98

management techniques (to facilitate the solution of very
large networks).

Given a network and its routing information, a preproc-
essor is used to construct trees and to evaluate the time
and space needed to accomplish certain computations.
The time and space requirements of the preprocessor it-
self are modest (much smaller than the requirements of
array convolutions)• The preprocessor provides fast accu-
rate (a priori) estimates of the time and space needed to
solve a specific network•

An analysis of the time and space complexity of the
tree algorithm for a class of networks requires a model of
the routing behavior of all networks in the class. In [13],
an analysis is presented for a class of networks whose
routes are determined probabilistically by Bernoulli trials•
The analysis quantifies the expected time and space sav-
ings (as a function of a measure of sparseness) due to the
use of partially covered arrays• Improvements due to tree
optimization by tree planting procedures h a ~ been char-
acterized experimentally [18]•

The sequential convolution algorithm, the MVA algo-
rithm and their variants have time and space require-
ments that contain the term I~kK=l (Nh + 1) which is the
factor limiting the applicability of these algorithms. The
limiting factor in the tree algorithm's time and space re-
quirements is the maximum value of 1-[kEo (Nk + 1) over
all tree nodes, where ape is the set of parhally covered
chains at a node. In general, if a tree can be found ';o that
I Opc I << K for each tree node, then the tree algorithm will
provide substantial time and space savings. This is ex-
pected to be the case in the solution of large networks
with the sparseness property. It should be obvious that
the tree algorithm can solve a lot of networks that are not

solvable by the sequential convolution and MVA algo-
rithms. It should also be obvious that the tree algorithm
cannot solve arbitrarily large networks. Therefore, the
study of approximate solution techniques is still impor-
tant. Since the tree algorithm provides an exact solution,
approximate solution techniques can now be validated
over a much larger set of product-form queueing net-
works than was previously possible without resorting to
simulation.

Table IX. Time and Space Requirements of the First
Method (g Arrays not Saved) for the Network Example.

Case 1. Case 2.
N, = 3 for all k Nk = chain path

length for all k
Multiplications 2,090,760 14,490,452

Time Divisions 154,962 545,946
Additions 1,935,534 13,944,372

Space
(If static 2,048 12,096
allocation)
(If dynamic 1,360 4,404
allocation)

Table X. Time and Space Requirements of the Second
Method (g Arrays of Root's Sons Saved) for the Network
Example.

Case 1. Case 2.
N, = 3 for all k N, = chain path

length for all k
Multiplications 991,132 6,751,230

Time Divisions 73,876 253,100
Additions 917,156 6,498,096

Space
(If static 2,304 13,608
allocation)
(If dynamic 1,376 4,476
allocation)

Table Xl. Time and Space Requirements of the
Sequential Convolution Algorithm and the MVA Algorithm
for the Network Example (Case 1. Nk -- 3 for all k).

The Sequential
Convolution The MVA
Algorithm Algorithm

Multiplications 3.78 x 10 ~ 7.56 × 10 ~
Time Divisions 32 5.90 × 1020

Additions 3.78 x 10 ~ 7.61 x 10 ~

Space 1.84 × 1019 9.89 × 102~
(upper bound)

Appendix I. Derivation of Time (SUBNET1, SUBNET2)
Equation (8) is evident when the convolution in Eq. (7) is

rewritten in terms of elements of partially covered arrays.

Let

aio -- (hi, h2 h.) C_C_ {1, 2 K)

o,, ffi (hi, h~, . . . , hb) _ (1, 2 K)

and define

o~ = (k [chain k is partially covered by SUBNET1 and
noncovered by SUBNET2}

and

oy = (h I chain k is partially covered by SUBNET2 and
noncovered by SUBNET1)

2"14 Communications of the ACM March 1983 Volume 26 Number 3

RESEARCH CONTRIBUTIONS

Then, Eq. (7) can be rewrit ten as

N,~, Nko i,~, %
gSUB~ET(ik, ke00, 13ol,) = ~ . . - . ~. E " '" E

Jkl =0 Jk.'O Jht =0 Jhb =0

[gSUBNETI(Jk, k E Olo 13 o"11; ik, k e o~)

• gSUBNET2(Nk -- jk, k E olO; ik - j k , k ~ o11; ik, k E oy)]

for ik ffi 0, 1 Nk, k ~ 00, 13 o,, (A1)

Appendix II. Feedback Filtering
Consider two leaf nodes {u} and {v}. Suppose that u is a fixed-
rate service center. Let o~ be the set of chains partially covered
by {v} and a. be the set of chains partially or fully covered by
{u}. Define

i~o= {ik, k e o. U o~}

Let g¢~,~l be an array indexed by i~. Define g¢.,~l (0) = 1, where 0
is a zero vector of the appropriate dimension. Then, from Eq. (6)
we get

g~,~} (i~,,) = g(~,)(i~, k e o~)6(i~o)

"-b ~ pukg{u.v)(iuv-- lk) (A2)
kcau

for i.,~, where ik = O, 1 Nk, k e 0. tA oo

where 1~ is a vector of the appropriate dimension with the com-
ponent indexed by k equal to one and all other components
equal to zero, gi.,ol (i.~ - lk) = 0 if ik = O, and

8(iu .)=~O if i k > O f o r a n y k e (o ~ - 0 °)
otherwise

The partially covered array for subnet {u, v} is then obtained
from

g{..~(ip~) = g{..ol(i,, k e op~; Nk, k e ate) (A3)

for i~:, where ik ---- O, 1 Nk, k • ape

The array for (v) can also be obtained by feedback filtering if
v is a fixed-rate service center. Redefine ov to be the set of chains
partially or fully covered by (v}.

g(vl(iv) = ~ p~,kg~,,)(io-- lk) (A4)
kEov

f o r i o = {ik, k e o v) , w h e r e i k = 0 , 1 Nk, k e o r

In Eq. (A4), we define

g l o) (0) = 1

and

g~l(i~, - lk) = 0 if ik = O.

We can also apply Eqs. (A2) and (A3) to perform the convolu-
tion between a leaf node and its clone in mean queue length
calculations discussed in Sec. 4. In this case, o, and o~ in Eq. (A2)
are the same and are defined to be the set of chains partially or
fully covered by the leaf node.

A c k n o w l e d g m e n t s . T h e a u t h o r s t h a n k the ed i tor , H e r b
S c h w e t m a n , a n d the a n o n y m o u s r e v i e w e r s f o r t he i r con -
s t r u c t i v e c r i t i c i sms . T h e y w o u l d a l so like to e x p r e s s t he i r
a p p r e c i a t i o n to t he f o l l o w i n g p e o p l e w h o p r o v i d e d h e l p f u l
c o m m e n t s : Pe te r D e n n i n g a n d J a m e s S o l b e r g of P u r d u e
Un ive r s i t y ; J a m e s C. B r o w n e , K. M a n i C h a n d y , a n d A.
U d a y a S h a n k a r of the U n i v e r s i t y of T e x a s at
Aus t i n ; S teve L a v e n b e r g a n d C h a r l e s S a u e r of IBM
T h o m a s J. W a t s o n R e s e a r c h Cen te r ; Pau l S c h w e i t z e r of
the U n i v e r s i t y of R o c h e s t e r ; J o h n Z a h o r j a n of t he U n i v e r -
s i ty of W a s h i n g t o n .

REFERENCES

I. Bard, Y. Some extensions to multiclass queueing network analysis.
Proc. 4th International Symposium on Modelling and Performance
Evaluation of Computer Systems. Vienna, Austria, Feb. 1979.

2. Baskett F., Chandy, K. M., Muntz, R. R., and Palacios, F. Open, closed
and mixed networks of queues with different classes of customers.
]ACM. 22, 2 (April 1975) 248-260.

3. Bruel, S. C. and Balbo, G. Computational Algorithms for Closed
Queueing Networks. Elsevier, North-Holland, New York, 1980.

4. Buzen, J. P. Computational algorithms for closed queueing networks
with exponential servers. Comm. ACM. 16, 9 (Sept. 1973) 527-531.

5. Chandy, K. M., Herzog, U., and Woo L. S. Parametric analysis of
queueing networks. IBM]. of Res. and Develop. 19, 1, (Jan. 1975) 43-49.

6. Chandy, K. M. and Neuse, D. Linearizer: A heuristic algorithm for
queueing network models of computing systems. Comm. ACM. 25, 2
(Feb. 1982) 126-134.

7. Chandy, K. M. and Sauer, C. H. Computational algorithms for product
form queueing networks. Comm. ACM. 23, 10 (Oct. 1980) 537-583.

8. Gerla, M. and Kleinrock, L. Flow control: A comparative survey. IEEE
Trans. on Commun. COM 28, 4, (April 1980) 553-574.

9. Kleinrock, L. Queueing Systems, Vol. 2: Computer Applications. Wiley-
Interscience, New York, 1976, pp. 458-484.

19. Lam, S. S. Queueing networks with population size constraints. IBM I.
at Res. and Develop. 21, 4, (July 1977) 370-378.

11. Lam, S. S. Dynamic scaling and growth behavior of queueing network
normalization constants,]ACM. 29, 2 (April 1982) 492-513.

12. Lam, S. S. A simple derivation of the MVA and LBANC algorithms
from the convolution algorithm. Dept. of Computer Sciences, Univ. of
Texas at Austin, Technical Report TR-184, November 1981. (To appear
in IEEE Traes on Computers.)

13. Lam, S. S. and Lien, Y. L. An analysis of the tree convolution algo-
rithm. Dept. of Computer Sciences, Univ. of Texas at Austin, Technical
Report TR-166, February 1980.

14. Lam, S. S. and Lien, Y. L. Congestion control of packet communication
networks by input buffer limits--A simulation study. IEEE Trans. on
Computers G-30, 10, (Oct. 1981) 733-742.

15. Lam, S. S. and Lien Y. L. Optimal routing in networks with flow-
controlled virtual channels. Performance Evaluation Review, 11, 1.
(1982) 38-46,

16. Lam, S. S. and Wang, I. W. Queueing network models of packet
switching networks, part 2: Networks with population size constraints.
Performance Evaluation. 2, 3, (1982), 161-180.

17. Lavenberg, S. Closed multichain product form queueing networks with
large population sizes. Prec. of Interface between Applied Probability
and Computer Science, Boca Raton, Florida, Jan. 1981.

18. Lien, Y. L. Modeling and analysis of flow-controlled computer commu-
nication networks. Ph.D. Thesis, Dept. of Computer Sciences, Univ. of
Texas at Austin, December 1981.

19. Reiser, M. Numerical methods in separable queueing networks. Studies
in Management Sci. 7, (1977) 113-142.

20. Reiser, M. A queueing network analysis of computer communication
networks with window flow control. IEEE Trans. on Commun. COM-
27, 8, (Aug. 1979) 1199-1209.

21. Reiser, M. Mean value analysis and convolutional method for queue-
dependent servers in closed queueing networks. Performance Evalua-
tion, 1, 1, (1981) 7-18.

22. Reiser, M. and Kobayashi, H. Queaeing networks with multiple closed
chains: Theory and computational algorithms. IBM]. Res. Develop., 19,
3, (May 1975) 283-204.

23. Reiser, M. and Lavenberg, S. S. Mean value analysis of closed multi-
chain queueing networks. JACM, 27, 1, (April 1980) 313-322.

24. Sauer, C. H. and Chandy, K. M. Computer Systems Performance
Modeling. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

25. Schweitzer, P. Approximate analysis of multiclass closed networks of
queues. Int. Conf. Stochastic Control and Optimization, Amsterdam,
1979.

26. Wang,]. W. and Lam, S. S. Queueing network models of packet
switching networks, part 1: Open networks. Performance Evaluation,
2, 1, (1982) 9-21.

27. Zahorjan,]. The approximate solution of large queueing network
models. Ph.D. Thesis, available as Technical Report CSRG-122, Com-
puter Systems Research Group, Univ. of Toronto, August 1980.

CR Categories and Subject Descriptors: C.2.1 [Computer-Communica-
tion Networks]: Network Architecture and Design--distributed networks;
C.4 [Performance of Systems]--design studies, modeling techniques; D.4.4
[Operating Systems[: Communications Management--network communi-
cation; D.4.8 [Operating Systems[: Performance--modeling and prediction,
queueing theory

General Terms: Algorithms, Design, Performance, Theory
Additional Key Words and Phrases: queueing networks, product-form

solution, computational algorithms, tree convolution algorithm, sparse
routing chains, performance evaluation

Received 2/81; revised 12/81; accepted 6/82

March 1983 Vo lume 26 N u m b e r 3 Communica t ions of the A C M 215

