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1. I N T R O D U C T I O N  
Queueing  ne tworks  have  been wide ly  and successfu l ly  
used in the model ing  of compu te r  sys tems  and c o m m u n i -  
cat ion networks .  1 Presently,  most  k n o w n  ne tworks  that  
are analyt ica l ly  t ractable  belong to the class of BCMP 
ne tworks  that  have  a p roduc t - fo rm solut ion [2]. The  prod-  
uct - form solut ion gives the improper  equi l ib r ium proba-  
bilities of ne twork  states. These  improper  probabi l i t ies  
need to be d iv ided by a normal iza t ion  cons tan t  to fo rm a 
proper  probabi l i ty  distr ibution.  The  normal i za t ion  con- 
stant  is given by the sum of the imprope r  probabi l i t ies  
over  all feasible ne twork  states. For a n e t w o r k  consis t ing 
of only open rout ing chains  wi th  cons tan t  ar r ival  rates,  
the summat ion  yields a s imple  c losed- form express ion  for 
the normal iza t ion  constant .  For o ther  ne tworks  (such as 
those wi th  closed chains  and those  wi th  cha in  popula t ion  
size constra ints  [10]) the t ime and space  computa t iona l  
requi rements  of the normal iza t ion  cons tan t  m a y  be very  
large owing to the large n u m b e r  of feasible  ne twork  states 
present  in any nontr iv ia l  model .  

The  convolu t ion  a lgor i thm for p roduc t - fo rm queue ing  
ne tworks  was  first  d i scovered  by Buzen  [4] for single- 
chain ne tworks  and was  ex t ended  by Chandy,  Herzog,  
and Woo  [5] and by Reiser  and Kobayash i  [22] to mult i -  
chain  networks .  Cons ider  a ne twork  of M service centers  
wi th  K closed rout ing chains.  Let N~ be the popula t ion  
size of chain  k. The  convo lu t ion  a lgor i thm encoun te r s  
diff icult ies w h e n  the cha in  popula t ion  sizes in N = (N1, 
N2, . . - . ,  Nr) become  large or  w h e n  K becomes  large. First, 
w h e n  chain  popula t ion  sizes become  large, the normal iza -  
tion cons tan t  G(N) m a y  become  too large (causing a float-  
ing point  overf low)  or  too smal l  (causing a f loat ing point  
underf low)  [7, 19]. A d y n a m i c  scal ing t echn ique  to solve 
this p rob lem was  recent ly  p roposed  [11], Second,  the al- 
gor i thm's  t ime and space  r equ i r emen t s  increase  exponen-  
tially wi th  K; more  specif ical ly,  t hey  are p ropor t iona l  to 
II~=~ (Nk + 1). Hence,  the a lgor i thm is not  appl icable  to 
ne tworks  wi th  more  than  a f ew  chains.  

] See the September 1978 special issue of ACM Computing Surveys on queueing 
network models of computer system performance. A survey of queueing 
network models of computer communication networks is available in [16, 26]. 

ABSTRACT: A n e w  algorithm 
called the tree convolut ion algo- 
rithm, for the computation of nor- 
malization constants and perform- 
ance measures o f  product-form 
queueing networks, is presented. 
Compared to existing algorithms, 
the algorithm is very efficient in 
the solution of  networks with 
many service centers and m a n y  
sparse routing chains. (A network 
is said to have sparse routing 
chains if the chains visit, on the 
average, only  a small  fraction of 
all centers in the network.) In 
such a network, substantial time 
and space savings can be 
achieved by exploiting the net- 
work's routing information. 
The time and space reductions are 
made possible by two features of 
the algorithm: (1) the sequence of 
array convolutions to compute a 
normalization constant is deter- 
mined according to the traversal 
of a tree; (2) the convolutions are 
performed between arrays that are 
smaller than arrays used by exist- 
ing algorithms. The routing infor- 
mation of a given network is used 
to configure the tree to reduce the 
algorithm's time and space re- 
quirements; some effective heuris- 
tics for optimization are de- 
scribed. An exact solution of a 
communication network model 
with 64 queues and 32 routing 
chains is illustrated. 
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The mean value analysis (MVA) algorithm of Reiser 
and Lavenberg [23] bypasses  the evaluation of G(N) and 
computes the performance measures of mean queue 
lengths and chain throughputs directly. It avoids the prob- 
lem of floating point overflows. (Floating point under-  
flows may still occur [21].) However,  its time and space 
requirements also grow exponential ly  with K. 

The other computat ional  algorithms available (such as 
LBANC and CCNC in [7, 24] and NCA in [21]) are var- 
iants of the basic convolution and MVA algorithms and 
thus also suffer from the exponent ial  growth in space and 
time requirements as K increases. (It is shown in [12] that 
the recursions in the MVA, LBANC, and convolution al- 
gorithms are closely related.) 

The modeling of distr ibuted systems and communica-  
tion networks often require the use of a large number  of 
routing chains in the model. The time and space require- 
ments are so large that none of the previously ment ioned 
algorithms is applicable. Various approximate  solution 
techniques based upon the convolution algorithm [27] or 
upon a mean value analysis  [1, 6, 17, 20, 25] have been 
proposed for such models as well as models involving 
large chain population sizes. 

We present a new computat ional  algorithm based upon 
convolutions, called the tree c o n v o l u t i o n  a l g o r i t h m  or the 
tree a l g o r i t h m .  The algorithm exploits information on the 
sets of centers visited by chains (routing i n f o r m a t i o n )  that  
has not been utilized by other algorithms. Such exploita-  
tion can give rise to very substantial  savings in computa-  
tional time and space requirements  for networks  with 
many centers and many routing chains that  visit, on the 
average, only a small  fraction of all centers in the net- 
work ( s p a r s e n e s s  property).  In a network with the sparse-  
ness property,  if the chains are also clustered in certain 
parts of the network ( l o c a l i t y  property),  then the compu- 
tational time and space requirements can be further re- 
duced. 

Both the sparseness and locali ty propert ies  are often 
present in models of large communicat ion networks and 
distributed systems. For example,  consider the modeling 
of a s tore-and-forward packet switching network.  Such a 
network typical ly has tens of s tore-and-forward nodes. 
Each node has several queues, one for each communica-  
tion channel connecting the node to a neighboring node. 
The network provides virtual channels from external  
packet sources to external  packet  sinks. The virtual chan- 
nels are f low-controlled and are modeled by closed rout- 
ing chains [15, 16, 18, 20]. Each such closed chain typi-  
cally traverses just a few communicat ion channels from 
its source to its destination. In a 1973 ARPANET meas- 
urement study, the average path length of packets  was 
measured to be 3.24 communicat ion channels [9]. Hence, 
the network has very sparse routing chains. The locali ty 
property is also evident from the observed phenomena of 
dis tance-dependence of traffic, incest, favorite sites, etc., 
described in [9]. 

Several new ideas are present  in the tree algorithm. 
First, the sequence of a r ray  convolutions to compute a 
normalizat ion constant  is determined by the traversal  of a 
tree whose leaf nodes correspond to service centers in the 
network model. Second, the concept of part ial  covering of 
chains by a subset of centers is introduced. As a result, 
convolutions are performed between arrays  that  are 
smaller than the K-dimensional ar rays  used by existing 
algorithms. The routing information of a given network is 
utilized to construct the tree; tree construction heurist ics 

are designed with the objective of minimizing the tree 
convolution algori thm's space and time requirements.  A 
tree data structure also facilitates different  space- t ime 
tradeoffs for different networks and the incorporat ion of 
storage management  techniques for the solution of very 
large networks.  

In Sec. 2, some definitions and the notat ion for product-  
form queueing networks are reviewed. In Sec. 3, the basic 
ideas of tree traversal  and array convolutions are dis- 
cussed and illustrated. A preprocessor  for the tree algo- 
ri thm is then described. The preprocessor  has two func- 
tions: (1) to use the routing information of a given net- 
work to construct  a tree, and (2) to calculate the algo- 
r i thm's time and space requirements for a given tree prior 
to tree traversals and array convolutions. In Sec. 4, the 
computat ion of network performance measures  is dis- 
cussed. Time-space  tradeoffs of the algorithm as well  as 
storage management  considerat ions are addressed.  In Sec. 
5, a high-level descript ion of the entire algori thm is pre- 
sented. In Sec. 6, an exact  solution of a communicat ion 
network model  with 64 queues and 32 routing chains is 
illustrated. 

2. DEFINITIONS AND NOTATION 
Consider a BCMP network with M service centers and K 
closed routing chains. Let Nk denote the populat ion size of 
chain k. The network populat ion vector is 

N ~-- (N1,  N2,  " ' "  , N I ¢ )  

The normalizat ion constant  for this ne twork  populat ion 
vector is G(N). 

Let nmk denote the number  of chain k customers in 
center m. Define the network state 

n - -  ( n l ,  n2 ,  - - . ,  rim) 
where 

n m  ---- ( n m l ,  rim2, " ' "  , nmK) m = 1, 2, . . .  , M.  

The product-form solution for the equil ibrium probabi l i ty  
of network state n is [2] 

P(n) = l'IM=l pm(nm) (1) 
G(N) 

where 

where 

pro(B in )  = [1-Iin ml lnm' YI K 
?tm(i) J " k-1 nmk" 

n m  ~ n m l  "4- rim2 "4- • • • "J¢ n m K  

p m k  = )kmk "rmk 

where ¢,,~ is the mean service time of a chain k customer 
in center m (assuming that  he is served at the rate of 
I second of work  required per second) and Xmk is the 
relative arrival  rate of chain k customers to center  m 
determined by the routing behavior  of chain k. (See [2] 
for details.) Finally, ftm(i) is the service rate of center  m 
when it has a total of i customers.  A center is said to be 
queue-dependent  if #,~ (i) varies wi th  i. A center is said to 
be fixed-rate if ttm(i) = 1 for all i ~ 0. For s implici ty and 
without  loss of generality, we omit the possibi l i ty  of ser- 
v ice ra te  dependence  on the number  of customers in a 
center belonging to different  chains; that  is permit ted in 
[2]. The reader  is also referred to [2] for a descr ipt ion of 
the four types of service centers in BCMP networks.  

( 2 )  
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The normalization constant G (N) is by definition 

G(N) = E l-[mffixM pm(nm) (3) 
n such  that  

The real-valued function pm, for m ---- 1, 2, . . .  , M, has the 
domain((h,  j2, - "  , jK)[ 0 _< jk --< N~, h = 1, 2, - . -  , K} and 
can be represented by a K-dimensional array indexed be- 
tween 0 and N, where 0 is a K-vector of all zeroes. The 
convolut ion of two such functions, say p~ and p2, defines 
a real-valued function, say g2, over the same domain, 

il /K 

g2( i ) :  ~,, . - .  E pl(j)p2(i -- j) f o r 0 ~ i _ < N  (4) 
j l~O JK 'O  

where the binary relation ~ between two vectors is satis- 
fied for each pair of corresponding components in the 
vectors. 

In shorthand notation, Eq. (4) will be written as 

g2 : pl ® p2 = p2 ® pl 

Define 

g i n = g i n - l e p t a  m = 2 , 3 , . . . , M  (5) 

where gl is pl by definition. Note that the normalization 
constants for network population vectors between 0 and 
N are contained in the array gu. Specifically G (N) defined 
by Eq. (3) is given by gu(N). 

Equations (4) and (5) define the convolution algorithm 
[5, 22] and have a space requirement of the order of 

r 2 l-Ik=~ (Nk + 1) and a time requirement of the order of 
(M - 1) [[~:ffi~ [(Nk + 1)(Nk + 2)/2]. 

For a network of fixed-rate service centers, Eqs. (4) and 
(5) reduce to 

gin(i) = gm-l(i)+ ~rffi~ pmkgm(i -- lk) for 0 --< i _< N (6) 

where lk is a K-vector with the hth component equal to 
one and all others equal to zero, gin(O) = 1 by definition 
and g,~(i - lk) is zero if ik = 0. The convolution operation 
described by Eq. (6) is sometimes referred to as [eedbach 
filtering [22]. Its space requirement to compute gM is of 
the order of l-I~:ffil (Nk + 1) and its time requirement is of 
the order of MK 1-Ir~l (Nk + 1). Each unit in the space 
requirements is an array location. Each unit in the time 
requirements corresponds approximately to the execution 
time of one multiplication and one addition. 

Note that given the functions p,~ for m = 1, 2, • • • , M, 
both Eqs. (5) and (6) apply the convolution operation to 
the functions sequentially one after another. We refer to 
such an algorithm as a sequential  convolut ion  algorithm. 

3. KEY ELEMENTS OF THE A L G O R I T H M  
The key ideas and observations that motivated the algo- 
rithm's development are first discussed in Sacs. 3.1 and 
3.2. A small example is presented in Sec. 3.3. In Sec. 3.4, a 
preprocessor for the tree algorithm is described. Time and 
space requirements are discussed in Sec. 3.5. 

3.1 Partially Covered Arrays 
Consider routing chain h. Let CENTERS(k) be the set of 
service centers visited by chain k. Let SUBNET denote a 
subset of the M service centers. With respect to SUBNET, 
chain k is said to be ~ully covered if CENTERS(k) ___ 
SUBNET; chain h is said to be noncovered  if the intersec- 
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tion of CENTERS(k) and SUBNET is null; otherwise, 
chain k is said to be part ial ly  covered.  

Let SUBNET = (mr, m2, . . .  , m~) C (1, 2, . . .  , M) 

Define 

g S U B N E T  = pro,  ® p m  2 ® " " " ® Pm~ 

Suppose that the array gSUBNET has been computed as an 
intermediate step towards the computation of the net- 
work normalization constant G(N) for population vector 
N. The key observation here is that if some chains are 
noncovered or fully covered with respect to SUBNET, 
then only some of the elements in the array gSUBNET are 
needed for the computation of G(N); the amount  of space 
required to store the necessary elements in gSUBNET may 
be made substantially less than I]kg~x (Nk + 1) locations. 

Partition the set of K chains into the following three 
sets with respect to SUBNET. 

Opc = (k [ chain k is partially covered by SUBNET) 

arc = (h [ chain k is fully covered by SUBNET} 

o,c = (h [ chain h is noncovered by SUBNET) 

Now note that only those elements of gSUBNET with index 
values in the following set are needed for further convolu- 
tions to arrive at G(N). 

{i = ( i l ,  . . . ,  iK )  [ ik = O, . . . ,  Nk if k • Opo 

ik = Nk if k • arc, 

ik = 0 if h • one) 

Let I o I denote the cardinality of set o. For the purpose of 
computing G(N), it is sufficient to store gSUBNET as an 
array with dimensionality I Opt I indexed by ipc = (ik, k 
opt). Such an array is termed a part ial ly  covered  array. 
The amount of space needed for a partially covered array 
is [Ik,op,(Nk + 1) locations. (Additionally, a small amount  
of space is also needed to store Opt.) 

For queueing networks with properties of sparseness 
and locality, the space savings from the use of partially 
covered arrays instead of K-dimensional arrays can be 
very substantial. A programming language that provides 
for dynamic allocation of storage for arrays (such as PL/I) 
will facilitate the implementation of partially covered ar- 
rays. However, it is often possible to realize much of the 
space savings of partially covered arrays even with static 
storage allocation (see the discussion on space require- 
ments of the network example in Sec. 6). 

Let SUBNET be partitioned into two subsets, SUBNET1 
and SUBNET2. We then have 

gSUBNET = gSUBNET1 ® gSUBNET2 (7) 

Chain h is said to be overlapped if it is partially covered 
with respect to SUBNET1 and SUBNET2. Partition the set 
of K chains into four sets, o0o, ool, olo and o11. A chain 
belongs to one of the four sets depending upon its status 
with respect to SUBNET (partially covered or not) and its 
status with respect to SUBNET1 and SUBNET2 (over- 
lapped or not), such as shown in Table I. 

If partially covered arrays are employed for the convo- 
lution operation in Eq. (7), then the time requirement of 
Eq. (7) is 
time(SUBNET1, SUBNET2) 

= 1-Ia,o,oOoo,(Nk + 1) 1-Ih .... (N, + 2)(Nk + 1) (8) 
2 

P 

March 1983 Volume 26 Number 3 Communications of the ACM 21}§ 



RESEARCH coKrRIBIfflONS 

Table I. Definition of the Sets ooo, ool, olo, and o-11. 

Status of chain k 
Chain k 

belongs to Overlapped by Partially covered 
SUBNET1 and SUBNET2? by SUBNET? 

~® no no 
o0~ no yes 
0"10 yes no 
0". yes yes 

Equation (8) gives the actual  number  of mult ipl icat ions 
required for Eq. (7). Almost  the same number  of addi t ions 
are also needed for Eq. (7); specifically, Hk~oo, Uo,,(Nk + 1) 
fewer addit ions are needed than multiplications.  We shall  
use Eq. (8) as a measure of the time requirement  of the 
convolution operat ion in Eq. (7). Each time unit in Eq. (8) 
is interpreted to be the time needed to execute 1 multipli-  
cation and 1 addition. (A derivat ion of Eq. (8) is given in 
Appendix  I.) 

We have shown that with the use of par t ia l ly  covered 
arrays,  the convolution operat ion in Eq. (7) can be per- 
formed with very substant ial  t ime and space savings 
when there are few part ia l ly  covered chains in SUBNET1, 
SUBNET2, and SUBNET. Given a subset of centers in a 
network that has many  centers and sparse routing chains, 
it is highly likely that only a few chains will  be par t ia l ly  
covered by the subset. 

3.2 Ordering of Array Convolutions 
Consider now the sequential  convolution algori thm de- 
fined by Eq. (5). The algorithm begins with the subnet (1} 
consisting of center 1 and then sequential ly  "merging" the 
subnet with other service centers one after another.  The 
algorithm ends when all centers have been merged. Par- 
tially covered arrays can be employed to implement  the 
sequential  convolution algori thm and realize some time 
and space savings. However,  if we are free to merge ser- 
vice centers into small subnets, and small  subnets into 
large subnets in any order, we can achieve substant ia l ly  
more time and space savings than a sequential  algorithm. 
The object ive  is to find a sequence of mergers to mini- 
mize the number  of part ial ly covered chains in intermedi-  
ate subnets by exploit ing routing information. 

FIGURE 1. A Binary Tree. 

FIGURE 2. Tree for the Sequential Convolution Algorithm. 

An implementat ion of the above idea using a binary 
tree is described next. Place the service centers at the leaf 
nodes of the tree. (An example is shown in Figure 1.) 
Each node in the tree corresponds to a subset of service 
centers (a subnet) that are descendents  of that node. 
Thus, the root node corresponds to the entire network.  
Visit all nodes in the tree according to some order of tree 
traversal.  The root node is visited last. A branch node 
may be visited only after its two sons have both been 
visited. When  a branch node is visited, its g array is 
computed from the g ar rays  of the node 's  sons using Eq. 
(7). (The g ar ray  of a leaf node is defined below.) Finally, 
when the root node is visited, the normalizat ion constant  
G(N) for the whole network is obtained. 

Note that the sequential  convolution algori thm is a spe- 
cial case of the tree convolution algorithm. It corresponds 
to the tree shown in Figure 2. With  both the sequential  
algorithm and a general  tree algorithm, the number  of 
convolutions required to compute G(N) is M - 1. The tree 
algorithm, however,  permits  greater f lexibil i ty for reduc- 
ing the size of part ial ly covered arrays  by exploit ing rout- 
ing information (see Sec. 3.4). 

Unless otherwise stated, we refer to the sequential  algo- 
ri thm with the implicit  assumption that K-dimensional  
arrays  are implemented; we refer to the general  tree algo- 
ri thm with the implicit  assumption that  par t ia l ly  covered 
arrays are implemented.  

The g arrays for the leaf nodes (individual service cen- 
ters) are evaluated using a modif icat ion of Eq. (2). Let (m) 
denote a subnet consisting of center m only, apc denote its 
set of part ial ly covered chains, and oft denote its set of 
fully covered chains. The g array of (m) is given by 

. 1 O mk H o ~ 
g{m)(i,c) = Hi= ~, ~ rim! H~o~ ~ ,,1~0,, Nk'---[ 

for ipc, where ik = 0, 1, . . .  , Nk, k~opc (9) 

In Eq. 9, the product  over the set arc is equal to 1 if oft is 
void, and 

n m =  ~,k,Op,. ik + ~,A,of,. Nk 

The computat ion of Eq. (9) requires 4 1-Ik~o,~V,,fo(Nk + 1) 
multiplications. 

The g array of a subnet consisting of two leaf nodes 
can be obtained using the recursion in Eq. (6) if one of the 
leaf nodes corresponds to a f ixed-rate service center. The 
time requirement of Eq. (6) is less than Eq. (8) if the 
populat ion sizes of over lapped chains are large. (See Ap-  
pendix II.) 

3.3 An Example 
Consider a network of four centers, each consist ing of a 
fixed-rate server. Suppose that there are four closed rout- 
ing chains. The number  of customers in each chain is 2. 
The (relative) traffic intensities Pink for m = 1, 2, 3, 4 and 
k = 1, 2, 3, 4 are shown in Table II. 

Suppose that the service centers are placed at the leaf 
nodes of a binary tree as shown in Figure 3 and postorder  

Table II. Traffic Intensities in the Small Example. 

Traffic intensity p~, 

m = l  m = 2  m - 3  m - 4  

k = 1 0.5 1.0 0 0 
k = 2 0.5 1.0 0.5 0 
k = 3 0 0 0.5 1.0 
k =  4 0 0 0.5 0 

2~6 Communications of the ACM March 1983 Volume 26 Number 3 



tree traversal  is adopted. The set of part ial ly covered 
chains at a node is shown next to the node in Figure 3. 
Note that chain 4 is fully covered by {3). There are three 
mergers altogether. The set of overlapped chains for each 
merger and a list of fully covered chains after a merger 
are shown in Table III. 

FIGURE 3. Binary Tree and Partially Covered Chains in the 
Small Example. 

The g arrays at leaf nodes are shown in Table IV. The 
convolutions and g arrays at the two branch nodes are 
shown in Table V. 

Finally, the normalizat ion constant  G(N), where N = 
(2, 2, 2, 2), is given by the convolution 

G(N) = g{1,2)(0)g{3,4}(2) + gtl,2}(1)g{3,4}(1) 

+ g{1,2}(2)g{3,4}(0) 

-- 27.984375. 

3.4 A Preprocessor for Constructing a Tree 
A closed product-form queueing network is completely 
specified by its traffic intensities (p,.k), service rate func- 
tions (#,.), population vector N, and routing information 
(CENTERS(k)). Given such information, the time and 
space needed by the tree algorithm to compute a normali-  
zation constant  depend upon the sequence of mergers of 
subnets (a merger corresponds to-an array convolution). 
The merger sequence is determined by the tree configura- 
tion, the placement  of centers at leaf nodes, and tree tra- 
versal order. It is easy to see that any merger sequence 
can be specified by specifying just the tree (both its con- 
figuration and the placement  of centers) with the tree 
traversal  order fixed. We have adopted the use of postor- 
der tree traversals. The construction of a tree with the 
objective of minimizing the time and space requirements 
of subsequent tree traversals  and array convolutions 
will be referred to as tree p lant ing.  No efficient algorithm 
has been found to solve such an optimizat ion problem, 
We have, however,  found many  efficient and effective 
heuristics [18]. 

Table IV. g Arrays at Leaf Nodes in the Small Example. 

R E S E A R C H  C O N T R I B U T I O N S  

Table III. Overlapped and Fully Covered Chains in the 
Small Example. 

Chains fully 
Overlapped covered after Subnets being merged chains 

merger 
I1}, {2} 1,2 1 
13}, {4} 3 3, 4 

{1,2}, 13,4} 2 1,2,3,4 

The tree algorithm employs two procedures.  The first 
procedure, referred to as the preprocessor,  is used for 
planting trees and evaluating the time and space require- 
ments (needed to compute specified performance meas- 
ures) of the planted trees. The second procedure performs 
the main function of the tree algorithm, namely,  tree trav- 
ersals and array convolutions (for the computat ion of per- 
formance measures). The preprocessor  has time and 
space requirements that are much smaller than the re- 
quirements of ar ray convolutions (see below). In this pa- 
per, the time and space requirements of the tree algorithm 
refer only to the requirements of the second procedure.  

Note that the tree algori thm's computat ional  require- 
ments are different for different networks.  Given a net- 
work, the preprocessor  provides us with accurate a priori 
estimates that can be compared with the requirements  of 
other computat ional  algorithms; more importantly,  we 
can determine if the requirements are feasible for the 
computer  being used. 

We have investigated many heuristic procedures for 
tree planting. An exper imental  s tudy of the tree algo- 
r i thm's time and space requirements  as well as a family 
of effective tree planting procedures are presented in [18]. 
The basic algorithm that is common to all procedures in 
the family is the following: 
Algorithm I (basic tree planting procedure) 

begin 
initialization; 
while at least two subnets are present  do 
begin 

perform superset  merger; 
sort subnets according to a size criterion; 
select two subnets for merger according to a cost 

criterion; 
merge the selected subnets into one 
(comment: a tree node is formed) 

end 
end 
Initially, there are M subnets with each center constitut- 
ing a subnet (a leaf node). In general, the algorithm to 
determine the sequence of mergers is as follows. First, it 
checks for superset  relationships between subnets. A su- 
perset relationship exists if the set of part ial ly covered 
chains of a subnet contains the set of part ial ly covered 

(il,/2) glll(il,/2) (il,/2) g121(il,/2) (i=,i3) gzal(i=, i=) ia gi41(i3) 
(0, O) 1 (0, O) 1 (0, O) 0.25 
(0,1) 0.5 (0,1) 1 (0,1) 0.375 
(1, O) 0.5 (1, O) 1 (1, O) 0.375 
(1, 1) 0.5 (1, 1) 2 (1, 1) 0.75 
(2, O) 0.25 (2, O) 1 (2, O) 0.375 
(0, 2) 0.25 (0, 2) 1 (0, 2) 0.375 
(1,2) 0.375 (1,2) 3 (1,2) 0.9375 
(2, 1) 0.375 (2, 1) 3 (2, 1) 0.9375 
(2, 2) 0.375 (2, 2) 6 (2, 2) 1.40625 

0 1 
1 1 
2 1 
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Table V. g Arrays at Branch Nodes in the Small Example. 
(a) Convolution to merge {1} and {2}. (b) Convolution to 
merge {31 and {4 I. 

(a) 
i~ gl,,21(i~) 
0 g++l(0, 0)gin(2, 0) -I- gin(l, 0)gin(l, 0) + gl+l(2, 0)gin(0, 0) 

= 1.75 
1 gin(0, 0)gin(2,1) + gin(l, 0)gin(l, 1) + gin(2, 0)gin(0, 1) + gin(0, 1)gin(2, 0) 

+ gin(l, 1)gin(l, 0) + gin(2, 1)gin(0, 0) 
-- 5.625 

2 gin(0, 0)gin(2, 2) + gill(l, 0)gin(l, 2) + gill(2, 0)gf2}(0, 2) + gin(0, 1)gin(2, 1) 
+ gin(l, 1)gin(l, 1) + gill(2, 1)gin(0, 1) + gin(0, 2)gin(2, 0) 
+ gin(l, 2)gin(l, 0) + gin(2, 2)gin(0, 0) 
= 11.625 

(b) 
/2 gl~+l(i2) 
0 gin(0, 0)gin(2) + glad(0, 1)gl,+(1) + gla+(0, 2)gin(0) 

= 1.0 
1 glal(1, 0)gin(2) + g+a=(1, 1)glal(1) + gla~(1,2)gl+~(0) 

= 2.0625 
2 gl3~(2, 0)gin(2) + gin(2, 1)gin(l) + gl31(2, 2)g+41(0) 

= 2.71875 

chains of another subnet. Subnets with superset relation- 
ships are merged. In the absence of superset relationships, 
two subnets are selected for the next merger according to 
a cost criterion. The selection is facilitated by first sorting 
subnets according to a size criterion. 

Many cost and size criteria have been proposed and 
studied experimentally [18]. We describe the criteria that 
were used by the tree algorithm to solve the numerical 
example in Sec. 6. The size criterion used is first de- 
scribed. Let SUBNET be a subset of centers and ape be the 
set of chains partially covered by SUBNET. The weight of 
SUBNET is defined to be 

weight(SUBNET) = ~, I CENTERS(k) -  SUBNET I (10) 
kEopc 

where the notation I A - B [ is the number  of elements 
that are in set A and not in set B. 

Given that the tree planting procedure selects the first 
candidate for the next merger by the weight criterion 
such that the heaviest subnet is selected, the other candi- 
date for the next merger is then selected to minimize a 
cost function to be defined. Suppose that subnet A has 
been selected and subnet B is a prospective partner. The 
cost of a merger of the two subnets is calculated as fol- 
lows. For every partially covered chain in B, its status in 
A is checked and a cost is calculated. There are three 
possible cases. 

Case 1. The chain is not covered by A. The cost of the 
chain is +1. 

C a s e  2. The chain is partially covered by A but not fully 
covered by A t3 B. The cost of the chain is -1 .  

C a s e  3. The chain is partially covered by A and fully 
covered by A U B. The cost of the chain is -2 .  

Define the dimension of a subnet to be the number  of 
partially covered chains in it. Note that the change in the 
dimension of A caused by a partially covered chain in B 
following a merger with B is equal to +1, 0, and -1 ,  
respectively, for the three cases. Instead of using the di- 
mension changes, 0 and -1 ,  as the costs for case 2 and 
case 3, respectively, we found that the use of smaller 
costs ( -1  and -2)  made the tree planting procedure much 
more effective [18]. 

The specific tree planting procedure that was used for 
the numerical example in Sec. 6 is presented. It plants a 
balanced binary tree and skips the step for superset 
mergers. The number  M of centers must be a power of 2. 
Initially, each center constitutes a subnet (leaf node) at 
the lowest level of the tree. The tree is then constructed 
one level at a time. 

Algorithm 2 (procedure to plant a balanced tree) 

begin 
initialization; 
for each level of the tree from the leaves to the root do 
begin 

sort subnets by weight in decreasing order; 
mark all subnets; 
while some subnets are marked do 
begin 

choose the heaviest marked subnet  as the first 
candidate for the next merger; 

choose from among the remaining marked subnets 
the other candidate for the next merger such that 
cost (first candidate, marked subnet) is 
minimized 

(comment: a tie is first broken by weight and 
second by random selection); 

merge the two candidates into a single subnet  
(comment: an unmarked subnet corresponding to a 

node at the next level is formed) 
end 

end 
end 

3.5 Time and Space Requirements 
After a tree has been planted for a given network, the 
preprocessor calculates the time and space requirements 
of that tree (to compute specified performance measures). 
The time required to compute G(N) is equal to the sum of 
the time required to computer g arrays for all the leaf 
nodes using either Eq. (9) or Eq. (A4) and the time re- 
quirements given by Eq. (8) for the M - 1 convolutions. 
The space requirement for the computation of G(N) is the 
maximum value of the sum of space requirements of g 
arrays that need to be saved by the algorithm at the same 
time. The number  of g arrays that need to be saved at the 
same time depends upon the tree traversal order. For ex- 
ample, with postorder traversal of a balanced binary tree, 
the maximum number  of arrays needed at the same time 
is 2 + log2M. Note that since partially covered arrays are 
of different sizes, the number  of arrays needed does not 
necessarily determine the space requirement. (For a de- 
tailed treatment of the accounting of time and space re- 
quirements, see [13]. See also Sec. 6 for an illustration.) 

Since space is reusable, the space needed to compute 
specified performance measures will be about the same as 
that for computing G(N). However, the time needed to 
compute specified performance measures will be substan- 
tially more than the time to compute a single normaliza- 
tion constant. Tree traversals to compute performance 
measures efficiently and space-time tradeoffs are de- 
scribed in Sec. 4. 

The time and space requirements of tree planting pro- 
cedures (those investigated in [18]) are very small com- 
pared to the requirements of array convolutions. For ex- 
ample, Algorithm 2 has a space requirement of O(KM) 
and a time requirement of O(KM2). Also the operations 
required are mostly additions and comparisons rather 
than multiplications. 
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4. COMPUTATION OF PERFORMANCE MEASURES 
Since all chains are fully covered at the root node of a 
tree, its g array degenerates to a single value, namely, the 
normalization constant C(N). The computation of net- 
work performance measures, such as chain throughputs 
and mean queue lengths, requires the computation of var- 
ious other normalization constants. (For a tutorial treat- 
ment of this topic, see [3] or [24].) 

The throughput of chain k at center m for a network of 
closed chains with population vector N [4, 7, 22] is 

Trek(N) = •rnk G(N -- lk) 
G(N) (11) 

for k = 1 , 2  . . . . .  K, m = 1 , 2  . . . . .  M, and N----lk 

where C(N - lk) is the normalization constant of the 
same network with population vector N - lk and )~,~k is 
the relative arrival rate of chain k customers to center m 
Equation (11) is applicable for both fixed-rate and queue- 
dependent service centers. 

The number  of chain k customers in a service center 
(say m) is equal to zero if chain k is noncovered and is 
equal to Nk if chain k is fully covered by center m. To 
compute qmk(N), the mean number  of chain k customers 
in center m, we need only to consider chains partially 
covered by center m. If center m is a fixed-rate service 
center, then the mean number  of chain k customers in it 
[22] is 

Cm÷(N - lk) 
qmk(N) = Pink 

C(N) (12) 

for k = 1 , 2  . . . . .  K, m = 1 , 2  . . . . .  M, and N ~ l k  

where Gin+ is given by the convolution pm and 

g{1,2,...,M/ = p l  ® p2  ® . . . .  ® p M  

A queue-dependent service center with #re(i) = i is 
called an Infinite Server (IS) sevice center. The mean 
queue length of chain k here [22] is 

C ( N  -- lk)  
qmk(N) = p,,~ G(N) = T,~k(N)~'m~ (13) 

which is available if the chain throughput has been ob- 
tained. We will not consider this case separately any fur- 
ther. 

If center m is a queue-dependent server with a general 
service rate function, qmk(N) needs to be calculated from 
the marginal distribution of queue lengths in center m 
given by 

p m ( n m ) G m - ( N  - nm) 
pro(rim) = 

C(N) (14) 
for m = 1 , 2  . . . . .  M, 0_<nm_<N 

where pro(rim) was given by Eq. (2) and Gin- is the g array 
of the subnet consisting of all service centers except cen- 
ter m. The quantities 

G(N - lk), Gm.(N - lk), and Gm-(N - n m )  

needed for Eqs. (11), (12), and (14), respectively, can be 
interpreted as the normalization constants of appropri- 
ately defined networks with trees such as those illustrated 
in Figure 4 for M ffi 8. 

C(N - lk) is simply the normalization constant of the 
original tree (i.e., queueing network) for the population 
vector N - lk. G m . ( N  -- lk) is the normalization constant 
for the population vector N - lk computed from a tree in 
which center m appears twice at two leaf nodes. Note 
that a chain that is fully covered by center m in the 
original tree is fully covered by center m and its "clone" 
in the modified tree but only partially covered by either 
one. Gm-(N - n m )  is computed from a tree that is the 
original tree with center m deleted. As a result, the set of 
chains partially covered by center m remains partially 
covered at the root node. Hence, Gin- is an array indexed 
over ik ---- 0, 1 . . . . .  Nk for all k partially covered by center 
m .  

The computation of each of G(N - lk), Gm÷(N - lk), 
and Cm-(N - nm) for k = 1, 2 . . . . .  K and m E CENTERS(k) 
separately from traversing an entire tree requires approxi- 
mately the same amount  of time and space as C(N). Thus 
the computation of chain throughputs and mean queue 
lengths can be done with (probably) no additional space, 
compared to that of G(N), but with a time requirement up 
to (M + 1)K times that of G(N). 

If additional space is available, then some or all of the g 
arrays from the computation of G(N) can be saved, and 
the computation of the other normalization constants can 
be accomplished without traversing an entire tree. We 
found that some modest increase in space can give rise to 
very substantial savings in time. These considerations are 
ad~lressed in Secs. 4.1 to 4.4. An illustration of trading 
space for time is shown in Sec. 6. 

It is convenient for us to assume for the moment that 
there is space to accommodate the entire tree of g arrays 
computed in the process of getting G(N), in addition to 
temporary space needed for tree traversal and array con- 
volutions. The time and space tradeoff when only some of 
the g arrays in the tree can be stored is addressed in Sec. 
4.4 (see also [13]). 

4.1 Marginal Distribution of  Queue Lengths 
If center m is a queue-dependent center, its mean queue 
lengths have to be calculated from the marginal queue 
length distribution of center m. We need the array G~_ 
first. Let opt be the set of partially covered chains in cen- 
ter m. Gin- is an array indexed by ipc and is obtained by 

FIGURE 4. Trees for G, G~,+, and Gin-. 
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redoing the convolutions along the path between center m 
and the root of the tree. We illustrate this with a binary 
tree in Figure 5. For a balanced tree, the number of convo- 
lutions needed to get Gin- is (log2M) - 1. In Figure 5, the 
sequence of convolutions needed is indicated by a dashed 
line. The stored g arrays needed at various nodes are 
labeled by g. Note that with a sequential convolution algo- 
rithm, Gin- is available free for m = M but requires M - 1 
convolutions to compute for m = 1, 2 . . . . .  M - 1. 

FIGURE 5. Tree Traversal to Compute the Array G,.-. 

4.2 Mean Queue Lengths for a Fixed-rate Service Center 
To compute qmk(N), we need Gm÷(N - lk), which is ob- 
tained by redoing the convolutions along the path from 
center m to the root of the tree. (See Figure 6.) For a 
balanced tree, the number of convolutions needed is 
(log2M) + 1. The stored g arrays needed at various nodes 
are labeled by g in Figure 6. 

Let Opc be the set of partially covered chains in center 
m. Note that Gm÷(N - 14) needs to be computed for every 
k in Opc. Some additional space will enable the computa- 
tion of Gm÷(N - 14) for all k e o~c to be performed at the 
same time. Instead of computing a single g array at a node 
along the path between center m and the root, multiple g 
arrays are computed. Recall that in the computation of 
G(N), when a chain, say h, becomes fully covered at a 
node, the partially covered array computed for the node 
consists of elements with index value is = Nh. If both 
G(N) and G(N - 14) are desired, then two partially cov- 
ered arrays need to be computed at the node; one array 
contains elements with index value is = Nh and the other 
contains elements with index value is  = N ^  - 1. 

FIGURE 6. Tree Traversal to Compute G,.+(N - 1,). 

The method is best illustrated with an example. Let 
op~ = (1, 2, 3). Referring to Figure 6, suppose that chain 1 
is fully covered at node 2, chain 2 is fully covered at node 
3, and chain 3 is fully covered at node 4. The partially cov- 
ered arrays needed for each node are shown in Table VI. 

For a fixed-rate service center, the method just de- 
scribed to compute Gm+(N - lk), and thus mean queue 
lengths in center m, is likely to require less time and 
space than the computation of Gin- in the previous sec- 

Table VI. Arrays Needed to Obtain G,.+(N - lk) for k = 
1, 2, 3 in Example. 

Index values of fully 
Node Status of chains 1, 2 and 3 covered chains in partially 

covered arrays 
1 All partially covered ... 
2 Chain 1 fully covered i, = N,, N, - 1 
3 Chains 1 and 2 fully covered (i~, i2) = (N~, N2), (N1 - 1, N2), 

(N,, N2 - 1) 
4 Chains 1,2, and 3 fully covered (/1,/2, is) = (N, - 1, N2, N3), 

and Root (N,, N2 - 1, N3), (N,, N2, Ns - 1) 

tion. Two more convolutions are required in each tree 
traversal here. However,  when a chain, say h, becomes 
fully covered, only array elements with index values Nh 
and N^ - 1 are computed instead of elements for the full 
range of index values (0, 1 . . . . .  Nh} needed in the compu- 
tation of Gin-. 

4.3 Chain Throughputs 
We describe two methods for computing the normaliza- 
tion constants G(N - lk) for k = 1, 2 . . . . .  K needed to 
calculate chain throughputs. 

Method  1. Consider chain k which is partially covered 
by center m. Let NODE denote the (branch or root) node 
at which chain k becomes fully covered. An array convo- 
lution is performed at this node to obtain g array elements 
with index value ik = Nk -- 1. Convolutions at nodes along 
a path from NODE to the root node are then performed 
sequentially. The resulting normalization constant at the 
root node is G(N - lk). Consider the example illustrated 
in Figure 7. Suppose that chain 1 visits centers 1, 14, and 
16, and chain 2 visits centers 1, 3, and 7. Chain 1 does not 
become fully covered until the root node. Hence, one 
convolution (at the root node) is sufficient to compute 
G(N - lk) for k = 1. Chain 2 becomes fully covered at 
node 1. Two convolutions are thus needed, the first at 
node 1 and the second at the root node, to compute 
G(N - lk) for k = 2. 

If chain k is fully covered by center m, then all convo- 
lutions along the path from center m to the root node 
need to be performed. The g array of center m, given by 
Eq. (9), can be obtained from the stored g array at the leaf 
node corresponding to center m as follows: 

#(nm)Nk 
g{m} (ipc) ~- g (,~} (ipc) 

n~p,., (15) 

for i~,  where ih = 0, 1 . . . . .  Nh, h e opt 

M e t h o d  2. The normalization constants G(N - l k )  for 
k = 1, 2 . . . . .  K are computed together in the same tree 
traversal as G(N); this is similar to the computat ion of 

FIGURE 7. Tree Traversal to Compute G(N - 1,). 
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FIGURE 8. An Example of Partitioning the Tree of g Arrays. 

Gm+(N - 14) described earlier. Let arc denote the set of 
fully covered chains at some node in the tree and ifc = {ik, 
k ~ arc). At this node, [ oft [ + 1 partially covered arrays are 
computed corresponding to the index values ifc = Nrc and 
iic : N[~ - lk for k c Ofc, where Nfc = (Nk, k E Ofc}. The 
results at the root node will then be equal to the normali- 
zation constants G(N) and G(N - 14) for k = 1, 2 . . . . .  K. 

4.4 Space-Time Tradeoff 
In the discussions on the computation of network per- 
formance measures, it was assumed for ease of exposition 
that the whole tree of g arrays from the computation of 
G(N) was stored. It should be obvious from the methods 
described for the computation of the normalization con- 
stants G(N - 14) and Gm+(N - 14) and the array G,,_ that 
g arrays at nodes near the root of the tree are fewer in 
number and are used much more frequently than g arrays 
at nodes near the leaves of the tree. 

If space is limited so that only a few g arrays can be 
stored, then the g arrays at nodes immediately below the 
root node should be stored. In this case, when g arrays 
not stored are required during a tree traversal, they are 
recomputed. An interesting optimization problem is: given 
an amount of space available, which g arrays should be 
stored to minimize the time requirement to compute some 
specified performance measures? The numerical example 
in Sec. 6 shows that storing just the two g arrays of the 
root's sons enabled us to reduce the time requirement of 
computing chain throughputs very substantially. 

Conceptually, we can think of partitioning the tree into 
subtrees such as those shown in Figure 8. The subtree of 
g arrays containing the root node (To in Figure 8) is saved 
and stored in memory. The g arrays in the other subtrees 
are not saved but are recomputed when needed. Alterna- 
tively, for very large queueing networks whose time re- 
quirements to recompute g arrays in these subtrees are 
very large, we can save them in secondary storage and 
swap them into memory when they are needed. The tree 
of g arrays thus provides a convenient data structure for 
implementing such storage management strategies to fa- 
cilitate the solution of very large networks. 

5. THE TREE ALGORITHM 
All aspects of the tree convolution algorithm have been 
discussed in Secs. 3 and 4. A high-level description of the 
entire algorithm is presented here. 

Algorithm 3 (the tree algorithm) 

begin 
1. input CENTERS(k), Nk, pink, and Pro, for k = 1, 2 . . . . .  

K and m = 1, 2 . . . . .  M, and performance measures 
desired by the analyst; 
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repeat 
2. call a tree planting procedure; 
3. evaluate the time and space needed to calculate 

the specified performance measures 
4. until the analyst quits 
5. if a tree has been found with acceptable time and 

space requirements then 
begin 

6. determine which nodes of the tree of g arrays from 
the computation of G(N) should be saved 

(comment: t ime-space tradeoff decision) ; 
7. postorder tree traversal to compute G(N) 

(comment: when a node is visited, its g array is 
computed using Eq. (9) or Eq. (A4) for a leaf 
node, and Eq. (A1) for a branch node or the root 
node); 

8. tree traversals to compute those normalization 
constants G(N - lk), Gm+(N -- lk) and Gm-(N - 
rim) that are needed to evaluate the specified per- 
formance measures; 

9. output results 
end 

end 

Algorithm 3 is made up of two procedures. Steps 1-6 
constitute the preprocessor described in Sec. 3.4. Our cur- 
rent implementation of the preprocessor leaves some of 
the decisions for the programmer. First, the programmer 
specifies which tree planting procedure should be called 
in step 2. In steps 4 and 5, the programmer decides 
whether the time and space requirements of the tree algo- 
rithm are acceptable. (Are they better than those of other 
computational algorithms? Are they feasible for the com- 
puter being used?) He may use a variety of tree planting 
procedures to plant several trees and then pick the best 
one. In step 6, the programmer decides whether some or 
all of the g arrays from the computation of G(N) are saved 
for subsequent tree traversals (as described in Sec. 4.4). 

Steps 7-9 constitute the second procedure that carries 
out the primary function of the tree algorithm, namely, 
performance evaluation of a product-form queueing net- 
work. The details of step 7 have been given in Secs. 3.1 
and 3.2. The details of step 8 have been given in Secs. 4.1 
to 4.3. 

6. A NUMERICAL EXAMPLE 
We illustrate the application of the tree algorithm to solve 
a queueing network model of the store-and-forward 
packet-switching network shown in Figure 9. The net- 
work has 26 store-and-forward nodes and 64 communica- 
tion channels (each link in Figure 9 consists of two com- 
munication channels in opposite directions). 

Since processor delays within store-and-forward nodes 
are typically much smaller than communication channel  
delays, they have been ignored in the queueing network 
model [16, 20]. The queueing network model thus has 64 
queues with fixed-rate servers, one for each of the 64 
communication channels. 

The network supports 32 virtual channels with routes 
given in Table VII. Each virtual channel  is modeled as a 
closed chain with the chain population size corresponding 
to the flow control window size of a virtual channel. For 
simplicity, we have ignored the modeling of end-to-end 
acknowledgements and the modeling of packet sources of 
virtual channels. (The interested reader is referred to [15, 
16, 18, 20] for discussions on these modeling issues.) It is 
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assumed that every packet (customer) arriving at its desti- 
nation node triggers instantaneously the arrival of a new 
packet to the source node of the virtual channel. As a 
result, the number  of packets within each virtual channel  
is fixed (closed chain model). 

We provide solutions to the network example for two 
cases. In the first case, we consider all virtual channels to 
have a window size of 3, that is, Nk = 3 for all k. It has 
been shown to be desirable to make the window size of a 
virtual channel equal to its path length, that is, the num- 
ber of communication channels along the route from the 
source node to the destination node [8, 14, 20]. This is the 
second case that we solved. 

A communication channel  in the network connecting 
node i to node j is named by the ordered pair (i, j) or i ---, 
j. The mapping between the 64 communicat ion channels 
and the 64 service centers in the model indexed by m = 1, 
2 . . . . .  64 is shown in Figure 10, which also shows the tree 
planted by Algorithm 2. Each communication channel  is 
modeled as a fixed-rate server with a mean service time 
of I sec for all servers and all chains. 

The performance measures of interest in the network 
example are the throughputs and mean end-to-end delays 
of the individual virtual channels. Using the tree algo- 
rithm, we computed G(N) and G(N - lk) for k -- 1, 2 . . . . .  
64 for the two cases of window sizes. The throughput of a 
virtual channel is computed using Eq. (11). The mean end- 
to-end delay of a virtual channel  is then obtained from 
Little's formula. Results for the case of Nk equal to the 
path length of chain k for all k are shown in Table VIII. 

G(N - lk) was computed using two slightly different 
methods. In the first method, none of the g arrays from 
the computation of G(N) was saved. An entire tree of g 
arrays is computed to get each G(N - lk). In the second 
method, the two g arrays at the root's sons from the 
computation of G(N) are saved and stored. The time re- 
quirement of method 2 was found to be substantial ly less 
than that of method 1. The amount  of space required is 
only slightly more. The actual number  of multiplications, 

FIGURE 9. Store-and-Forward Network of 26 Nodes and 64 
Communication Channels. 

Table VII. Virtual Channel Routes of the Store-and- 
Forward Network Example. 

Virtual Channel Route (In Node Sequence) 

1 1234567  
2 7654321  
3 45625 
4 1231716 
5 1231718 
6 131211 1098 
7 1516173 
8 23 
9 32 

10 3171615 
11 1 13 14 1521 20 
12 1 13 14 1521 22 
13 22 23 24 10 9 
14 22 23 24 1011 
15 22 23 24 26 
16 5419 
17 2225678 
18 22 21 15 14 1312 
19 22 21 15 1617 18 
20 25 6 5 4 
21 1617321 
22 1817321 
23 891011 1213 
24 2021 1514131 
25 22 21 15 14 131 
26 9 10 24 23 22 
27 11 10242322 
28 26 24 23 22 
29 194 5 
30 8762522 
31 1213 14 1521 22 
32 1817 16 15 21 22 

divisions, and additions needed by the tree algorithm to 
obtain the results for the two cases were counted and are 
shown in Tables IX and X for the two methods. 

We now explain the space requirements given the use 
of static storage allocation or dynamic storage allocation 
shown in Tables IX and X. D y n a m i c  a l locat ion  means 
that each g array is allocated storage for the exact number  
of array elements. Sta t ic  a l locat ion means that all g ar- 
rays are stored in data structures of the same type (size). 
The type of the data structures is declared before per- 
forming array convolutions and must be large enough to 
accommodate the largest g array. In both c a s e s ,  storage is  
allocated to an array  only  when needed.  (The tree algo- 
rithm is currently implemented in Pascal with static allo- 
cation of storage for arrays.) With static allocation, the 
space requirement is determined by the maximum num- 
ber of arrays that the algorithm needs to store at the same 
time. With dynamic allocation, the space requirement is 
the space needed to store the maximum number  of array 
elements that the algorithm needs to store at the same 
time. After a tree has been planted, the preprocessor has 
sufficient information to calculate the space requirement 
given the use of either dynamic or static allocation. 

For the network example considered, the preprocessor 
found that the maximum number  of partially covered 
chains is 4 at any node in the tree of Figure 10, and that 
each g array can be stored in a data structure with 4 4 
elements in case 1 and with 7 × 6 3 elements in case 2. 
With method 1, the maximum number  of g arrays that 
need to be stored in the postorder tree traversal, is 2 + 
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FIGURE 10. Left and Right Subtrees Planted for the Network Example. 

(log~M) = 8. Hence, the space requirement  given static 
allocation is 8 × 44 = 2048 locations for case 1 and 8 × 7 × 
6 ~ = 12,096 locations for case 2. With  method 2, the two g 
arrays at the root 's  sons can be saved and G(N - lk) 
computed with addit ional  storage for one more array. 
Hence, the space requirement  given static allocation is 9 
× 44 = 2304 locations for case 1 and 9 × 7 × 6 4 = 13,608 
locations for case 2. Compare Table IX and X and note 
that in this example a small increase in space buys a large 
amount of saving in time. 

To calculate the chain throughputs for the network ex- 
ample using the sequential  convolution algorithm and 
MVA algorithm, the space and time requirements for the 
case of Nk = 3 for all k are shown in Table XI. The results 
in Table XI are based upon the original descript ions of 
the two algorithms and Zahorjan 's  analysis  of them [27]. 
(Other algorithm implementat ions may have slightly dif- 
ferent time and space requirements.  Their  orders of mag- 
nitudes, however, are expected to be about the same. In 
particular, the MVA space requirement  shown in Table 
XI may be reduced by about a factor of K.) Note that with 
the MVA algorithm, mean queue lengths are also obtained 
for the same time requirement shown in Table XI. With  
the sequential or tree convolution algorithm, however,  ad- 
ditional time is needed to compute mean queue lengths. 

7. CONCLUSIONS 
We have presented the tree convolution algorithm for the 
computation of normalizat ion constants and performance 
measures of product-form queueing networks (Algorithm 
3). The algorithm is very efficient, compared to existing 
algorithms, in the solution of networks with many queues 
and many  routing chains that are character ized by a 

sparseness property.  It is noted that the sparseness prop- 
erty and a locality proper ty  are often encountered in 
models of large communicat ion networks  and distr ibuted 
systems. 

The tree algorithm exploits the routing information of a 
given network to reduce the time and space requirements  
of needed computations.  The time and space savings are 
made possible by two features of the algorithm. First, the 
sequence of ar ray convolutions to compute a normaliza-  
tion constant is determined by the traversal  of a tree. 
Second, convolutions are performed between part ial ly 
covered arrays that are much smaller, for networks  with 
the sparseness property,  than the K-dimensional arrays  
used by existing algorithms. 

Algorithm 1 presents the basic algorithm of a family of 
heuristic procedures for tree planting. These procedures 
have been found to be very effective by an exper imental  
s tudy [18] in which hundreds  of networks were generated 
randomly and their computat ional  time and space re- 
quirements determined.  An exact solution of a communi-  
cation network model  with 64 queues and 32 routing 
chains is illustrated. Algori thm 2 presents the specific tree 
planting procedure used for the solution. The large time 
and space savings of the tree algorithm in the example,  
compared to the requirements of the sequential  convolu- 
tion and MVA algorithms, is typical  of models of large 
communication networks that are often character ized by 
strong sparseness and local~ity properties.  

A tree is used because it is a convenient  structure for 
representing an arbi t rary  sequence of a r ray  convolutions 
to compute normalizat ion constants.  Furthermore,  a tree 
of arrays provides a flexible data structure for achieving 
space- t ime tradeoffs and for the incorporat ion of storage 
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Table VIII. Chain Throughputs and Mean End-to-End 
Delays for the Network Example (N, = path length of 
chain k for all k). 

Chain Throughput Rate Delay 
1 0.559 10.74 
2 0.559 10.74 
3 0.634 4.73 
4 0.463 8.64 
5 0.524 7.64 
6 0.914 5.47 
7 0.698 4.30 
8 0.456 2.20 
9 0.456 2.20 

10 0.698 4.30 
11 0.526 9.51 
12 0.475 10.53 
13 0.577 6.93 
14 0.577 6.93 
15 0.604 4.97 
16 0.746 2.68 
17 0.945 4.23 
18 0.461 10.85 
19 0.501 9.98 
20 0.634 4.73 
21 0.463 8.64 
22 0.524 7.64 
23 0.914 5.47 
24 0.526 9.51 
25 0.475 10.53 
26 0.577 6.93 
27 0.577 6.93 
28 0.604 4.97 
29 0.746 2.68 
30 0.945 4.23 
31 0.461 10.85 
32 0.501 9.98 

management techniques (to facilitate the solution of very 
large networks). 

Given a network and its routing information, a preproc- 
essor is used to construct trees and to evaluate the time 
and space needed to accomplish certain computations. 
The time and space requirements of the preprocessor it- 
self are modest (much smaller than the requirements of 
array convolutions)• The preprocessor provides fast accu- 
rate (a priori) estimates of the time and space needed to 
solve a specific network• 

An analysis of the time and space complexity of the 
tree algorithm for a class of networks requires a model of 
the routing behavior of all networks in the class. In [13], 
an analysis is presented for a class of networks whose 
routes are determined probabilistically by Bernoulli trials• 
The analysis quantifies the expected time and space sav- 
ings (as a function of a measure of sparseness) due to the 
use of partially covered arrays• Improvements due to tree 
optimization by tree planting procedures h a ~  been char- 
acterized experimentally [18]• 

The sequential convolution algorithm, the MVA algo- 
rithm and their variants have time and space require- 
ments that contain the term I~kK=l (Nh + 1) which is the 
factor limiting the applicability of these algorithms. The 
limiting factor in the tree algorithm's time and space re- 
quirements is the maximum value of 1-[kEo (Nk + 1) over 
all tree nodes, where ape is the set of parhally covered 
chains at a node. In general, if a tree can be found ';o that 
I Opc I << K for each tree node, then the tree algorithm will 
provide substantial time and space savings. This is ex- 
pected to be the case in the solution of large networks 
with the sparseness property. It should be obvious that 
the tree algorithm can solve a lot of networks that are not 

solvable by the sequential convolution and MVA algo- 
rithms. It should also be obvious that the tree algorithm 
cannot solve arbitrarily large networks. Therefore, the 
study of approximate solution techniques is still impor- 
tant. Since the tree algorithm provides an exact solution, 
approximate solution techniques can now be validated 
over a much larger set of product-form queueing net- 
works than was previously possible without resorting to 
simulation. 

Table IX. Time and Space Requirements of the First 
Method (g Arrays not Saved) for the Network Example. 

Case 1. Case 2. 
N, = 3 for all k Nk = chain path 

length for all k 
Multiplications 2,090,760 14,490,452 

Time Divisions 154,962 545,946 
Additions 1,935,534 13,944,372 

Space 
(If static 2,048 12,096 
allocation) 
(If dynamic 1,360 4,404 
allocation) 

Table X. Time and Space Requirements of the Second 
Method (g Arrays of Root's Sons Saved) for the Network 
Example. 

Case 1. Case 2. 
N, = 3 for all k N, = chain path 

length for all k 
Multiplications 991,132 6,751,230 

Time Divisions 73,876 253,100 
Additions 917,156 6,498,096 

Space 
(If static 2,304 13,608 
allocation) 
(If dynamic 1,376 4,476 
allocation) 

Table Xl. Time and Space Requirements of the 
Sequential Convolution Algorithm and the MVA Algorithm 
for the Network Example (Case 1. Nk -- 3 for all k). 

The Sequential 
Convolution The MVA 
Algorithm Algorithm 

Multiplications 3.78 x 10 ~ 7.56 × 10 ~ 
Time Divisions 32 5.90 × 1020 

Additions 3.78 x 10 ~ 7.61 x 10 ~ 

Space 1.84 × 1019 9.89 × 102~ 
(upper bound) 

Appendix  I. Derivation of Time (SUBNET1, SUBNET2) 
Equation (8) is evident when the convolution in Eq. (7) is 

rewritten in terms of elements of partially covered arrays. 

Let 

aio -- (hi, h2 . . . . .  h. )  C_C_ {1, 2 . . . . .  K) 

o,, ffi (hi, h~, . . . ,  hb) _ (1, 2 . . . . .  K) 

and define 

o~ = (k [ chain k is partially covered by SUBNET1 and 
noncovered by SUBNET2} 

and 

oy = (h I chain k is partially covered by SUBNET2 and 
noncovered by SUBNET1) 
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Then, Eq. (7) can be rewrit ten as 

N,~, Nko i,~, % 
gSUB~ET(ik, ke00,  13ol,) = ~ . . - .  ~. E " '" E 

Jkl =0 Jk.'O Jht =0 Jhb =0 

[gSUBNETI(Jk, k E Olo 13 o"11; ik, k e o~) 

• gSUBNET2(Nk -- jk, k E olO; ik - j k ,  k ~ o11; ik, k E oy)] 

for ik ffi 0, 1 . . . . .  Nk, k ~ 00, 13 o,, (A1) 

Appendix  II. Feedback Filtering 
Consider two leaf nodes {u} and {v}. Suppose that u is a fixed- 
rate service center. Let o~ be the set of chains partially covered 
by {v} and a. be the set of chains partially or fully covered by 
{u}. Define 

i~o= {ik, k e o. U o~} 

Let g¢~,~l be an array indexed by i~.  Define g¢.,~l (0) = 1, where  0 
is a zero vector of the appropriate dimension. Then, from Eq. (6) 
we get 

g~,~} (i~,,) = g(~,)(i~, k e o~)6(i~o) 

"-b ~ pukg{u.v)(iuv-- lk) (A2) 
kcau 

for i.,~, where  ik = O, 1 . . . . .  Nk, k e 0. tA oo 

where 1~ is a vector of the appropriate dimension with the com- 
ponent indexed by k equal to one and all other components  
equal to zero, gi.,ol (i.~ - lk) = 0 if ik = O, and 

8( iu . )=~O if i k > O  f o r a n y k e ( o ~ - 0 ° )  
otherwise 

The partially covered array for subnet  {u, v} is then obtained 
from 

g{..~(ip~) = g{..ol(i,, k e op~; Nk, k e ate) (A3) 

for i~:, where  ik ---- O, 1 . . . . .  Nk, k • ape 

The array for (v) can also be obtained by feedback filtering if 
v is a fixed-rate service center. Redefine ov to be the set of chains 
partially or fully covered by (v}. 

g(vl(iv) = ~ p~,kg~,,)(io-- lk) (A4) 
kEov 

f o r i o =  {ik, k e o v ) , w h e r e i k = 0 , 1  . . . . .  Nk, k e o r  

In Eq. (A4), we define 

g l o ) ( 0 )  = 1 

and 

g~l(i~, - lk) = 0 if ik = O. 

We can also apply Eqs. (A2) and (A3) to perform the convolu- 
tion between a leaf node and its clone in mean queue length 
calculations discussed in Sec. 4. In this case, o, and o~ in Eq. (A2) 
are the same and are defined to be the set of chains partially or 
fully covered by the leaf node. 

A c k n o w l e d g m e n t s .  T h e  a u t h o r s  t h a n k  the  ed i tor ,  H e r b  
S c h w e t m a n ,  a n d  the  a n o n y m o u s  r e v i e w e r s  f o r  t he i r  con -  
s t r u c t i v e  c r i t i c i sms .  T h e y  w o u l d  a l so  like to e x p r e s s  t he i r  
a p p r e c i a t i o n  to t he  f o l l o w i n g  p e o p l e  w h o  p r o v i d e d  h e l p f u l  
c o m m e n t s :  Pe te r  D e n n i n g  a n d  J a m e s  S o l b e r g  of  P u r d u e  
Un ive r s i t y ;  J a m e s  C. B r o w n e ,  K. M a n i  C h a n d y ,  a n d  A. 
U d a y a  S h a n k a r  of  the  U n i v e r s i t y  of  T e x a s  at  
Aus t i n ;  S teve  L a v e n b e r g  a n d  C h a r l e s  S a u e r  of  IBM 
T h o m a s  J. W a t s o n  R e s e a r c h  Cen te r ;  Pau l  S c h w e i t z e r  of  
the  U n i v e r s i t y  of  R o c h e s t e r ;  J o h n  Z a h o r j a n  of  t he  U n i v e r -  
s i ty  of  W a s h i n g t o n .  
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