
A Stepwise Refinement Heuristic for Protocol
Construction

A. LIDA’fA SHANKAR

University of Maryland

and

SIMON S. LAM

The University of Texas at Austin

A stepwise refinement heuristic to construct distributed systems is presented The heuristic is

based on a conditional refinement relation between system specifications, and a “Marking.” It is

applied to construct four sliding window protocols that provide reliable data transfer over

unreliable communication channels. The protocols use modulo-N sequence numbers. The first

protocol is for channels that can only lose messages in transit. By refining this protocol, we

obtain three protocols for channels that can lose, reorder, and duplicate messages in transit. The

protocols herein are less restrictive and easier to implement than sliding window protocols

previously studied in the protocol verification literature.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network

protocols-protocol verification; C.3 [Computer Systems Organization]: Special-Purpose

and Application-Based Systems— real-time systems; D. 2.1 [Software Engineering]: Require-

ments/Specifications— methodologies; D.2. 2 [Software Engineering]: Tools and Techniques—

modules and interfaces; D.2.4 [Software Engineering]: Program Verification— correctness

proofs; D.2. 10 [Software Engineering]: Design— methodologies; F.3. 1 [Logics and Meanings

of Programs]: Specifying and Verifying and Reasoning about Programs— assertions, inuariants,

pre- and post-conditions, specification techniques

General Terms: Design, Languages, Verification

Additional Key Words and Phrases: Assertional reasoning, conditional refinement, cyclic

sequence numbers, interfaces, message lifetimes, sliding window protocols, stepwise refinement

1. INTRODUCTION

The specification of a distributed system in our methodology consists of a

state transition system and a set of requirements. A state transition system

is defined by a set of state variables, a set of events, and an initial condition

The work of A. U. Shankar was supported by National Science Foundation grants ECS-8502113

and NCR-890450. The work of S. S. Lam was supported by National Science Foundation grants

NCR-8613338 and NCR-9004464.

Authors’ addresses: A. U. Shankar, Department of Computer Science and Institute for Advanced

Computer Studies, University of Maryland, College Park, MD 20742; S. S. Lam, Department

of Computer Sciences, The University of Texas at Austin, Austin, TX 78712.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1992 ACM 0164-0925/92/0700-0417

ACM l’ransact,ons on Programmmg Languages and Systems, Vol 14, No 3, July 1992, Pages 417-461.

418 . A, U, Shankar and S. S. Lam

on the state variables; each event is defined by a set of allowed state

transitions. Requirements can be of three types: invariant requirements,

event requirements, and progress requirements. Invariant requirements,

events, and event requirements are used to specify desired safety properties

of the distributed system. Progress requirements, stated using the temporal

operator leads-to [5, 351, are used to specify desired progress properties.

The topology of a distributed system is, in general, a directed graph whose

nodes are called entities and whose arcs are called channels. 1 To construct a

distributed system with a given topology, the state variables and events of

the state transition system are required to satisfy some constraints imposed

by the topology.

To construct a distributed system using our stepwise refinement heuristic,

we begin with a system specification consisting of a state transition system

and a set of invariant, event and progress requirements. This very first state

transition system is generally simple, with just enough resolution in its

state space for specifying the desired safety and progress properties. The goal

of our construction is a state transition system that satisfies all of the

requirements in the system specification (given some fairness assumptions).

To achieve this goal, a sequence of state transition systems is derived by

applications of some system refinement steps. Requirements in the system

specification are successively strengthened by applications of some require-

ment refinement steps; in doing so, new requirements may be generated. The

objective of each refinement step is to increase the number of requirements

that are marked (to be defined precisely below).

In applying our heuristic to construct a distributed system, the construc-

tion is not guaranteed to terminate. When it does terminate, however, there

are two possible cases: (1) The construction terminates successfully when all

requirements in the system specification are marked, and the state transition

system satisfies all topology constraints of the distributed system. (2) The

construction terminates unsuccessfully when a requirement is generated that

is inconsistent with other requirements or with the initial condition of the

system.

Our construction heuristic is influenced by Dijkstra’s work on the formal

derivation of programs using weakest preconditions [7]. A key element of our

heuristic is the notion of one system specification being a conditional refine-

ment of another system specification. It is adapted from our earlier work on

refinement relations between state transition systems based on the use of

projection mappings [17, 18, 33]. In Section 8 we give a more detailed
comparison of our approach with other approaches in the literature and

describe other applications of our heuristic.

1.1 Construction Examples

Our heuristic is illustrated by a rigorous exercise in constructing four sliding

window protocols that provide reliable data transfer between a producer and

lWe use terminology from the networking area.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992

Stepwise Refinement Heuristic ● 419

a consumer connected by unreliable channels. All protocols use modulo-11

sequence numbers. 2 The desired property that sequence numbers in data

messages and acknowledgment messages are interpreted correctly is stated

as invariant requirements. We first construct a basic protocol that satisfies

these correct interpretation requirements for channels that can only lose

messages in transit. This basic protocol is then refined to be used for

channels that can lose, duplicate, and reorder messages arbitrarily. To

satisfy the correct interpretation requirements for such channels, it is neces-

sary that message lifetimes are bounded so that certain time constraints can

be enforced in producing data blocks. We present three different ways

of enforcing these time constraints, resulting in three protocols. The first

and second of these protocols use 2 N and N timers, respectively. The third

protocol uses a single timer to enforce a minimum time interval between

producing successive data blocks. The minimum time interval is a function of

N, the receive window size, and the maximum message lifetimes. To con-

struct these three protocols, we use the system model developed in [341 and

[35] in which real-time constraints can be specified and verified as safety

properties.

To our knowledge, this is the first verified construction of sliding window

protocols that use modulo-N sequence numbers where N is arbitrary. Our

first and second protocols for loss, duplication, and reordering channels

appear to be novel. Our third protocol is best compared with the origi-

nal Stenning’s protocol [36], which has several unnecessary requirements.

Stenning verified certain safety properties assuming unbounded sequence

numbers. He then informally argued that modulo-N sequence numbers can

be used provided that N satisfies a bound. His bound is similar to ours, but

not as tight as ours. (A detailed comparison is presented in Section 6.6.)

Knuth [15] has analyzed a sliding window protocol using modulo-N sequence

numbers. He gives the minimum value of N that ensures correct data

transfer along channels that lose messages and also allow messages to

overtake a limited number of previously sent messages. Because of this

restriction on the reordering of messages, his protocol does not require timers

and the assumption of bounded message lifetimes.

In [31] we have extended the protocol for loss-only channels and the third

protocol for loss, duplication, and reordering channels to include the use of

selective acknowledgment messages as well as variable windows for flow

control.

1.2 Organization of this Report

In Section 2 we give an overview of our system model, proof rules, and a

refinement relation between state transition systems. In Section 3 we give

a brief description of our construction heuristic, including the conditional

refinement relation between system specifications. In Section 4 we derive the

2In a real protocol, sequence numbers in data messages and acknowledgment messages are coded

by a small number of bits.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

420 . A. U. Shankarand S. S. Lam

basic protocol and show that for channels that can lose, duplicate, and

reorder messages arbitrarily, its requirements are almost completely marked;

only two invariant requirements concerning sequence numbers in channels

remain unmarked. In Section 5 we show that, for channels that can only lose

messages, the basic protocol in fact satisfies all of the requirements. In

Section 6 we refine the basic protocol to obtain three different protocols

that satisfy all of the requirements for channels that can lose, duplicate, and

reorder messages arbitrarily. In Section 7 we review our heuristic

and present a list of useful refinement steps; a proof of the soundness

of these steps is presented in Appendix A. In Section 8 we describe other

applications of our heuristic and discuss related work.

2. MODEL AND NOTATION

In this section we describe our notation for state transition systems, fairness

requirements, safety and progress assertions, and present a refinement rela-

tion between state transition systems.

2.1 State Transition System and Fairness Requirements

A state transition system X is specified by (1) a set of state variables,

Variablesx; (2) an initial condition on the state variables, Initialx; (3) a set

of events, Eventsx; and (4) for every event e e Euentsx, an event formula

fornzzdax(e) that specifies a set of transitions (explained below).

The state variables define the state space of X. Associated with each

state variable u is a set cionzain(u) of allowed values. Each tuple (dU:

u e Variablesx), where d, e domain(u), represents a state of X.

We use state formulas to specify sets of states. A state formula is a formula

in Variablesx that evaluates to true or false when Variables ~ is assigned s,

for every state s of X.3 The state formula specifies the set of states for which

it evaluates to true. A state s satisfies a state formula P iff P evaluates to

true for s. For example, the initial condition Initialx is specified by a state

formula.

A transition is an ordered pair of states of X. Associated with each event

e e Eventsx is a set of transitions, referred to as the transitions of e. We use

event formulas to specify these sets of transitions [18, 34]. An euent formula

is a formula in VariablesiY U Variables;, where Variables> = { v’: u e

Variablesx} and domain(u’) = domain(u). The ordered pair (s, t)is a transi-

tion of an event formula iff the formula evaluates to true when Variablesx is

assigned s and Varia61es~ is assigned t.

Conventions. When defining events and their event formulas, we treat

the event as a name for the formula, as in the example el = x >2 ~ y’ e

3We use formula to mean a well-formed formula in the language of predicate logic. In a formula,

the logical operations, -, A, V, and + , are assumed to have decreasing binding power. By

“ Variablesx is assigned s“, we mean the following: If s is the tuple (du: tI G Variablesx) then for

every variable u in Variablesx, each free appearance of u in the state formula is replaced by dU,

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992

Stepwise Refinement Heuristic . 421

{1, 2, 5}, where x and y are state variables. For every state variable u in

Variablesx, if U’ is not a free variable of forrnzdax(e), the conjunct u’ = u is

implicit in formzdax(e); that is, the occurrence of e does not change the

value of the state variable v. Also, we use parameters in event formulas as a

convenient way to specify a group of related events; for example, ez (m) =

x > y A x i- y’ = rn, where m is a parameter with a specified domain of

allowed values.

A behauior of state transition system X is a sequence (so, e., SI, el, . ..) of

alternating states and events such that so is an initial state and, for all i,

(Si,.Si+ J is a transition of event ei. Note that a behavior can be infinite or
finite. By definition, a finite behavior ends in a state.

For every event e ● Eventsx, the enabling condition of e, denoted

enabled, refers to the set of states {s: for some state t, (s, t) is a

transition of e}; that is,

enabled = [~ Variables;: forrnulax(e)l.

Event e is enabled (disabled) in state s iff s satisfies (does not satisfy)

enabled.

In order for a state transition system to satisfy progress properties,

some fairness assumptions are needed. These assumptions are explicitly

stated as fairness requirements for sets of events of X. For any event set
E s Eventsx, we say that E is enabled in state s iff, for some e e E, e is

enabled m s. In a behavior u = (s., eo, SI, el, . . .), we say that E occurs in

state SJ iff ej e E. We say that an event set E G Eventsx has weak fairness to

mean the following: if E is continuously enabled, then one of the events in E

eventually occurs. Formally [18, 24], a behavior o of X satisfies weak

fairness for event set E iff (1) u is finite and E is not enabled in the last

state of o, or (2) u is infinite and either E occurs infinitely often or is

disabled infinitely often in U. Another type of fairness requirement will be

introduced below for channels.

Given a set of fairness requirements, an allowed behavior of X is a

behavior of X that satisfies every fairness requirement in the set.

Some of the state variables in Variablesx may be auxiliary variables, that

is, state variables that are needed for specification or verification only and do

not have to be included in an implementation of X. For example, an

auxiliary variable may be needed to record the history of certain event

occurrences. Informally, a subset of Variablesx is auxiliary if they do not

affect the enabling condition of any event or the update of any state variable

that is not auxiliary [28]. A more precise statement of this condition and a

better explanation can be found in [181.

2.2 Safety and Program Properties

To state safety properties, we use assertions of the form ~nuariant(P), where

P is a state formula. Invariant(P) is satisfied by a finite sequence u =

(s., eo, Sl, e,, . ..) of alternating states and events (or u satisfies Invariant(P))

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

422 . A. U. Shankar and S. S Lam

iff P is satisfied by every state s, in o. Inuariant(P) is satisfied by an

infinite sequence of alternating states and events iff every finite prefix of the

sequence satisfies Irzuariant(P). Inuaricznt(P) is satisfied by a state transi-

tion system X (or X satisfies Inzmriant(P)) iff every finite behavior of X

satisfies Inuariant(P).4 We say “P is an invariant of x“ to mean

that X satisfies Invariant(P).

To state progress properties, we use assertions of the form P leads-to Q,

where P and Q are state formulas. P leads-to Q is satisfied by a sequence

a = (so, eo, sl, el, . . .) of alternating states and events iff the following holds:

For every state s, in a that satisfies P, there is a state Sj in o, j > i, that

satisfies Q. P leads-to Q is satisfied by a state transition system X with a

given set of fairness requirements iff every allowed behavior of X satisfies P

leads-to Q.

We now present some inference rules that will be used in our construction

heuristic (for a more complete treatment of inference rules, see [18] and [25]).

To state these rules, we need the following notation: For an arbitrary state

formula R, R’ denotes the formula obtained from R by replacing every

state variable v in it by u’. In the following rules, X denotes a state

transition system:

Invariance Rule. X satisfies Invariant(P) if (1) Initialx + P and (2) for

every event e of X, P A formula * P’.

Leads-to-uia-Euent Rule. Given an event set E with weak fairness, X
satisfies P leads-to Q (via E) if(1) for every event e e E, P A formulax(e) + Q’;

(2) for every event e e Euentsx – E, PA formula + P’ v Q’; and (3) X

satisfies Invariant([~ e e E: P * enabled(e)]).

Leads-to-by-Closure Rules. P leads-to Q (by closure) if one of the following

holds: (1) Invariant(P = Q); (2) for some state formula R, P leads-to R and

R leads-to Q; (3) P = PI v Pz, PI leads-to Q and Pz leads-to Q; and (4)

Invariant(R) and (PA R) leads-to (R = Q).

If X satisfies Inuariant(I), we can replace P by P A IA I’ in the antecedent of

each of the above implications.

We use three types of preconditions in our heuristic. Consider state formu-

las P and Q, and an event e of state transition system X. We say that P is a

weakest precondition of Q with respect to e iff P is logically equivalent to
[V Variables~: formula + Q’]. Note that P is false precisely for those
states where e is enabled and where its occurrence can cause Q to be

falsified.5 We say that P is a sufficient precondition iff P implies the

4This ensures that every infinite behavior of X also satisfies InvarLant(P).

5This corresponds to Dijkstra’s weakest liberal precondition [7]. Also, note that in our formalism

P is a weakest precondition, and not theweakest precondition, Unlike in [7], if R is equivalent

to P, then R is also a weakest precondition.

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992.

Stepwise Refinement Heuristic . 423

weakest precondition, that is, iff [V Variables>: P A formulax(e) * Q’] is

true. We say that P is a necessary precondition iff P is implied by the

weakest precondition, that is, 7P + [~ Variables~: forrnulax(e) A-Q’] is true.

We allow assertions to have parameters. For example, the assertion x = k

leads-to x = k + 1 has x as a state variable and k as a parameter. We follow

the convention that such parameters are universally quantified. Thus, the

above assertion is equivalent to [V k: x = k leads-to x = k + 1].

2.3 Distributed System

A distributed system is defined by a topology, a state transition system, and a

set of fairness requirements. The topology is a directed graph whose nodes

are entities and whose arcs are channels. The state transition system is

required to satisfy certain topology constraints, which are given below.

For each channel, there is a state variable representing the sequence

of messages traveling along the channel. For each entity, there is a set of

nonauxiliary state variables. In addition, the system can have other state

variables that are auxiliary.

Each event of the state transition system belongs to a channel or an entity.

The events of a channel can access (read or write) only the channel state

variable and auxiliary state variables. (Channel events model channel errors

such as loss, duplication, and reordering of messages in transit.) The events

of an entity can access auxiliary state variables, nonauxiliary state variables

that belong to the entity, and state variables of channels connected to the

entity. Furthermore, an entity event can access a channel state variable only

by send and receive primitives, (Formulas for channel events and primitives

are defined in Section 4,) We assume that entity events are well defined in

the following sense: In every reachable system state, there is an entity event

enabled to receive the message, if any, at the head of each channel.

The set of fairness requirements consists of weak fairness for specified sets

of entity events, and the following channel fairness requirements for every

unreliable channel: For any set of messages M, if messages from M are sent

repeatedly along the channel, one of them is eventually received [12]. For-

mally, a behavior u satisfies the channel fairness requirement iff the follow-

ing holds: If o is infinite and messages from M are sent infinitely often in u,

then messages from M are received infinitely often in u [18].6 This fairness

requirement is generally needed to prove that a distributed system with

unreliable channels has certain useful progress properties. Specifically, we

have the following inference rule, where count(M) is an auxiliary variable

indicating the number of times messages in M have been sent since the

beginning of system execution, and where e,(m) denotes an entity event

whose occurrence results in reception of message m from the following

channel:

Leads-to-via-Message Rule. P leads-to Q (via M) if (1) for every event

e,(m), [V m e M: P A e.(m) = Q’]; (2) for every event e # e.(m), P A

‘Thus, every finite behavior satisfies the channel fairness requirement.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

424 . A. U. Shankar and S S. Lam

e*p’v Q’; and (3) for every natural number k, P A cozmi(M) ~ k

leads-to Q v count(M) > k + 1.

2.4 Refinement of a State Transition System

For two state transition systems X and Y, we next define the relation Y is a

refinement of X. Let Variables ~ ? Variablesx. Thus, there is a projection

mapping from each state of Y to a state of X. Specifically, a state of Y

denoted by (du: u e VariablesY) is mapped to the state of X denoted by (d,:

u e Variablesx). With the projection mapping, state formulas in Variablesx

and event formulas in Variablesx U Variables~ can be interpreted directly in

the state space of Y without translation.

Definition. Y is a refinement of X iff for some state formula P in Varia-

bles such that Y satisfies Inuariant(P)

— Variables y z Variablesx and Events ~ z Eventsx;

—Initial ~ * Initialx;

—~ e ~ Eventsx: P A formula * formula; and

—V e e Events Y – Eventsx: P A formula * [V v E Variablesx: v = v’].

The above definition is a special case of the one presented in [18]. Note that

if Y is a refinement of X and X satisfies Invariant(R) for some state

formula R Variablesx, then Y satisfies Invariant(R).

3. STEPWISE REFINEMENT HEURISTIC

We begin a construction with a topology and a state transition system that

has just enough resolution in its state space to specify the safety and progress

properties desired of the distributed system. The state transition system does

not have to satisfy the topology constraints. Additionally, we use invariant

and event requirements to specify desired safety properties that are not

captured by the state transition system. We use progress requirements to

specify desired progress properties. None of the requirements are marked

initially.

To model interactions between the distributed system and its environment,

each event is specified to be under either system control or environment

control. Events that are under environment control are called input events.

Starting from this initial specification, a succession of state transition

systems is derived by applications of some system refinement steps. These

steps are used to increase the resolution of the system state space by adding

new state variables, adding new messages, and refining a message into a set

of messages. The set of state transitions is changed by refining existing

events and adding new events. We also apply some requirement refinement

steps that strengthen the three sets of requirements. (We postpone a detailed

description of refinement steps to Section 7, after they have been motivated

by our protocol construction exercises in Sections 4-6.) The objective of each

ACM Transactions on Programming Languages and Systems, Vol 14, No, 3, July 1992

Stepwise Refinement Heuristic . 425

refinement step is to increase the set of marked requirements, which is

introduced below.

Initially and at any point during a construction, we have the following:

—a topology.

— a state transition system specified by a state variable set Variables, an

initial condition Initial, an event set Euents (including input events), and

an event formula formula(e) for each event e.

— a set of invariant requirements specified by state formulas A., A 1,

We use A to denote the conjunction of all of the state formulas that are in

the set of invariant requirements; if there are no invariant requirements,

then A = true. Initial - A holds. (We want a distributed system that

satisfies Inuariant(A).)

—a set of event requirements specified by state formulas So, S1, Each
requirement is associated with an event. We use S(e) to denote the

conjunction of all of the S,’s that are associated with event e; if there are

none, then S(e) = true. (We want S(e) to hold prior to any occurrence of e;

that is, we want a distributed system that satisfies

Irzuariant(erzabled(e) - S(e)).)

—a set of progress requirements Lo, L1. . . , which are leads-to assertions.

— a Marking, consisting of the following:

(1)

(2)

(3)

(4)

a subset of event requirements; each S, in the subset is said to be

marked.

a subset of (A,, e) pairs; each pair in the subset is said to be marked.

a subset of progress requirements; each L, in the subset is marked

with a tag of one of the following forms: via E where E is an event

set, via M using LJ where M is a message set, or by closure using

L L
J12 ”””> Jn”

an ordering of the Li’s (to avoid circular reasoning).

The Marking indicates the extent to which we have established that the

requirements are satisfied by the state transition system.

Parts (1) and (2) of the Marking are concerned with safety properties. An

event requirement S, of event e being marked means that S, holds in any

state where A holds and where e is enabled; that is, immediately prior to

any occurrence of e, S, holds if A holds. An (A ~, e) pair being marked means

that, for any transition (s, t) of e, if s satisfies A A S(e) then t satisfies
A,; that is, A ~ holds after any occurrence of e, assuming that A and S(e)

held immediately prior to the occurrence.

Parts (3) and (4) of the Marking are concerned with progress properties. A

progress requirement Li being marked with a tag via E means that the state

transition system satisfies Li, assuming that E has weak fairness and that

the state transition system satisfies all of the safety requirements in the
current specification. A progress requirement L. ~ being marked with a tag

via M using LJ (or by closure using LJI, LJn) means that the state

transition system satisfies L,, assuming that the state transition system

ACM Transactions on Programming Languages and Systems, Vol. 14. No. 3, July 1992.

426 . A. U. Shankar and S. S. Lam

satisfies all of the progress requirements listed in the tag and all of the safety

requirements in the current specification. To avoid circular reasoning, any

progress requirement listed in the tag of L, has to succeed L, in the ordering

of part (4).

Formally, we require the Marking to satisfying the following consistency

constraints:

(Cl) An event requirement S, associated with event e is marked only if

A ~ enabled(e) * S1 holds.

(C2) A pair (A,, e) is marked only if A AS(e) A formula(e) = A: holds.

(C3) A progress requirement P leads-to Q is marked with the tag via E only
if the following hold:

(i) for every event e e E, PA A A A’ A S(e) A formula(e) a Q’;

(ii) for every event e $ E, PA A ~ A’ A S(e) A formula(e) * P’ v Q’;

(iii) [~ e GE: PA A A S(e) = enabled(e)]; and

(iv) E does not contain an input event.

(C4) A progress requirement L, = P leads-to Q is marked with the tag via M

using LJ only if the following hold:

(i) for every event e,(m) that receives m GM, P A A A A’ A S(e,) A

formula s Q’;

(ii) for every event f # e,(m), PA A A A’ A S(~) A formula(f) - P’ v Q’;
and

(iii) L, = P ~ count(M) > k leads-to Q v count(M) ? k + 1, and LJ is

listed after L, in the ordering.

(C5) A progress requirement L, = P leads-to Q is marked with the tag by

closure using LJI, . . ., LJn only if P leads-to Q can be derived from A

and LJI, LJ~ using the closure rules, and each LJ, is listed after L,

in the ordering.

Note that each constraint imposes a sufficient condition, and not a necessary

condition, for a requirement to be marked. Therefore, a Marking does not

have to be “maximal”; that is, it may not include all of the requirements

satisfiable by the state transition system.

Example. Consider a state transition system defined by integer state

variables x, y, both initially O, and events e. = x’ = x + I and el = y’ =

y + 1. Assume an invariant requirement AO = x = y v x = y + 1, a pro-

gress requirement LO = y + x A x = n leads-to y = n, and an event require-
ment So = x = y associated with e.. We can mark (AO, eo) because SO A

formula implies Ah. If el is not an input event, we can mark LO with tag
uia el because of the following: y # x A x = n A AO A formzda(el) implies that

y’ = n (thus, (C3i) holds); y # x A x = n A SO A formula is false (thus,

(C3ii) holds); and enabled is true (thus, (C3iii) holds). (AO, el) and SO are

unmarked.

Successful termination. The Marking is said to be complete if

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

Ste~wise Refinement Heuristic . 427

(1) every S’, is marked,

(2) every (AJ, e) pair is marked, and

(3) every Lj is marked.

At any point in a construction, conditions (1) and (2) imply that the state

transition system satisfies the safety requirements, as follows: Condition (1)

implies that A ~ forrnula(e) = S(e) holds for every event e, which together

with condition (2) imply that A A fern-zzda(e) = A’ holds. At any point in the

construction, we have Initial = A. Thus, A satisfies the invariance rule. This

and condition (1) imply that enabled(e) * S(e) is invariant.

Given that the safety requirements hold, condition (3) implies that the

progress requirements hold, assuming that every event set E that appears in

a uia E tag has weak fairness. Specifically, each progress assertion L, holds

according to the rule indicated! in its tag (via event, via message, or by

closure). There is no circular reasoning in the proof of the L~’s, because there

is a serial order of the L~’s such that if LJ appears in the tag of L, then LJ

follows L, in the ordering. Note that (C3iv) ensures that an input event is

never required to satisfy a fairness assumption.

A construction ends successfully when (1) the state transition system is a

refinement of the initial state transition system; (2) the state transition

system satisfies topology constraints; (3) the Marking is complete; and (4) for

every input event e, enabled * enabled(e) is invariant, where enabledI(e)

refers to the enabling condition of e as defined in the initial specification.

The last condition is sufficient to ensure that the state transition system

does not block users of the system from executing input events allowed

by the initial specification [191 .7 Because of this requirement, vacuous

implementations are eliminated [241.

Conditional refinement. The difference between the initial system specifi-

cation and the final system specification (in a successful construction) is

typically quite large and cannot be negotiated in one step. It is preferable to

go through a succession of intermediate system specifications, DI, Dz, D..

In our heuristic, we require that Di+ ~ is a “conditional” refinement of D,, for

every i. The conditional refinement relation, defined below, is weaker than

the refinement relation. It ensures that the final state transition system is a

refinement of the initial state transition system prouided that the heuristic

terminates successfully.

Let X and Y be two successive system specifications that are constructed

using the heuristic. We require X and Y to satisfy the following conditions:

— Variablesy z Variablesx and Events ~ 2 Eventsx,

7A weaker sufficient condition is obtained by replacing enabledI(e) with possible s s~(e) A

[3 Variables;: formulaAe) A All (where the subscript indicates that quantities are as defined in
the initial specification). Users of the system being constructed are allowed to execute event e in

a system state only if the state satisfies possibleI(e). (Typically, an initial specification can be

arranged such that S(e) = true and input event occurrences do not falsify A1, in that case,

possible = enabled.)

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

428 . A. U Shankarand S. S. Lam

—Initial Y * Initialx,

—v e ~ Events ~ n Eventsx: A ~ S(e) ~ formula * formula, and

—v e e Events Y – Eventsx: A ~ S(e) ~ formulay (e)

* [V v e Variablesx: u = v’].

where A and S(e) are invariant and event requirements, respectively, of

specification Y. If the above conditions are satisfied, we say that Y is a

conditional refinement of X, that is, a refinement of X given that the

invariant and event requirements of Y hold.

The system refinement steps used to derive Y from X may cause

some requirements that are marked for X to become unmarked for Y.

By requiring Y to be a conditional refinement of X, we limit the

unmarking of requirements. Specifically, the Marking of X is preserved

for Y, except in the following two cases: (1) An event requirement SJ of e

that is marked for X becomes unmarked iff A A enabled = S’j does not

hold for Y. (2) A progress requirement P leads-to Q that was marked via e

for X becomes unmarked iff P A A A S(e) + enabled does not hold for Y.

(The advantages and disadvantages of allowing the Marking to decrease are

discussed in Section 7.)

We also require that the system refinement steps do not strengthen

enabling conditions of input events to the point where users are blocked from

executing them in states allowed by X. Formally, for every input event e, we

want enabledx(e) = enabled ~ (e) to be invariant (i.e., to be implied by A).g

Finally, we point out that, in some situations, enforcing this condition may

result in a specification Y that is practically impossible to implement (e. g.,

because it requires unbounded memory). The alternative in that case is to

backtrack to an earlier point in the construction and to attempt a different

construction. Sometimes backtracking does not help, because the problem is

with the initial specification. In that case, the only alternative is to modify

the initial specification; this happens in the protocol construction below and

is discussed further in Section 7.

4. SLIDING WINDOW PROTOCOL CONSTRUCTION: INITIAL PHASE

Consider the topology in Figure 1. Entity 1 is a producer of data blocks, and

Entity 2 is a consumer of data blocks. The channels may lose, duplicate, or

reorder messages in transit; these are the only errors in the channels. We

want data blocks to be consumed in the same order as they were produced

and within a finite time of being produced. We construct a sliding window
protocol that uses modulo-N sequence numbers to achieve this objective.

Notation. If B is a set of values, then sequence of B denotes the set of

finite sequences whose elements are in B, and sequence(O “ “ M – 1) of B

denotes the set of M-length sequences whose elements are in B. For

any sequence y, let I y I denote the length of y, and let Y(i) denote the
ith element in y, with y(0) being the leftmost element. Thus, y =

8A weaker sufficient condition is for possiblex(e) = possible Y(e) to be invariant.

ACM TransactIons on Programming Languages and Systems, Vol. 14, No. 3, July 1992

Stepwise Refinement Heuristic . 429

producer consumer

E “’””“’”’’”O’’’O’O’O”
(Y(o)> ..., Y(I Y I – 1)). we use () to denote the null sequence. we use
y(i “ “j) to denote (y(i), y(i + l),. . . . Y(J) where i, ~ < I Y I; it equals() if
i>j. Wesay ’’ypreflix-of z’’ to mean Iyl s Izl and y=z(O” “ Iyl –l).

We define the function Head(y) to return y(0) if I y I >0, and false if

I y I = O. We define the function tail(y, i) to return y(i .- I y I - 1) for any i,

O s i < I y I; that is, y with the leftmost i elements removed. We use @ as

the concatenation operator for sequences. Given two sequences y and z, y@ z

is the sequence (y(0), Y(I y I – 1), z(0), Z(I z I – l)). Thus, the

sequence obtained by appending an element b to (the right of) a sequence y

is y@(b). Last, we use “ wrt” as an abbreviation for “with respect to. ”

4.1 Initial System and Requirements

The initial system and requirements specify the services to be offered to the

producer and the consumer. Let DATA denote the set of data blocks that can

be sent in this protocol. We use a Pascal-like notation to define state

variables and their domains.

At Entity 1, we have the following state variable and input event:

produced: sequence of DATA. Initially ().

Produce(data) = produced = produced@ (data)

At Entity 2, we have the following state variable and event:

consumed: sequence of DATA. Initially ().
Consume(data) + consumed’ = consumed@ (data)

The state variables produced and consumed record the sequences of data

blocks produced and consumed, respectively. In the sliding window protocols

to be constructed, they will be auxiliary variables. The events Produce and

Consume have a parameter data whose domain is DATA. Produce is the

only input event of this construction. Observe that occurrence of input event

Produce can be initiated by a protocol user in any state of Entity 1 and with

any value of parameter data.

There is one invariant requirement and one progress requirement:

AO = consumed prefix-of produced

LO = I produced I > n leads-to I consumed\ > n

AO specifies that data blocks are consumed in the order they are produced. It

holds initially. -LO states that if a data block is produced then it is eventually
consumed (parameter n is a natural number).

For each channel i shown in Figure 1, i = 1,2,we define a state variable

and events as shown in Table 1, where MESSAGES denotes a set of protocol

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

430 ● A. U. Shankar and S. S. Lam

Table 1. State Variables and Events of Channel i

z,: sequence of MESSAGES. Initial ().

Loss, =[3n G[o. ~ Iz,l -11:2’, =2,(0 .n-l)@zz(n+ l. ’lzll-l)l

Duphcate, = [3 n e [O ~ Iz,l - l]: Z’L=Z,(O. .n)@zL(n Iz,l - 1)1

Reorderl =[3nc[l ..lz, l–ll,3me[o. .11:l:
z’, = 2,(0 m – l)@z,(n)@z,(m+ 1. n – l)@z,(m)@z,(n + 1. . Iz, l – 1)1

messages. The send and receive primitives for channel i are defined by the

formulas

Send,(n) = z: = z,@(m)

RecZ(rn) = z, = (m)@z’,

where m denotes a message. Note that Recz(m) is false if z, is empty.

4.2 The Sliding Window Mechanism

We want to refine the initial state transition system to a sliding win-

dow protocol. Let us review the basic features found in all sliding

window protocols (see Figure 2). At any time at Entity 1, the data blocks in

produced(O . “ a – 1) have been sent and acknowledged, while data blocks

in produced(a “ “ s – 1)are unacknowledged, where I produced I = s. At any

time at Entity 2, data blocks in consumed(O o “ r – 1)have been received and

consumed in sequence, while data blocks in consumed(r “ “ r + R W – 1) may

have been received (perhaps out of sequence) and are temporarily buffered.

The numbers r to r + R W – 1 constitute the receive window; R W is its

constant size.

A sliding window protocol uses modulo-N sequence numbers to ident-

ify data blocks, where N a 2. We use ii to denote n mod N for any integer

value n.

Entity 1 sends produced(n) accompanied by sequence number ti. When

Entity 2 receives a data block with sequence number ti, if there is a number i

in the receive window such that ~ = ii, then the received data block is

interpreted as produced(i). Entity 2 sends acknowledgment messages con-

taining ?i, where n is the current value of r. When Entity 1 receives the

sequence number ii, if there is a number i in the range a + 1 to s such that
~ = ii, then it is interpreted as an acknowledgment to data blocks a to i – 1,

and a is updated to i. Entity 1 increments s when a data block is produced.

Entity 2 increments r when a data block is consumed.
Observe that each cyclic sequence number E corresponds to an unbounded

sequence number n. When a cyclic sequence number is received at an entity,

we require the entity to interpret correctly the value of the corresponding

unbounded sequence number (which is not available in the message); that is,

we require that i = n in the preceding paragraph.

4.2.1 Refinement of State Transition System and Requirements. We next

incorporate the above protocol features into the state transition system. Let

the messages sent by Entity 1 be of type (D, data, cn, n) where D is

ACM ‘llansactlons on Programming Languages and Systems, Vol. 14, No 3, July 1992

Stepwise Refinement Heuristic

a s—1

012 acknowledged J unacknowledged L
>

receive window

012 consumed t not received or buffered t
>

r r+ RW–1

. 431

Entity 1

Entity 2

Fig. 2. Relationship between a, s, and r.

a constant that indicates the type of message, data is a data block, cn

is a cyclic sequence number, and n is the corresponding unbounded sequence

number. Let the acknowledgment messages sent by Entity 2 be of type

(ACK, cn, n), where ACK is a constant that indicates the type of message,

en is a cyclic sequence number, and n is the corresponding unbounded

sequence number. In both message types, n is an auxiliary field that is used

to reason about correct interpretation only. Its value can never be used to

update a nonauxiliary state variable. We have the following invariant

requirements, each of which holds initially:

Al = (D, data, en, n) e ZI = data = produced(n) A m = fi,

Az= (ACK, cn, n)ezz* cn = ii

At Entity 1 we add the following state variables:

S:o. -oo. Initially O.

a: O.. co. Initially O.

seno%uffl sequence of DATA. Initially ().

s and a are as defined above. We ensure below that sendbuff always equals

produced(a “ “ s – 1), the unacknowledged data blocks. Entity 1 must

retransmit these until they are acknowledged.

Conventions. For brevity in specifying events, we use the notation P + q

to denote an action that does q if P holds and does nothing if 7P holds.

Formally, P ~ q means that (PA q v (7P A [V u ● Vars: u = v’]), where Vars

denotes those state variables updated in q. Similarly, [a i: P ~ q], where i is

free in P and q, means [~ i: PA q] v (7[3 i: P] A [V u e Vans: u = u’]).

At Entity 1 we refine the input event Produce to update sendbuff and s

appropriately; note that this does not affect its enabling condition, We also

add two events, one for sending data messages and one for receiving ack

messages.

Produce(data) = produced’ = produced@ (data)
Asendbuff = sendbuff@ (data) A s’ = s + 1

SendD(i) =ie[O. .s–a–l] _
ASendl(~, sendbuff(i), a + i, a + i)

RecACK(cn, n) = Recz(ACK, en, n)

A[3 ie[l. . s–a]:a+i=cn
+ (a’ = a + i A sendbuffl = tail(sendbuff, i))]

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992

432 . A, U, Shankar and S, S. Lam

At Entity 2 we add the following state variables, where empty is a constant

not in DATA:

r: O . . m. Initially O.

recbuffi sequence(O “ “ R W – 1) of DATA U { empty). Initially recbuff(n) = empty

for all n.

r equals I consumed 1, as defined above. recbuff represents the buffers of the

receive window. We ensure that, at any time, recbuff(i) equals either empty

or produced(r + i).

At Entity 2, we refine Consume so that it passes recbuff(0) only when the

latter is not empty. We also add two events, one for sending ack messages

and one for receiving data messages.

Consume(data) = recbuff(0) # empty A data = recbuff(0)

Arecbuffl = tail(recbuff, I)@(empty) A r’ = r + 1

Aconsumed’ = consumed@ (data),

SendACK = Sendz(ACK, F, r),

RecD(data, cn, n) = Recl(D, data, cn, n)

A[3 ic[O. . RW – 11: r + i = cn + rebuff’ = data]

We add the following invariant requirements; each is a desired property

mentioned in the discussion above:

As = I produced I = s A I consumed = r

Ad=O<a<r~s

A5 = sendbuff = produced(a “ “ s – 1)

A6 = i e [0 . . RW – 1] * recbuff(i) = empty v recbuff(i) = produced(r + i)

4.2.2 Marking. For the time being, we concentrate on marking the (Ai, e)

pairs. We represent the Marking by a table that has a row for each A, and a

column for each e. If (A,, e) is unmarked, its entry in the table is blank. If

(A,, e) is marked, its entry identifies a subset J of the AJ’s and SJ’S of e

such that J ~ e s A, holds. Thus, the reader can easily check the validity of

the Marking. Also, an (A ~, e) entry in the table contains na to indicate that e

does not affect any of the state variables of A,; thus, A, ~ e = A: holds

trivially. We use A,, ~ to denote Ac~A~ and A,_~ to denote AL AA, +IA “ “ “

AJ. The LRD column is for the loss, reordering, and duplication events of the

channels; specifically: LRD = LRDI ~ LRD2, where LRD, = LOSS, v

Duplicate, v Reorder,.

Produce SendD RecACK Consume SendACK RecD LRD

A. A. na na A 6,3,0 na na na

Al na A 1,5 na na na Al Al
Az na na Az na Az na Az

A3 A3 na na A3 na na na
Ad Ab na A 6,3,4 na na na
A5 A53A na A5 na na na na
A6 A6~3~1 na na A6 na na

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992

StePwise Refinement Heuristic . 433

The Marking can be easily checked as follows: Consider the entry

for (AA, Consume), which indicates that A6, ~,~ A ~omzula(Consurne) = A~

holds. Consume occurs only if recbuff(0) # empty. This and A6 imply that

recbuff(0) = produced(r), which together with As imply that r < s – 1.This

and AA imply that a < r s s – 1. Consume does the update r’ = r + 1 and

does not affect a or s. Thus, A~ holds. In the above proof, we used A6 first,

then As, and then Al. To facilitate checking of the Marking, we have

indicated this in the order of the subscripts in A6, ~,~.

Observe that the only (A,, e) pairs that are unmarked are (A6, RecD) and

(AA, RecACK). We can mark (A6, RecD) if we can ensure that RecD cor-

rectly interprets the cyclic sequence numbers in received data messages.

Similarly, we can mark (AA, RecACK) if we can ensure that RecACK

correctly interprets the cyclic sequence numbers in received acknowledgment

messages. In the next two subsections, we generate invariant requirements

on the sequence numbers that ensure correct interpretation.

4.3 Correct Interpretation of Data Messages

In this section we concentrate on marking (A6, RecD). Our general approach

to marking an (A,, e) pair is as follows: (1) Obtain a weakest precondition P

of A ~with respect to e; (2) if A A S(e) + P does not hold, then introduce P as

a new event requirement of e; and (3) mark (A,, e). Sometimes we simplify

the expression for P to either a sufficient or a necessary precondition; in the

latter case, (A,, e) remains unmarked. An alternative to introducing P as an

event requirement is to introduce enabled(e) = P as an invariant require-

ment, provided that Initial * (enabled(e) - P) holds. We take such a step

when we expect that the enabling condition of e will not be strengthened in

future refinement steps. Finally, in our construction, P often has the form of

an implication where the antecedent implies enabled(e); in this case, we can

introduce P, rather than enabled(e) = P, as an invariant requirement.

In practice, applying this approach requires insight into the particular

problem being solved, such as in choosing which (A,, e) pair to mark next, in

deciding how to simplify a precondition, etc. In the case of marking

(A6, RecD), we want to ensure that every data message received by Entity 2

is interpreted correctly. Intuitively, a (D, data, cn, n) message is incorrectly

interpreted if n lies so far outside the receive window that n mod N “wraps

around” and matches some integer in the window. Thus, our first step is to

determine a range of sequence numbers enclosing the receive window such

that, for any sequence number n in this range, n mod N is correctly

interpreted. Then, we determine constraints on the send window and on

Produce such that the sequence number of messages in Channel 1 lie within

this range.

The following is a weakest precondition of A6 wrt RecD:

w=~ead(zl) =(~, data, cn, n) Aie[o””~w–l]Ar+i=E
* data = produced(r + i)

Instead of introducing W as an event requirement, we strengthen it to

to obtain a simpler sufficient precondition. From Al, we have en = fi

ACM Transactions on Programming Languages and Systems, Vol 14, No. 3, July 1992

434 . A. U. Shankar and S. S. Lam

and data = produced(n). Thus, the consequent of W is equivalent to

produced(n) = produced(r + i). Let us strengthen this consequent to n =

r + i. We do not expect this to lead to unsuccessful termination; indeed,

unless I DATA I = 1, it appears necessary in order for produced(n) and

produced(r + i) to be arbitrary entries from DATA. Next, let us weaken the

antecedent of W by replacing Head(zl) = (D, data, en, n) by (D, data, en, n)

G Z1. In fact, this is necessary given that Channel 1 can lose messages

arbitrarily. Thus, we arrive at the following sufficient precondition:

X=(D,data, cn, n)ezl Aie[O. .RW– l] Ar+i=71-n=r+i

We could introduce X as an event requirement of RecD. However, we do

not expect to strengthen the enabling condition of RecD in future refinement

steps, because we do not want Entity 2 to discard any received data message.

Therefore, we decide to introduce enabled(RecD) + X as an invariant

requirement. But, because the antecedent of X implies enabled(RecD), we

can introduce X as an invariant requirement. Observe that X holds ini-

tially. We now proceed to generate further refinements from X.

Because produced(r) is the data block to be consumed next, it is reasonable

to expect that (D, data, F, r) e ZI may hold at any time. This would violate X

with i = N unless R W < N. We also know that R W > 1;otherwise, Entity 2

will never accept any data block, and the progress requirement LO will never

hold. Thus, we have the following condition:

Observe that i e [0 “ “RW–l]~r +i=~iffie[O”” RW– l] Aj=n–r

iff n–re[O” .RW–l]Ai=n–r, where we used RW<N*i=~ to

establish the last “iff.” Thus, we can refine RecD to the following, where

we have also used the modulo arithmetic property (n – r) mod N = (fi – r)

mod N

RecD(data, en, n) = Recl(D, data, cn, n)

Acn–re [(). . RW – 1]+ recbuff(crz – r)’ = data]

We can now refine X to the following invariant requirement:

y=(~, data, cn, d)6z1An–re[o .. RW–1]-n=r+n–r

Y is satisfied nonvacuously by n – r e [0 . . R W – 1], and satisfied vacuously

by n–re[RW+kN. ” N – 1 + kN] for any integer k. We want every
unbounded sequence number n in Channel 1 to be in the union of these

intervals. Suppose that nl and nz are in Channel 1; let us assume that

Channel 1 may contain any n between nl and nz. We expect that an n equal

to r may always be in Channel 1. The largest contiguous union of intervals

containing r is [r + R W – N . .r+N– 1],which is the union of [r. o r+

RW–l]and[r+RW+kN. . r+ N–l+kN]fork=O and–l. Thus, we

strengthen Y to the following invariant requirement:

A7=(D, data, cn, n)czl-ne[r– N+ RW. .r+N–l]

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992

Stepwise Refinement Heuristic . 435

We now proceed to mark (A7, SendD). A weakest precondition of A7

wrt SendD is a z r – N + R W. We make it an invariant requirement

because we want SendD to be always enabled to send outstanding

data. Because r s s (and we expect r = s to be possible at any time), we

strengthen it to the following invariant requirement:

A8=s–a<N– RW

Produce is the only event that can falsify A8. Because A8 only involves

variables of Entity 1, it can be enforced by strengthening the enabling

condition of Produce with the conjunct s – a < N – R W – 1. However, Pro-

duce is an input event, and the initial specification allows the user to execute

it in any state. The above refinement would block Produce in certain states.

Let us review our options. We are in this situation because when we first

defined SendD, we allowed it to send any data in [a . . s – 1].One option is

to backtrack and redefine SendD so that it can send only a subset of the data

blocks in [a “ ss– 1],say, [a. o t – 1];then A8 would become t – a s N –

R W, and data blocks in [t “ “ s – 1], which have been produced but cannot yet

be sent, would have to be buffered in Entity 1. However, this option requires

Entity 1 to have unbounded memory capacity. In fact, it is easy to see that

there is no way to avoid this with the given initial specification: Because

channels can lose messages, Entity 1 must buffer a data block until it is

acknowledged; because the user is never prevented from producing more

data, Entity 1 must be prepared to buffer an unbounded amount of data.

So let us modify the initial specification as follows: We allow Produce to be

blocked when s – a = N – R W, but we require that if Produce is blocked

then it eventually becomes unblocked and stays unblocked at least until its

next occurrence. We refine Produce as follows:

Produce(data) = s – a < N – RW – 1
A produced’ = produced@ data

A sendbuff = sendbuff@ data A s’ = s + 1

We add the following progress requirement:

L1=a=n As–a=N– RW leads-to a~n+l

In order for Produce not to be permanently disabled (needed for Ll), we

now require the following:

Observe that the upper bound in A7’s consequent is implied by n s s – 1

(from Al, J, AA, and As. There is no need for A7 to repeat this constraint.
Thus, we can rewrite A7 as follows:

A7=(D, data, cn, n)ezl*n>r– N+RW

We can extend the previous Marking to the following, where * is used to

indicate an old entry, and old A ,’s marked wrt every event have been

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992.

436 . A. U. Shankar and S. S. Lam

aggregated into one row:

I Produce SendD RecACK Consume SendACK RecD LRD

A * * * * * * *
0.3,5

Ab * * * * * *

A6 * * * * * A *

A7 A
7>1

na 84 na na A, A7

A8 A8 na A8 na na na na

4.4 Correct Interpretation of Acknowledgment Messages

In this section we concentrate on marking (Ai, RecACK). The treatment is

similar to the case of data messages above. The following is a weakest

precondition of Ad wrt RecACK:

W= Head(zz) =(ACK, cn, n) Ais[l ..s–a]A a+i=fi=a+i<r

Instead of W being an event requirement of RecACK, we decide to make it

an invariant requirement because we do not want Entity 1 to discard any

received ack message. We strengthen the consequent from a + i s r to

a + i = n A a + i s r, where the first conjunct specifies correct interpreta-

tion. We weaken the antecedent by replacing Head(zz) = (ACK, crz, n) by

(ACK, en, n) G Zz. Rewriting in two parts, we have

X=(ACK, cn, n)ezz Aie[l. .s– a] Aa+i=E=n<r

Y=(ACK, cn, n)~zz Aie[l. . s–a]Aa+i=Fi=a+i=n

Because an (ACK, cn, n) message is sent with n = r and because r never

decreases, X is satisfied invariantly by the current system; that is, we can

add X as an invariant requirement and mark it wrt all events. In fact, the

second and third conjuncts in the antecedent of X are not needed to justify

the marking. Thus, with no additional work we can strengthen X to the

following invariant requirement (which can be marked wrt all events):

We now consider Y. Observe that i~[l . . s– a]Aa+ i= iiiff ie[l . . s –

a] A;=n–aiffrz-ae[l. . s–a]Ai=n–r, wherewe used A8=i=jin

deriving the last “iff.” Thus, we can refine RecACK to the following:

RecACK(cn, n) = Recz(ACK, cn, n)

A[cn–ae[l. .5– U]

+ (a’ = a + cn – a A sendbuffl = tail(sendbufj, cn – a))]

We can refine Y to the following invariant requirement:

Z=(ACK, cn, n)cz2An–ac[l. s-a]= n-a= n-a

Z is satisfied nonvacuously by n – a e [1 . . s – a] and vacuously by n – a #
[1 . . s — a]. Using the largest contiguous set of n satisfying these bounds

and including n = a, we can refine Z to the following:

U=(ACK, cn, n)sza=n~[s– N +1. .a+iV].

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

Stepwise Refinement Heuristic . 437

The upper bound in U’s consequent is implied by n < r(A9), a s r s S(AA),

and s < a + N – R W(A8). Thus, we can refine U to the following invariant

requirement:

A1O=(ACK, cn, n)ez2=n>s– N+l

We have the following Marking:

~ Produce SendD RecACK Consume SendACK RecD LRD

A * * * * *
O-3,5,6,8

* *

A4 * * A * * * *

A7 * * * 8-10
* * *

A9 na na A9 A9 A9 na A9
Alo na Alo na A 10,8,4 na Alo

The invariant requirements and the state transition system at this point

are specified in Tables II and 111. As shown in the Marking above, the only

unmarked pairs are (A7, Consume) and (A lo, Produce). To mark (A7, Con-

sume) we have to ensure that, whenever recbuff(0) # empty, Z1 does not

contain unbounded sequence numbers less than N below the “top of the

receive window, ” r + R W. Similarly, to mark (A lo, Produce), we have to

ensure that, whenever s – a < N – R W, z ~ does not contain unbounded

sequence numbers less than N below the “top of the send window, ” s + 1.

4.5 Progress Requirement Marking

We now try to mark Lo and L1. For the current system, we prove that Lo

and L1 hold if { SendD(O)}, { SendACK} and { Consume(data): data GDA TA}

have weak fairness. We then show that these properties continue to hold if

Entity 2 sends an ack only in response to a received data message. For the

progress markings in this section, we consider the L,’s to be ordered accord-

ing to increasing subscripts. Hence, LJ is used in the tag of L, only if j > i.

The following progress requirement implies Lo and Ll:

L2=s>a= nleads-toa>n +-l

We have the following Marking, where each tag also indicates the invariant

requirements used to mark the progress requirement: Lo by closure using L2

and A3, A, and L1 by closure using L2 and A3 (and N – RW z 1).At this

point, only L2 is unmarked. L2 follows from the closure of the following

progress requirements:

L3=s>r= a=nleads-tos> r>a=n

L4=s~r> a=nleads-toa>n

L3 and L4 are implied by the following progress requirements, which

hold for the current system. Here (ACK, > n) denotes the message set

ACM ‘h”an8actions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

438 . A. U. Shankar and S. S. Lam

Table 11. Invariant Requirements for the Basic Protocol

Properties relating state variables at the entities

I<RW<N–I

AO = consumed prefix-of produced
A~ = I produced I = s A I consumed/ = r
A4=O<a<r<s
A5 = sendbuff = produced(a s – 1)
A6 = i G[0 RW – 1] = recbuff(i) = empty v recbuff(z) = produced(r + Z)

As. s–a<N– RW

Properties of D messages
Al = (D, data, cn, n) Ezl + data = produced(n) A cn = E

A7=(D, data, cn, n)ezl+n>r– N+RW

Properties of ACK messages

A2=(ACK, cn, n)ez2=cn=7i

A9=(ACK, cn, n)ez2-n=r

A1O=(ACK, cn, n)ez2-n>s– N+l

{(ACK, ~, j): j > n}, and (D, n) denotes the message set {(D, data, en, n)}:

L5=s>r= a=nleads-tos>r> a=n V(recbuff(0) #empty As>r =a=n)

L6 = recbuff(0) # empty A s > r = a = n leads-to s > r > a = n

L7 = s > a = n A count(D, n) ? k leads-to

a>nvcount(D, n)>k+l

Ls G s ? r > a = n A count(ACK, > n) > k leads-to
a> nvcount(ACK, > n) > k+ 1

The details are summarized in the following progress Marking: Lo by closure

using L2, A3, ~; L1 by closure using L2, A3; L2 by closure using L3, LA, A4;

L3 by closure using Lb, L6; LA via (ACK, > n) using L8, Az, s~lo; L~ via

(D, n) using L7, AA, 1,8; L6 via { Consume(data): data e DATA} using Al; L7

via { SendD(O)} using A3_ ~; and L8 via { SerzdACK} using AA.

4.5.1 Weaker Acknowledgment Policy. Suppose Entity 2 sends an ack

message only if it has received a data message following the last ack sent.

We can model this by adding a Boolean variable drecd initially false,

refining RecD by adding the conjunct drecd’, and refining SendACK to

drecd ~ Send2(ACK, F, r) A1drecd’. The only effect of this refinement on the

Marking is to unmark progress requirement L8, which was marked via

{ SendACK}. However, L8 still holds because Entity 1 retransmits (D, n) as
long as s > r > a = n holds. To prove this, we introduce the following

progress requirements:

L9 = drecd A r > n A count(ACK, > n) > k leads-to count(ACK, > n) z k + 1

Llo = s ? r > a = n A count(ACK, > n) z k leads-to
a>nv(drecd As=r>cz=n Acount(ACK, >n)~k)

Lll = s > r > a = n A count(ACK, > n) > k A count(D, n) >1 leads-to
a>nv(drecd As=r>a=n Acount(ACK, >n)>k)

vcount(D, n) > 1 + 1

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992

Stepwise Refinement Heuristic . 439

Table 111. System Specification for the Basic Protocol

Entity 1
produced: sequence of DATA. Initially ().
~:o.. co. Initially O.
m O . .=. Initially O.

sendbufj? sequence of DATA. Initially ().

Produce(data) = s–a<N– RW–l
Asendbuff = sendbuff@(data) As’ = s + 1

Aproduced’ = produced@ (data)

SendD(i) = icIO . . s – a – 11A Sendl(D, sendbuff(i), a + i, a + i)

RecACK(cn, n) = Rec2(ACK, cn, n)

A[cn–cz G[l. s-a]

+ (a’ = a + m - a A .sendbuffl = tail(sendbuff, cn - a))]

Entity 2

consumed: sequence of DATA. Initially ().
r:O. . co. Initially O.

recbuff sequence (O . . R W – 1)of DATA U {empty}. Initially recbuff = empty.

Consume(data) = recbuff(0) # empty A data = recbuff(0)

Arecbuff = tail(recbuff, I)@(empty) A r’ = r + 1

Aconsumed’ = consumed@ (data)

SendACK E Sendz(ACK, F, r)

RecD(data, cn n) = Recl(D, data, cn, n)

A[cn–re[(). . RW – 1] + recbuff(cn – r)’ = data]

Channels 1 and 2 defined as in Table I.

We have a complete Marking by replacing “L8 via { SendACK } using AQ”

in the above Marking with the following: & by closure using Lg, LIO; Lg via

{SendACK}; L,. via (D, n) using L,l; and .LI1 via{ SendD(O)}.

5. COMPLETING THE CONSTRUCTION FOR LOSS-ONLY CHANNELS

At this point, we have obtained a system with entities as specified in Table

III. For channels that can lose, reorder, and duplicate messages, the construc-

tion is incomplete because (A lo, Produce) and (A7, Consume) are not yet

marked. As explained at the end of Section 4.4, to mark these entries, we

have to ensure that ZI and Zz do not contain messages that are “too far

below” the top of the receive window and the top of the send window,

respectively. In this section we show that if the channels can only lose

messages, then these pairs can be marked for the current system.

We start by considering (A7, Consume). The following is a weakest

precondition of A7 wrt Consume:

(D, data, en, n) ezl ~ recbuff(0) # empty * n ? r + RW – N + 1

If instead of a single occurrence of Consume we consider k + 1 occurrences,
then we obtain the following weakest precondition

(D, data, en, n) e z, A [V i e [0 00 k]: recbuff(i) # empty]
*n>r+RW– N+k+l

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992

440 . A. U. Shankar and S. S. Lam

Let us treat the above as an invariant requirement, rather than as an event

requirement of Consume (because we do not expect to strengthen the en-

abling condition of Consume in later steps). Now, if there have been no

channel errors for a while, then [V i G [0 “ . k]: recbuff(i) # empty] holds when

recbuff(k) # empty holds. Thus, it is reasonable to strengthen the above

weakest precondition to the following invariant requirement:

B. = (D, data, cn, n)ezl A recbuff(k) # empty = n = r + k + RW+ N + 1

The following is a weakest precondition of BO wrt RecD:

BI = (D, dl, cnl, nJ@(D, d2, cn2, n2) subseq ZI + n2 > nl + RW – N+ 1

We can see that BO is preserved by SendD as follows: recbuff(k) # empty

implies that s > r + k, which together with a > s – N + R W(A8) implies

that a > r + k – N + R W. Thus, SendD preserves BO, because it sends only

produced(n) where n > a. The argument that SendD preserves B1 is simi-

lar. (D, dl, cnl, nl) G Z1 implies that s > nl, which implies that a > nl –

N+ RW.

We now consider marking (A lo, Produce). Because Entity 2 sends nonde -

creasing n and Channel 2 does not reorder messages, we expect the following

to be invariant

B2=(ACK, cn, n)~z2=n>a

B2 implies AIO because n > s – N + 1 if n = a (from A8). Thus, marking

(B2, Produce) allows us to mark (Ale, Produce). The following is a weak-

est precondition of B2 wrt RecACK and is introduced as an invariant

requirement:

B3 = (ACK, cnl, nJ@(ACK, cnz, n2) subseq Z2 = nl s n2

At this point, we have the following complete Marking, where Loss =

Lossl V LOSS2:

Produce SendD RecACK Consume SendACK RecD Loss
I

A * * * *
O-6,8,9 *

* * *

A7 * * B. * * *

Alo B2, Aa “ * * * * *

B. na Bo, A86 ~ na B. na
BI

B B.
Bl, A8’I’3 na

0.1
na na

B2
,> BI BI

na na B3 na ~, Ab na B2
B~ na na B~ na A 9,4 na Ba

6. COMPLETING THE CONSTRUCTION FOR LOSS, REORDERING, AND
DUPLICATION CHANNELS

For loss, reordering, and duplication channels, we resume the protocol con-

struction from the end of Section 4, that is, from the requirements and

system shown in Tables II and III, respectively. Recall that only the pairs

(A7, Consume) and (Ale, Produce) are unmarked; to mark them, we need to

ensure that the channels do not contain messages whose sequence numbers

are “too far below” the send and receive windows.

Clearly, if the channels can reorder and duplicate arbitrarily, then A7 and

AIO cannot be enforced unless the channels impose an upper bound on the

ACM TransactIons on Programming Languages and Systems, Vol. 14, No. 3, July 1992

Stepwise Refinement Heuristic . 441

lifetimes of messages in transit. Such bounds are enforced in many real-life

protocols [29, 31]. Therefore, we assume that a message cannot stay

in Channel i for longer than a specified MAXLIFE, time units. Given

this, we show that A, and AIO are enforced if Entity 1 produces produced(n)

only after (1) MAXLIFEI time units have elapsed since produced(n – N +

R W) was last sent, and (2) MAXLlFE2 time units have elapsed since

produced(n – N + 1) was first acknowledged. We then provide three ways to

implement these two time constraints, using 2 N timers, N timers, and 1

timer, respectively. Because (1) and (2) strengthen the enabling condition of

Produce, an input event, we introduce a progress requirement guaranteeing

that if Produce is disabled then it eventually becomes enabled and stays

enabled at least until its next occurrence.

6.1 Real-Time System Model

For this construction, we require a system model in which real-time con-

straints can be formally specified and verified. Such a real-time model has

been presented in [35]. We now give a summary description of that model,

adequate for our purposes here.

The system model presented in Section 2 is augmented with special state

variables, referred to as timers, and with time events to age the timers. A

timer takes values from the domain { OFF, 0,1,2,. . . }. Define the function

next on this domain by next(OFF) = OFF and next(i) = i + 1 for i + OFF. A

timer can also have a maximum capacity M, for some positive integer M; in

this case, next(M) = OFF.

There are two types of timers: local timers and ideal timers. Local timers

correspond to the timers and clocks implemented within entities of a dis-

tributed system. They need not be auxiliary. For each entity, there is a local

time event (corresponding to a clock tick) whose occurrence updates every

local timer within that entity to its next value. No other timer in the system

is affected. Thus, local timers in different entities are decoupled. We assume

that the error in the ticking rate of the local time event of entity i is

upper bounded by a specified constant c,, for example, e, = 10 – 6 for a crystal

oscillator driven clock.

Ideal timers are auxiliary variables that record the actual time elapsed.

There is an ideal time event whose occurrence updates every ideal timer in

the system. The ideal time event is a hypothetical event that is assumed to

occur at a constant rate. Ideal timers are used to measure the error in the

rate of local time event occurrences. They are also convenient for relating

elapsed times across different entities and channels.

A timer of an entity can be incremented by its time event. It can also be

updated to either O or OFF by an event of that entity. Updating to the value

O is referred to as starting the timer (similar to resetting the timer).

Updating to the value OFF is referred to as stopping the timer. Thus, a

timer that has been started by an entity event occurrence and has not yet
been stopped measures the time elapsed, in ticks, since the entity event

occurrence.

Given an ideal timer u and a local timer u of entity i, we define the

predicate started-together(u, U) to mean that at some instant in the past u

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992

442 - A. U. Shankar and S. S Lam

and v were simultaneously started, and since that instant, neither u nor u

has been started or stopped. The maximum error in the rate of entity i’s local

time event occurrences is modeled by assuming the following condition,

which we shall refer to as the accuracy axiom:

ACCURACY AXIOM. Started-together (u, U) % / u – u I < max(l, t, u).

An invariant requirement A, can include started-together predicates. To

mark (A,, e), that is, to derive e A A = A:, we use the following rules. Rules

(1) and (2) are used if e is not a time event, and rule (3) is used if e is a time

event:

(1) u’ = O Au’ = O implies started-togethei-(u, u)’.

(2) u’ = u Au’ = v A started-together(u, v) implies started-together(u, u)’.

(3) u’ + OFF A u’ + OFF ~ started-together(u, u) implies

started-together(u, u)’.

With timers and time events, time constraints between event occurrences

can be specified by safety assertions. For example, let el and ez be two

events, and let u be a timer that is started by el and stopped by ez. The time

constraint that ez does not occur within T time units of cl’s occurrence can

be specified by the invariant requirement enabled(ez) * u > T. The time

constraint that ez must occur within T time units of cl’s occurrence can be

specified by the invariant requirement u s T. Note that to establish the

invariance of an A, involving timers, we have to show that it is preserved by

the time events also.

We have the following progress property, assuming that time events have

weak fairness and that the specified time constraints are implementable [35]:

Increasing timer property. For any timer v: u = n # OFF leads-to
u=n+l Vv= OFF.

Specification of bounded message lifetime. To every message in a channel,

we add an auxiliary ideal timer field, denoted by age, that indicates the ideal

time elapsed since the message was sent. The age field is started at O when

the message is sent (this update is specified in the send primitive). The

following are assumed to be invariant:

TAI = (D, data, 5, n, age) e ZI - MAXLIFEI ? age >0

TAZ = (ACK, ii, n, age) ● Zz a MAXLIFEZ z age >0

6.2 A Time Constraint that Enforces AT

In this section we concentrate on marking (A7, Consume). We show that A7

is enforced if Entity 1 produces produced(n) only after MAXLIFEI ideal time

units have elapsed since produced(n – N + R W) was last sent.

Due to buffered data blocks, it is always possible for successive occurrences

of Consume to increase r so that it equals s. Unlike in the case of loss-only

channels, this does not allow us to infer constraints on the sequence num-

bers in Channel 1. Thus, to enforce A ~, we require the following stronger

ACM TransactIons on Programmmg Languages and Systems, Vol. 14, No, 3, July 1992

Stepwise Refinement Heuristic

invariant requirement to hold:

co=(D, data, cn, n)ez1*n2s– N+RW

Taking the weakest precondition of CO wrt Produce, we get the

event requirement of Produce:

so=(D, data, cn, n)ez1+n2s– N +Rw+l

. 443

following

Note that this is the first precondition in this construction that we have left

as an event requirement. This is because SO has exactly the same form as the

invariant requirement Co from which it was derived, with R W being replaced

by R W + 1 (or, equivalently, with N being replaced by N – 1). Therefore,

transforming SO into an invariant requirement would merely lead us to

repeat the step with a larger R W (or smaller N). Repeated reductions like

this would eventually lead to N = R W, at which point we would have a

“dead” protocol because of A8. We point out that recognizing this fact is

nontrivial and is left to the user of the heuristic.

SO can be enforced by enabling Produce only after MAXLIFEl time units

have elapsed since the last send of any data block in produced(O “ o s – N +

R W). With this motivation, we add ideal timers tJn), n >0, at Entity 1 to

record the ideal time elapsed since produced(n) was last sent. We also refine

SendD and introduce an invariant requirement as follows:

t~: sequence (O . . W) of ideal timer. Initially t~(n) = OFF for every n.

SerzdD(i) = i G [0 . . s – a – 1] A Sendl(D, sendbuf,(i), a + i, a + i)
At~(a + z)’ = O

Cl = (D, data, en, n, age) e ZI = Rage > t~(n) > 0

We can enforce So by having X = n e [0 o “s– ZV+RWl=t~(rz)>

MAXLIFEI v tD(n) = OFF as an event requirement of Produce. This would

make the following invariant:

Cz=ne[O. . s – N+ RW– 1] * t~(n) > MAXLIFEIV t~(n) = OFF

C’z is preserved by SendD because a > s – N + R W – 1, and by Produce

because of X. Because Cz is an invariant requirement, we can enforce X by

enforcing the following event requirement of Produce:

S’l = n = s – N+ RW> O * t~(n) > MAXLIFE1vt~(n) = OFF

The above discussion is formalized in the following Marking, which now

includes event requirements, and where Ite denotes the Ideal time event:

~ Produce SendD RecACK Consume SendACK RecD LRD Ite

A * * * * * * *
O-6,8,9 * na

A7 * * C Ad * * *
*O? na

Alo * * * * * na

co so A8 na na na CO Co na
c1 c1 na na na Cl Cl TA1
C2 ~, C2 na na na na na na C2

So marked using S’l, Cl, ~, TA1 S1 not marked

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992

444 ● A. U. Shankar and S S. Lam

To enforce S1, it is sufficient for Entity 1 to keep track of the ideal timers

in t~(s – N + RW “ “ s – 1).This can be done with a bounded number of

local timers, each of bounded capacity.

6.3 A Time Constraint that Enforces AIO

In this section we concentrate on marking (Ale, Produce). We show that AIO

is enforced if Entity 1 produces a data block for produced(n) only after

MAXLIFEZ ideal time units have elapsed since produced(n – N + 1) was

acknowledged.

Taking the weakest precondition of AIO wrt Producej we get the following

event requirement of Produce (which, as in the case of SO, should not be

transformed into an invariant requirement):

S2=(ACK, cn, n)ez2=n>s– N +2

S2 can be enforced only by ensuring that more than MAXLHU7Z time units

have elapsed since (ACK, fi, n) was last sent, for any n e [0 . “ s – N + 1].

Unlike the previous case involving data messages, Entity 1 does not have

access to the time elapsed since (ACK, ii, n) was last sent. This is because

ACK messages are sent by Entity 2 and not by Entity 1. However, Entity 1

can obtain a lower bound on this elapsed time because of the following

considerations: (ACK, ii, n) is not sent once r exceeds n; a exceeds n only

after r exceeds n; and a and r are nondecreasing quantities. Thus, the time

elapsed since a exceeded n is a lower bound on the ages of all (ACK, fi, n) in

Channel 2. Furthermore, this elapsed time can be measured by Entity 1.

With this motivation, we add ideal timers t~(n), n >0, at Entity 2 to

record the ideal time elapsed since r first exceeded n, and refine Consume

appropriately (for brevity, we only indicate the addition to the previous

definition given in Table III):

t~: sequence(O . . CO)of ideal timer. Initially tR(n) = OFF for every n

Consume(data) = < definition in Table III > A t~(r)’ = O

At Entity 1, we add ideal timers tA(n), n >0, to record the ideal time

elapsed since a first exceeded n, and refine RecACK appropriately:

tA: sequence(O . . m) of ideal timer. Initially tA(n)= OFF for every n.

RecACK(cn, n) = Recz(ACK, en, n)

Acn–a G[l, ”s–a]

* (a’ = a + en - a A sendbuf~ = tail(sendbuff, en – a)
A[V ie[a . . a’ – 1]: tA(i)’ = O])]

We have the following invariant requirements:

ca=t~(o)>t~(l)> ““ >t~(r–l) >OAt~(r. .m)= OFF

CA= (ACK,7i, n,age)~zz An< r~ age> t~(n) >0

C5=t~(())>t~(l)= . . 2tA(a–l) 20 AtA(a. m)=o FF

C6=TZ6[0.. a – 1] + tA(n) < t~(n)

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992

Stepwise Refinement Heuristic

From A8, C4_G, TAZ, and 1 s RWs N – 1, we see that the

implies Sz:

Sq=n=s– N+la O=t~(n)>MAXLIFEz

. 445

following

We have the following Marking (using AA to mark some entries is accept-

able because AA has been proven invariant; equivalently, we can replace AA

with its tag A8_ 10):

Produce SendD RecACK Consume SendACK RecD LRD Ite

A Co.z * * * * * * * *
o-99

A lo S2 * * * * * * *

C3 na na na C3 na na na C3
C4 na na C4 C4, TA2 C4 na C4 C4
C5 na na C5 na na na C5
C6 na na C~, Ad, C~ & Ad na na na C6

SO marked using S1, Cz, ~, TAI SI unmarked S2 marked using S3, A8, Ch_G,TAZ SZ unmarked

Note that &’l and S3 have the effect of inhibiting Produce, which is an

input event. Below, we add a progress requirement implying that if Produce

is disabled because of S’l or S3 then it eventually becomes enabled and stays

enabled at least until its next occurrence.

6.4 Protocol 1: Implementation with 2N Timers

The only unmarked requirements are S’l and S~. In Table IV we provide a

system specification in which Entity 1 enforces SI and S~ using two circular

arrays of N local timers, namely, timer~ and tirner~. (It is possible

for timer~ to be of size N – R W and timer~ to be of size N – 1, but it

involves notation for modulo N – R W and N – 1 arithmetic.)

Given an ideal timer u and a local timer u of Entity 1 that are started

together, from the accuracy axiom it is clear that u > T holds if u 2 1 +

(1 + @T, or, equivalently, if u is a timer of capacity (1 + el)T and is OFF.

With this motivation, define MLIFEi = (1 + El)MAXLIFE, for i = 1 and 2.

timer= is an array (O “ “ N – 1) of local timers, each of capacity MLIFEI.

For n~[max(O, s – N + RW) “ “ s – 11,timer~(7i) tracks tD(n) up to MLIFEI

local time units with an accuracy of El. Thus SI is enforced by including

timer~(s – N + RW) = OFF, or, equivalently, timer~(s + RW) = OFF, in the

enabling condition of Produce, as shown in Table IV.

timer~ is an array (O “ “ N – 1) of local timers, each of capacity MLIFEQ.

For n e [max(O, s – N + 1) “ “ a – 11, timerA(fi) tracks tA(n) up to MLIFE2
local time units with an accuracy of cl. Thus, S~ is enforced by including

timer~(s – N + 1) = OFF, or, equivalently, timer~(s + 1) = OFF, in the

enabling condition of Produce, as shown in Table IV.
For brevity, we omit the formal proof that this protocol satisfies the event

requirements S1 and S~. (It is contained in Appendix B.)

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

446 . A, U. Shankar and S, S. Lam

Table IV. System Specification for Protocol I

Entity 1

produced, s, a, sendbuff defined as in Table III.
tD,tA:sequence (O . . W) of ideal timer. Irutially tD = tA = OFF.

timer~: sequence (O . N – 1) of local timer of capacity MLIFEI. Initially timer~ = OFF

tlmer~: sequence (O . . N – 1) of local timer of capacity MLIFEZ. Initially timerA = OFF.

Produce(data) = timer~(s + RW) = OFF A tzmerA(s + 1)= OFF
A(definition in Table III)

SendD(z) = (definition in Table III)

AtirnerD(a+ i)’ = OAtD(a+ z)’ = O

RecACK(cn, n) = Recz(ACK, en, n)

A[cn–a)e[l. .s–a]

+ (a’ = a + en – a ~ sendbuff = tail(sendbuff, cn – a)

A[V i e [a . a’ – 1]: tA(i)’ = tirner~(j)’ = O])]

Entity 2

consumed, r, recbuff defined as in Table III,

tR: sequence (O . . CO)of ideal timer. Initially t~= OFF,

Consume(data) = (definition in Table III) AtR(r)’ = O

SendACK = (definition in Table III)

RecD(data, cn, n) = (definition in Table III)

Channels 1 and 2 defined as in Table I

Because this protocol enforces SI and S’z, it blocks Produce as long as

MAXLIFEI time units have not elapsed since data block s – N + R W was

last sent and as long as MAXLIFEZ time units have not elapsed since data

block s – N + 1 was first acknowledged. To establish that Produce is

not blocked indefinitely, we introduce the following progress requirement,

where enabled(Produce) denotes the enabling condition of Produce, as

defined in Table IV.

Llz E 1 enabled(Produce) leads-to enabled(Produce)

Llz states that if Produce is disabled then it eventually becomes enabled;

from enabled(Produce), we note that if Produce is enabled it stays enabled at

least until its next occurrence. To see why Llz holds, suppose that Produce is

not enabled. There are two cases. If it is not enabled because sufficient time

has not elapsed, then, by merely waiting, sufficient time will elapse (and the
relevant timers will become OFF). If Produce is not enabled because s — a =

IV – R W, then LI assures us that s – a < N – R W will hold eventually. In

either case, Produce will be enabled eventually.

To summarize, Llz can be marked by closure using LI and the increasing

timer property. S1 and S’a can be marked as indicated above. The current

system is a refinement of the basic protocol, and the only event whose

enabling condition has changed is Produce. Hence, the previous Marking

holds, specifically, strengthening the enabling condition of Produce does not

unmark any progress requirement because no progress marking would have

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992

Stepwise Refinement Heuristic . 447

Table V. System Specification for Protocol II

Entity 1

produced, s, a, sendbuff, t~, tA defined as in Table IV.

timerA: sequence (O . . IV – 1) of local timer of capacity max(MLIFEl, J4.UFE2).

Initially timerA = OFF.

Produce(data) = (definition in Table III) AtimerA(s + RW) = OFF if MLIFEI ? MLIFE,

Produce(data) = (definition in Table III) Ati?7zerA(s + 1) = OFF if MLIFEI < MLIFEa

A(timer~(s + RW) = OFF V timerA(s + RWj > MLIFEI

SendD(i) = (definition in Table III) AtD(a + i)’ = O

RecACK(cn, n) = (definition in Table III)

Entity 2 defined as in Table IV,

Channels 1 and 2 defined as in Table I.

relied on the fairness of Produce, an input event. Thus, the Marking is

complete, and this construction is over.

6.5 Protocol 11:Implementation with N Timers

In Table V, we provide an implementation in which both SI and S3 are

enforced by the N local timers in timer~. Unlike in the previous implemen-

tation with timer~, the enforcement of S1 is not tight; that is, Entity 1 takes

more than the minimum time to detect that SI holds.

Because produced(n) is not sent after it is acknowledged, we have t~(n) >

t~(n) for all n = [0 “ . a – 1]. The proof of this is trivial and, therefore,

omitted. Thus, an alternative way to enforce S1 is to enforce the following:

S4=n=s– N–RW>O* tA(n)>MAXLZFE1

S4 is analogous to S3 and can be enforced by including tirner~(s + R W) >

MLIFEI in the enabling condition of Produce. We have to combine this with

the other condition timer~(s + 1)> MLIFEZ needed to enforce S~, as shown

in Table V.

The progress requirement Llz holds for this protocol also, where

enabled(Produce) denotes the enabling condition of Produce as defined in

Table V. The Marking is complete as in Protocol I.

6.6 Protocol Ill: Implementation with One Timer

In this section we prove that S~ and SA can be enforced by imposing a

minimum time interval 6 between successive occurrences of Produce. This

time constraint is of interest for two reasons. First, it can be implemented

with a single local timer at Entity 1. Second, it corresponds to specifying a

maximum rate of data transmission, if we assume that Produce also trans-

mits the accepted data block. (There is no loss of generality here; Entity 1

need merely save in another buffer data blocks that are produced and not yet

sent.) Note that if 6 is sufficiently small, for example, the hardware clock

period, then there is no need for Entity 1 to use a local timer explicitly. This
would correspond to the situation in TCP [29] and to the original Stenning’s

protocol [361.

ACM Transactions on Programming Languages and Systems, Vol 14, No. 3, July 1992.

448 . A. U. Shankar and S. S. Lam

Table VI. System Specification for Protocol III

Entity 1

produced, s, a, sendbuff, t~, t~ defined as in Table IV.

t~:sequence (O . . CO)of ideal timer. Initially t~ = OFF.

timers: local timer of capacity (1 + Cl)/i. Initially timers = OFF.

Produce(data) =s–a<Sw–l Atzmer~= OFF
Atimers’ = OAts(s)” = O

~sendbuff = sendbuff@(data) A s’ = s + 1

Aproduced’ = produced@ (data)

SendD(i) = (definition in Table V)

RecACK(cn, n) = Recz(ACK, cn, n)

A[cn–ae[l. .s–a]

- (a’ = a + cn – a A sendbuff = tail(sendbuff, cn – a,

A[V ie[a. . a’ – 11: tA(z)’ = 01)1

Entity 2 defined as in Table IV.

Channels 1 and 2 defined as in Table I

The protocol is specified in Table VI. At Entity 1 we have timers and t~.

t~(n) indicates the ideal time elapsed since produced(n) was produced. timers

is a local timer that tracks t~(s– 1)up to 8 ideal time units.

We will obtain the minimum value of ti that enforces S~ and S4. Consider

an occurrence of Produce that increments s from so to so + 1. Both S~ and

Sb are of the form:

v=so2K*tA(so– K)>D,

that is, so is produced only if D time units have elapsed after so – K was

acked. For notational convenience, we assume below that so ~ K. Thus, V is

enforced if the following holds for some no:

W= t~(so –K) > t~(so – no) >L).

The first inequality in W says that so – K is acknowledged before so – no

is produced, or, equivalently, m is produced only after m + no – K is

acknowledged. It can be enforced by including s – a s K – no – 1 in the

enabling condition of Produce. To avoid getting a dead protocol, we require

that noe[l. oK–1].

The second inequality in W says that more than D time units have elapsed
since the production of so — no till the present moment, which is just before

the production of so. Because successive occurrences of Produce are sepa-

rated by at least 6 time units, we can enforce this by having nob > D.

Thus, V is enforced if for some no e [1. .K–l]we include s–a~K–

no – 1 in the enabling condition of Produce, and no 8 > D holds. For S3,

these expressions specialize to (1) s – a < N – R W – no – 1 and (2) no 8>

MAXLIFEI, for some no e [1 “ - N – R W – 1]. For S1, these expressions spe-

cialize to (3)s – a s N – 1 – m. – 1 and (4) m. 8 > MAXLIFE2, for some

moe [l. “ N – 2]. We want a solution that minimizes 6. For any no, any

ACM Transactions on Programmmg Languages and Systems, Vol. 14, No, 3, July 1992

Stepwise Refinement Heuristic . 449

m. c [1 “ “ RW – no – 1] satisfies (3), while m. = RW – no – 1 yields the

smallest value of 6. Thus, we want no that satisfies (l), (2), and (R W – no –

1)6 > MAXLIFEg. In the literature, an upper bound on s – a is referred to as

the send window size, denoted by SW, Rephrasing these conditions in terms

of SW = N – RW – no, we obtain

~s~ws~.Rw.l

[

MAXLIFE1 MAXLIFEZ
b > ~ax

N–RW– SW’ N–l– SW 1
We require that s – a < SW – 1 in the enabling condition of Produce, as

shown in Table VI. The progress requirement Llz holds for this protocol also,

where enabled(Produce) denotes the enabling condition of Produce as de-

fined in Table VI. The Marking is complete, as in Protocol I.

For the typical case of MAXLIFEI = MAXLIFEZ = MAXLIFE, the above

constraint on 6 simplifies to 6 > MAXLIFE/(N – SW – R W). If, in addition,

N is very large compared to SW or R W (e.g., in TCP, N = 232 while

SW, R W = 216), then the bound simplifies to 8> MAXLIFE/N.

Stenning [36] considered the case of MAXLIFEI = MAXLIFE2 =

MAXLIFE and obtained the bound N z SW+ max(M + R W, SW), where

M = MAXLIFE/ 6. We get N z SW+ R W + M, which is a tighter bound.

Stenning’s protocol also has some unnecessary restrictions: (1) Whenever the

producer retransmits a data block with sequence number i, it also resends

every outstanding data block with a sequence number larger than i; and

(2) whenever the consumer receives a data message, it must send an

acknowledgment message.

7. REFINEMENT STEPS

We have presented a stepwise refinement heuristic that maintains, at any

point in a construction, a topology, a state transition system, a set of

requirements, and a Marking. At the start of the construction, the topology,

state transition system, and requirements specify the desired properties of

the distributed system; the Marking is empty. The construction proceeds by

applications of system refinement steps and requirement refinement

steps. Successful termination of the construction is indicated by a complete

Marking.

In this section we first present some useful refinement steps and then

make some general observations about the heuristic. For readability, we

say “event e is specified by formula p to mean that formdcz(e) = p, and

we use enabled(p) to mean [~ Variables’: p].

7.1 System Refinement Steps

These steps are used to increase the resolution of the state space by adding

new state variables, adding new messages, and refining a message into a set
of messages. They are used to change the set of state transitions by refining

events and by adding new events. Each step ensures that the resulting state

transition system is a conditional refinement of the previous system. In

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992.

450 . A U. Shankar and S, S. Lam

Appendix A we establish the soundness of each step by proving that it

preserves the consistency constraints of the Marking.

Addition of new state uariables and new events. We can augment the state

variables set Variables with new state variables Newvars, and Initial with

new conjuncts that define initial conditions for state variables in Newvars.

The Marking is preserved. We can introduce a new event e, that updates

only state variables in Newvars. The Marking is preserved. In addition,

(A,, e,) can be marked for every A,.

Refinement of events. Let an existing event e be specified by the formula

p. Let q be another formula such that A A S(e) A q = p holds; that is, q is

a conditional refinement of p. We can change the specification of e to q.

we say that e has been refined to q.

The Marking is preserved, except for the following two cases: (1) A progress

requirement P leads-to Q marked with tag via e becomes unmarked iff A A

S(e) A P + enabled(q) does not hold; and (2) an event requirement SJ of e

that is marked becomes unmarked iff A A enabled(q) * S] does not hold.

One application of the above refinement step is to incorporate event

requirements into enabling conditions of events. Let S, be an event require-

ment of e. Let every free variable of S, be a nonauxiliary state variable

accessible by e. Let e be specified by formula p. Then we can refine e to

S, A p. In this case, no event requirement of e becomes unmarked, and S, can

be marked. For example, if e is specified by x >0 Ax’ = x – 1 and S, by

x=y, wecanrefineetox= yAx>OAx’ =x– landmark S,.

Another application of the above refinement step is to make state variables

auxiliary. For example, let e be specified by the formula x mod 2 = O A x’ =

x + 1, let y be a state variable with domain {O, 1}, and let y = x mod 2 be an

event requirement of e. We can refine e to y = O A x’ = x + 1. Note that x

satisfies the constraints of an auxiliary variable in this new specification of

e. By similarly refining every event that involves x, we can make x into an

auxiliary variable.
Often, we simultaneously apply the two refinement steps described above.

Consider the previous example where e is specified by the formula x mod

2 = O A x’ = x + 1. We can introduce a new state variable z with domain

{O, 1}, a new invariant requirement z = x mod 2, and refine e to z = O A

x’ =x+l Az’ =1.

Introduction of new messages. To introduce a new message n to be sent
along a channel k from entity a to entity b, we introduce Send~(n) into a

new or an existing event e, of entity a, and introduce Rech(n) into a new or

existing event e~ of entity b.g

We assume that every existing invariant requirement refers to z~ only in

formulas that are not affected by adding n to the tail of z ~ or by removing n

‘If e, (or e~) is an existing event, we assume that it does not access channel k prior to the

refinement,

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992

Stepwise Refinement Heuristic . 451

from the head of z ~, for example, a formula indicating the number of m’s in

Zh, where m # n, or the formula m subseq z~ for some specified sequence m

that does not contain n. This assumption was valid for the construction in

Sections 4-6.10

The Marking is preserved, except for the following: A progress requirement

marked with tag uia eJ becomes unmarked.

Introduction of new message fields. Suppose we want to add a new field d
to a message m that is sent along a channel k. In every existing event es

that sends m, replace every appearance of Send~(m) with Sendk((m, d)),

where d can be restricted to satisfy some relationship involving the state

variables accessible to es. In every event e, that receives m, replace every

appearance of Reck(m) with [~ d: l?ec~((m, d))]. Alternatively, we - replace
Rec~(m) with Rech((m, d)) and introduce d as a parameter of e,.

Observe that this step changes the domain of z~. To evaluate an existing

requirement, we do the following: Each state in the new domain of z ~ is

mapped to the state in the old domain, obtained by deleting all appearances

of the message field d. For example, the state formula m e z ~ is interpreted

as [3 d: (m, d) e z ~1. Although this mapping is appropriate for network

protocols, it may be inadequate in other situations; for example, with a

requirement that refers to the number of fields in channel k. The Marking is

preserved.

7.2 Requirement Refinement Steps

Requirement refinement steps strengthen or reorganize the set of require-

ments so than an existing currently unmarked requirement can be marked.

The state transition system is not changed. We now describe some require-

ment refinement steps. These steps always preserve the Marking. A proof of

their soundness may be found in Appendix A.

Reorganization of safety requirements. The following steps can be used to

simplify the formula specifying a requirement A, or S,. Below, P, Q, and R

are state formulas. We say “R is equivalent to P given Q“ to mean that

Q - (R @ I’) holds.11

(1) Let S, be an event requirement of event e and let AJ be an invariant
requirement. Let S, be specified by P, and Al by Q. We can change the

specification of S, to any R that is equivalent to P given Q.

(2) Let S, and SJ, i # .j, be event requirements of event e such that S7 is
marked if Si is marked. Let S, be specified by P, and S] by Q. We can

change the specification of S, to any R that is equivalent to P given Q.

(3) Let A ~ and AJ, i #j, be two invariant requirements such that, for every

event e, (AJ, e) is marked if (A ~, e) is marked. Let A i be specified by P,

1°If this assumption is not valid for an A z, then a marked (AZ, e,) or (AZ, eJ) may become
unmarked.

llExamples of such R include R = P, R = Q ~ P, R = Q A P, and R = X = YA Q where
P= X-Y.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992

452 . A. U Shankar and S S, Lam

and AJ by Q. We can change the specification of Al to any R that is

equivalent to P given Q.

Generation of euent requirement from invariant requirement. Let (A,, e)

be unmarked. Obtain a weakest precondition P of A, with respect to e. If

A A S(e) = P does not hold, then introduce P as a new event requirement of

e. Mark (Az, e).

If the expression for a weakest precondition is unmanageable (and this

depends on our ingenuity and patience [7]), then we can obtain either a

sufficient precondition or a necessary precondition. In the latter case, (A,, e)

remains unmarked; this is still a useful step because it increases the set of

requirements.

Because of parts (1) and (2) of the safety requirements reorganization step,

we can replace the precondition P by D * P where D is a predicate implied

by A A S(e) before the step. Thus, we can define a weakest precondition P as

equivalent to [v Variables’: D A formula(e) = A;]. We can define a sufficient

precondition P as satisfying [V Variables’: P A D A form,ula(e) ~ A{]. These

definitions often yield much simpler expressions than those obtained from

the original definitions of weakest and sufficient preconditions in Section 2.

Example. Let e be specified by y >1 Ax’ = x + 1, and A, by xc {O, 1}.

Then y ~ 1 + x e { – 1, O} is a weakest precondition of A, with respect to e. If

it is not implied by A A S(e), then introduce y = 1 a x G { – 1, O} as a new

event requirement, say, SJ, of e. Mark (A,, e). By applying part (1) of the

safety requirements reorganization step to S1 and A,, we can change

the specification of SJ to y = 1 = x = O.

It is often very convenient to generate a precondition with respect to a

sequence of events, rather than to just one event. For example, BO is

a necessary precondition of A, with respect to a sequence of events el, . . ., e.

if there exist BI, Bz, ., B. such that lB~_l * eZA7B~ for k = 1, . . ., n,

and ~B~ - 1A,.

Generation of invariant requirements. An invariant requirement can be

introduced to mark an event requirement SC of event e. If Initial -

(enabled(e) * S,) holds, we can introduce enabled(e) + P as a new invariant
requirement and mark S,. For example, if S, is specified by y > 0 and e by
x>l Ay’ = y + 1, we get x ? 1 * y >0 as the new invariant requirement,

provided it satisfies the initial condition.

An invariant requirement can be introduced to mark a progress require-

ment by closure. Let Li be specified by P leads-to Q, and LJ by P A R leads-to

Q. Let L] follow L, in the ordering. If Initial = R holds, we can introduce R
as an invariant requirement and mark L, with the tag closure using LJ.

An invariant or event requirement can be introduced in order to refine

an event. Suppose we want to change the specification of an event e

from formula p to formula q, but we cannot use the event refinement step

because A A S(e) A q * p does not hold. If R is a state formula such that

A A S(e) A R A q ~ p holds, then we can introduce R as a new event

requirement of e. Alternatively, if Initial ~ R also holds, we can introduce R

ACM Transactions on Programming Languages and Systems, Vol. 14, No 3, July 1992

Stepwise Refinement Heuristic . 453

as a new invariant requirement. In either case, q is now a conditional

refinement of p.

As described at the beginning of Section 4.3, it is usual to transform an

event requirement S, of e into an invariant requirement when we decide

that the enabling condition of e is not to be strengthened in later refinement

steps.

Generation of progress requirements. Given an unmarked progress

requirement L,, we can introduce new progress requirements, say

L L ~+~, so that Li can be marked by closure using Ln, Ln+m. For

e&mple, if L, is specified by P leads-to Q, we can introduce L. specified by P
leads-to R and L.+ ~ specified by R leads-to Q, and mark L, by closure using

L., L~~l.

Progress requirements can also be introduced to mark an existing progress

requirement via a message set. Let Li be specified by P leads-to Q, and let M

be a set of messages such that (1) for every event e,(m) that receives

m e M, P A e,(m) + Q’, and (2) for every event e # e,(m), P A formula(e) -

P’ v Q’. Then we can introduce a new progress requirement L. specified

by PA count(M) > k leads-to Q v count(M) > k + 1, and mark L, via M
using L..

When new progress requirements Ln,. . . . Ln+ ~ are introduced to mark

L,, they are included in the ordering of progress requirements after L,; this

ensures that the new ordering is compatible with all existing tags of the

progress marking.

The ordering can be changed to facilitate progress marking. For example,

suppose the current ordering is Ll, L2, L3 and L1 is marked using L2. If L2

implies L3, then we could change the ordering to Ll, L3, L2, and mark both

L1 and L3 using L2.

7.3 General Observations

The construction is not guaranteed to terminate. If it does terminate, there

are two cases. It terminates successfully when all requirements in the system

specification are marked, and the state transition system satisfies all topol -

ogy constraints of the distributed system. It terminates unsuccessfully when-

ever we have an event requirement S, of an event e that is inconsistent with

the invariant requirements or with the other event requirements of e; that is,
S, a 1A V-fJ(e) holds. The only way to mark such an S, will be to remove the

event e.

Generating a precondition that is only sufficient (and not necessary) and

including it as an event requirement may cause unsuccessful termination

later on. Generating an invariant requirement from an event or progress

requirement may have a similar effect if it is done without an adequate

resolution in the system state space (as defined by the state variable
set Variables). New state variables should be introduced whenever it is

determined that the generation of an invariant requirement will cause

unsuccessful termination.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

454 . A. U Shankar and S. S. Lam

Observe that the state space can be refined either by addin~ ncw state

variables or by changing the domains of existing state variables. The latter

introduces an additional translation step in the evaluation of’ existin~ state

formulas whereas the former does not. The difficulty of the translation is LIn

important consideration when choosing between the former and the latter. In

this paper we have changed the domains of channel state variables only, and

that too is restricted to the addition of new messages and message fields. The

translation needed to evaluate an old state formula for a new state is trivial:

Simply ignore all new messages and new message fields in the new state.

Events in the initial specification that are intended to be under the control

of users of the distributed system are called input events. The distributed

system should not block input event executions that are allowed by

the initial specification. However, this may be practically impossible for

some initial specifications, in which case the initial specification must be

weakened. For example, in our data transfer construction, we first required

input event Prrxiucc(data) to be enabled in any state. Such a requirement

can only be satisfied by having an unbounded-capacity buffer at Entity 1 and

is, thus, not realistic. Therefore, we changed the initial specification

and allowed Produce(data) to be disabled in certain states, but required

that whenever it is disabled it eventually becomes enabled and remains

enabled at least until its next occurrence.

A related issue is that of “ inconsistent” initial specifications, which cannot

be satisfied by a distributed system even with unbounded resources.

For example, consider an initial specification with state variables x and y

associated with different entities, and invariant requirement x = y and

progress requirement x = n [cads-to x = n + 1. No distributed system can

satisfy both requirements, given the topology, because y cannot equal x just

after x is increased. Another example is the progress requirement x = n

leads-to x = n + 1,where x indicates the number of occurrences of an input

event. This cannot be satisfied without imposing some fairness requirement

on the input event.

The Marking is an important feature of our heuristic. At any point in the

construction, each entry in the Marking indicates a part of an inference rule

that is satisfied by the state transition system and a requirement. Thus,

the Marking indicates the extent to which it has been established

that the system satisfies the requirements. Note that we do not require

the Marking to contain every item that can be marked.

We allow great flexibility in how our Marking can change during a

construction. A refinement step that introduces new events or invariant

requirements can increase the Marking in absolute terms, but decrease it

relative to the number of unmarked items. We also allow refinement steps

that can decrease the Marking in absolute terms. We believe that the added

flexibility is more desirable than maintaining a monotonically nondecreasing

Marking. There is no preferred order to mark the three types of require-

ments. It might appear from our sliding window protocol construction that

we prefer to mark invariant requirements first, then progress requirements,

and then event requirements. This is not true. There was no particular

ACM Transactions on Programmmg Languages and Systems, Vol 14, No 3, July 1992

Stepwise Refinement Heuristic o 455

ordering when we first constructed the protocols; the ordering came later, in

our attempt to shorten the presentation.

The Marking allows us to introduce arbitrary modifications to a limited

extent. For example, given an event e specified by a formula p, we can

change the specification of e to an arbitrary formula q, where q is not a

conditional refinement of p; every marking involving e becomes unmarked.

Similarly, we can introduce a new event e that updates existing state

variables in arbitrary ways; (A,, e) is unmarked for every A,. When intro-

ducing arbitrary modifications, we must be careful not to modify updates to

state variables that were used to specify the desired properties at the start of

a construction. Otherwise, these state variables may not have the meaning

intended when they were used to specify the desired properties. For example,

in our data transfer protocol, suppose 2 is a particular value in DATA; we

should not modify proohced(s)’ = data to produced(s)’ = 2.

In summary, we emphasize that this is a heuristic. At any point in a

construction, the user of the heuristic is attempting to find a solution from

the space of all state transition systems that are conditional refinements

of the current state transition system and that satisfy the current
set of requirements. Not only is this space typically large (due to

unbounded domains of state variables, etc.), but it can grow from the

addition of new state variables. Thus, successful termination is not guaran-

teed, even if a solution exists in this space. However, if a solution exists and

its basic features are known to the user, then he or she can guide the

heuristic to converge to the solution.

Machine assistance in the form of proof checkers and theorem provers

would be very helpful, especially to a user who is not comfortable with

predicate logic or program verification. We envision an interactive environ-

ment in which the user is responsible for introducing events, state variables,

and some requirements, and for choosing which unmarked item to mark

next. The user would rely on machine assistance to obtain a precondition for

a specified (A,, e) pair, to verify that a specified state formula P is a

precondition, to verify that a modification to an event is a conditional

refinement, to verify that a marking satisfies the consistency constraints, etc.

8. DISCUSSIONS AND RELATED WORK

In our heuristic we start a construction with an initial specification, say, 1,

consisting of a topology, a state transition system, and a set of safety and

progress requirements, which together specify the desired behavior. If the
construction terminates successfully, we are left with a distributed system,

say, D, that is a refinement of the initial state transition system and that

satisfies the safety and progress requirements. Specifically, D and 1 satisfy

the relation D offers I defined in [191. Various other authors have defined

relations with similar meanings, such as D simulates 1 of Lynch and Tuttle

[24], and D satisfies I of Lamport [21-231 and Hoare [131. The informal
meaning of each of these relations is that every externally visible behavior

allowed by D is allowed by I. (There are some differences in how behaviors

and visible behaviors are defined.)

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992

456 . A. U. Shankar and S. S. Lam

Our approach of constructing a system as a refinement of another system is

based on our earlier work on the use of projection mappings to relate state

transition systems [17]. In particular, a state transition system A is

a refinement of a state transition system B iff B is an “image” of A.

The derivation of B as an image of A was considered in [17]; the method was

applied [33] to verify a version of the High-level Data Link Control (HDLC)

protocol standard with functions of connection management and full-duplex

data transfer. The derivation of A as a refinement of B was considered

in [18].

Our stepwise refinement heuristic is influenced by Dijkstra’s work on the

derivation of programs by using weakest preconditions [7], and by his devel-

opment of distributed programs by incrementally adding invariants and

actions to preserve the invariant [8-1 l].

There are differences and similarities between our approach and the

approach of Chandy and Misra [5, 61 to derive distributed programs by

stepwise refinement. In both approaches, a distributed system is modeled by

a set of state variables and events. Invariant and progress requirements are

maintained throughout a construction. In the approach of Chandy and Misra,

most of the effort is spent on refining the set of requirements; the distributed

program is not shown until very detailed requirements have been obtained.

In our approach much effort is spent on refining the state transition system;

the detailed requirements are derived in order to satisfy our various condi-

tions for one state transition system to be a refinement of another state

transition system.

In many of the examples of Chandy and Misra, the topology of a network of

processes is refined by breaking up an event into several events, which are

subsequently associated with different processes. This type of refinement step

has also been used by Back and Kurki-Suonio [2, 3]. We have not found use

for such a refinement step in our examples, which are from the area of

communication protocols.

Our approach has several unique features: a Marking, a conditional refine-

ment relation between systems, and event requirements. A Marking provides

a useful representation of the extent to which we have established that the

current system satisfies a given set of requirements. The conditional refine-
ment relation gives us flexibility in generating new state transition systems,

while keeping any decrease in the Marking to a minimum. Event require-

ments play an interesting role in our heuristic, in that they allow us to state

safety requirements that (1) cannot be included in enabling conditions
of events (e. g., due to topology, atomicity, or memory constraints), and (2)

cannot yet be made into invariant requirements without causing unsuccessful

termination.
Another special feature of our heuristic is the extensive use of auxiliary

variabIes. 12 In the course of a construction, a state variable is made auxili-

M we ~~e the term ~uziziary wzriabze in the sense of Owicki and Gries [281, that i% to record

some history of system execution. Abadi and Lamport have extended this notion of auxiliary

variables with “prophecy variables” [1]. A formal explanation of auxiliary variables as they are

used in this paper can be found in [18].

ACM Transactions on Programming Languages and Systems, Vol 14, No. 3, July 1992

Stepwise Refinement Heuristic . 457

ary if we find that it requires too much memory, or cannot be updated

atomically, or violates topology constraints, etc. This technique can be used

to refine the atomicity of system execution, that is, to replace an atomic

update of a set of variables by a nonatomic succession of updates to the

individual variables in the set [19]. It can also be used to refine the topology.

We find the relational notation to be very convenient for expressing event

refinement and for reasoning about the effect of an action on invariant

requirements. However, our construction heuristic does not require it; events

can be specified by guarded multiple-assignment statements, as in [51.
In our approach we make no attempt to reason on a per-process basis (in

our case, a process is either an entity or a channel). An assertion can involve

variables of different entities and channels. However, this does not mean

that the heuristic cannot be used in conjunction with a composition approach.

In [19] and [20], we have extended this work to a layered system of modules

separated by interfaces. An interface is specified by a state transition system

and a set of safety and progress requirements. A module is specified by a

state transition system and a set of fairness requirements. We proved the

following composition theorem: If each module using its lower interface offers

its upper interface (defined precisely in [191 and [201), then the layered

system offers its topmost interface. In the context of this composition theorem,

this paper provides a heuristic to construct a module for given upper

and lower interfaces. In particular,-the initial specification corresponds to the

upper interface, and the (unreliable) message-delivery channels correspond to

the lower interface.

Development of our system model and construction heuristic was moti-

vated by communication protocols (however, we believe that they are applica-

ble to distributed systems in general). We applied the heuristic presented

herein to construct complete transport protocols with functions of connection

management and full-duplex data transfer [26, 27, 321. A unique feature of

these constructions is the composition of protocols constructed separately for

the individual functions. We have also used the heuristic to obtain two

database modules, using a two-phase locking protocol and a multiversion

time-stamp protocol, that offer a serializable interface [191. The two-phase

locking module uses a lower interface to access a physical database.

Other authors have used communicating finite-state machines (CFSMS),

Petri nets, programming language models [12, 15,361, and temporal logic [121

for the specification and verification of communication protocols. The advan-

tage of CFSM and Petri net models is that they can be automatically verified

(e.g., [30]). Their disadvantage is that they cannot handle unbounded vari-

ables, such as sequence numbers and timers, without suffering a state space

explosion; consequently, they cannot adequately model many real-life proto-

cols. Programming language and temporal logic approaches, of which ours is

a special case, have the power to model any protocol, but cannot be solved

automatically. Real-time features can be incorporated in each of these ap-

proaches, just as we have added real-time to our model [33-351. Other

real-time models outside the communications protocols area include [41, [141,

and [161.

ACM Transactions on Programming Languages and Systems, Vol 14, No. 3, July 1992.

458 . A. U Shankar and S S. Lam

APPENDIX A. Soundness of Refinement Steps

We need to show that each refinement step preserves Initial * A and the

consistency constraints of the Marking. We first consider Initial * A. This

is preserved by the first system refinement step (addition of new state

variables and new events) and the third requirement refinement step (gener-

ation of invariant requirements). The other steps do not affect Initial or A.

WJe now consider the consistency constraints of the Marking. For each item

in the Marking, the corresponding constraint specifies that certain impli-

cations hold; for example, if (A,, f) is marked then A ~ S(f“) ~ forrnula(f) *

A; must hold. These implications are of four types: (1) A A ~omzula(~) * S.,

(2) A ~ S(f) A formula(f) - A;, (3) XA A A A’ A S(f) A ~omzuza(~) = Y’,

and (4) X A A A S’(~) + enabled(f). We show that each step preserves all

of the implications of a marking that it does not explicitly unmark.

Addition of new state variables and new events. Because the state vari-

ables in Newvars are new, they do not appear in any requirement or existing

event. Therefore, all existing implications of types 1 –4 are preserved. Because

a new event e only updates Newvars, all type 2’s with f = e hold. No other

implications are affected.

Refinement of events. Types 1-4 with f # e are not affected. Types 2 and

3 with f = e are preserved because A A S(e) A q * A A S(e) A p holds. Types 1

and 4 with f = e are covered by the exceptions.

Introduction of new messages. Type 1 is not affected. Types 2 and 3 are

preserved because no requirement is affected by adding n to the tail of Zh or

by removing n from the head of Zk. Type 4 is not affected for f other than e,

or eJ. Type 4 for f = eL preserved because Sendk(n) is never blocked. Type 4

for f = eJ is covered by the exception.

Introduction of new message fields. Similar to the previous step, except

that type 4 for f = e] is preserved because the new e, receives message (m, d)

regardless of the value of d.

Reorganization of safety requirements. Part (1):Type 1 with S. # S, is

not affected. Type 1 with S. = S, is preserved because A A formula(e) * R

fol-

lows from A ~ formula(e) * P, A * Q (which holds because Al is a conjunct

of A), and Q A P * R (which holds because R is equivalent to P given Q).

Types 2-4 with f + e are not affected. Types 2-4 with f = e are preserved as

follows: Let T denote S(e) without S,. Thus, S(e) equals TAP before the

step, and T A R after the step. It suffices to show that A A T A P follows from

A A TAR. This holds because A A P follows from A AR, A * Q (which holds

because AJ is a conjunct of A), and Q A R * P (which holds because R is

equivalent to P given Q).

Part (2): Type 1 with S. + S, is not affected. Type 1 with S. = S, is

preserved because A A formula(e) - R follows from A A formula(e) + P, A ~

formula(e) + Q (which holds because S, is marked if S, is marked), and

Q A P + R (which holds because R is equivalent to P given Q). Types 2-4

ACM Transactions on Programming Languages and Systems, Vol 14, No. 3, July 1992.

Stepwise Refinement Heuristic . 459

with f < e are not affected. Types 2 –4 with f = e are preserved as follows:

Let T denote S(e) without S,. Thus, S(e) equals TAP before the step, and

TAR after the step. It suffices that TAP follows from TAR, T * Q (which

holds because S’j is a conjunct of S(e) and i # j), and Q A R = P (which holds

because R is equivalent to P given Q).

Part (3): Let T be A without A,. Thus A equals T A P before the step,

and T A R after the step. Types 1, 3, 4, and 2 with A. + A, are preserved

because T A P follows from T A R, T * Q (which holds because Al is a con-

junct of A and i #j) and Q A R * P (which holds because R is equivalent

to P given Q). Type 2 with A. = A, is preserved because TAR A S(e) A

formula(e) * R’ follows from T A P A S(e) A formula(e) _ P’, T A P A

S(e) A formula(e) = Q’ (which holds because (AJ, e) is marked whenever

(A,, e) is marked), and Q’ A P’ = R’ (which holds because R is equivalent to

P given Q).

Generation of event requirement from invariant requirement. Only type 2

with A ~ = A, and f = e is affected. It holds by definition because P is a

sufficient precondition and is a conjunct of S(e) after the step.

Generation of invariant requirements. Let T denote A before the step.

After the step, A is T A Ak. Type 1 with S. = S, and f = e holds because

Ah A formula(e) = Sz. Other type 1’s preserved because T follows from T A

Ak. Types 2-4 preserved because T A S(f) is implied by T A Ah A S(f) for

every f.

Generation of progress requirements. Obvious from the definition of

progress marking.

APPENDIX B Safety Marking for Protocol I

To complete the Marking of Protocol I, we need the following invariant

requirements that relate timerD to tD,and timer~ to tA:

Do=nc[max(O, s–N+~~). . s – 1] = started-together(timerD(ii), tD(n))

V(timerD(ii) = OFF A tD(n)> MAXLIFE1)

V(timerD(ii) = OFFA t.(n) = OFF

Dl=ne[s. . max(s + RW – 1,N – 1)] = timer~(fi) = OFF

D2=n~[s. . CO] = t~(n) = OFF

D3=ne[max(0, s–i’V+ l). . a – 1] * .started-together(timer~(ii), t~(n))

V(timerA(fi) = OFF A tA(n) > MAXLIFE2)

D4=n~[a. . max(s, N – 1)] + timer~(@ = OFF.

The Marking can be completed as follows, where Lte is the Local time event

for Entity 1:

Produce SendD RecACK Consume SendACK RecD LRD Ite Lte

A CO_6 * * * * * *
0-9?

* *

Do D ~_2 A8, Do na na na na na Do ~.

D1 D1 D1 na na na

D2

na na na D1

D2 D2 na na na na D2 na

D3 D3 na 78, C5, D3,4 na na na na D3 D3

D4 D4 na D4 na na na na na D4

ACM Transactions on Programming Languages and Systems, Vol. 14, No, 3, July 1992

460 . A. U. Shankar and S. S. Lam

So marked using Sl, Cz,l, TAI SI marked using DO SZ marked using S3, A8, C4.G, TAZ S3 marked using D3

We have used v i,je[max(O, .s-N+RW). .s– 1]: (i=j iff ~=~) in

marking DO_ ~, and v i,j~[max(O, s–N+l). ”a– 1]: (i=j iff ;=~)

in marking D~_ ~.

ACKNOWLEDGMENT

This paper has benefited greatly from the constructive criticisms and diligence

of the anonymous referees.

REFERENCES

1.

2.

3.

4.

5.

6.

7.
8.

9,

10.

11.

12.

13.

ABADI, M., AND LAMPORT, L. The existence of refinement mappings. Tech. Rep. 29, Digital

Systems Research Center, Palo Alto, Calif., Aug. 1988.

BACK, R. J, R,, AND KURKI-SUONIO, R, Decentralization of process nets with a centralized

control. In Proceedings of the 2nd ACM SIGA CT-SIGCOPS Symposium on Prmaples of

Distributed Computzng (Montreal, Aug. 1983), ACM, New York, 1983, pp. 131-142.

BACK, R, J, R., AND KURKI-SUONIO, R, Distributed cooperation with action systems. ACM

Trans. Program Lang. Syst. 10, 4 (Oct. 1988), 513-554.
BERNSTEIN, A., AND HARTER, P. Proving real-time properties of programs with temporal

logic. In Proceedings of the 8th ACM SIGCOPS, ACM, New York, Dec. 1981, pp. 1-11,

CHANDY, K. M., AND MISRA, J. An example of stepwlse refinement of distributed programs:

Quiescence detection. ACM ‘Trans. Program Lang. Syst, 8, 3 (July 1986), 326-343.

CHANDY, K. M., AND MISRA, J. A Foundation of Parallel Program De.wgn. Addison-Wesley,

Reading, Mass , 1988.

DIJKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N. J., 1976

DIJKSTRA, E, W. The distribution snapshot of K. M. Chandy and L. Lamport. Tech. Rep,

EWD-864, Univ. of Texas at Austin, Nov. 1983,

DIJIWTRA, E. W, Derivation of a termination detection algorithm for distributed

computations. Tech, Rep. E WD-840, Umv. of Texas at Austin.

DIJKSTRA, E. W., AND SCHOLTEN C. S, Termination detection for diffusing computations.

Znj! Process Lett. 11, 1 (Aug. 1980), 1-4.

DIJKSTRA, E. W,, LAMPORT, L,, MARTIN, A. J., AND SCHOLTEN, C. S. On-the-fly garbage

collection: An exercise in cooperation, Commun. ACM 21, 11, (Nov. 1978), 966-975.
HAILPERN, B. T., AND OWICKI, S. S Modular verification of computer communication

protocols. IEEE Trans. Commun. COM-31, 1,(Jan. 1983), 56-68,

HOARE, C. A. R. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,

N. J., 1985,

14, JAHANIAN, F., AND MOK, A. Safety analysis of timing properties in real-time systems. IEEE

Trans. So@. Eng, SE-12, 9 (Sept. 1986), 890-904.
15. KNUTH, D. E. Verification of link-level protocols. BIT 21 (1981), 31-36.

16. KOYMANS, R., SHYAMSUNDER, R. K., DE ROEVER, W. P., GERTH, R., AND ARUN-KUMAR, S,

Compositional Semantics for Real-Tzme Dwtr~buted Computing. Lecture Notes in Computer

Science, vol. 193. Springer-Verlag, New York, June, 1985, pp. 167-187.

17. LAM, S. S., AND SHANKAR, A U. Protocol verification via projections, IEEE Trans. Softw.

Eng. SE-10, 4 (July 1984), 325-342.

18. LAM, S S., AND SHANKAR, A. U, A relational notation for state transition systems. IEEE

Trans. Softw. Eng. 16, 7 (July 1990), 755-775 (An abbreviated version, entitled “Refine-

ment and projection of relational specific ations, ” appears in Proceedings of the REX Work.
shop on Step wise Refinement of Distributed Systems (Mook, The Netherlands). Lecture Notes

in Computer Science, vol, 430. Springer-Verlag, New York, May/June 1989),

19. LAM, S, S., AND SHANKAR, A. U. Specifying modules to satisfy interfaces: A state transition

system approach In Distributed Computmg, Springer-Verlag. To be published, (Also Tech.

ACM Transactions on Programming Languages and Systems, VO1 14, No 3, July 1992.

Stepwise Refinement Heuristic . 461

Rep. CS-TR-88-60. 3, Dept, of Computer Science, Univ. of Marylandj College Park, Aug.

1988.)

20. LAM, S, S., AND SHANKAR, A. U. A composition theorem for layered systems. In Proceed-

ings of the 11th International Symposium on Protocol Specification, Testing, and Verification

(Stockholm, June 17-20), IFIP, 1991.

21. LAMPORT, L. Specifying concurrent program modules. ACM Trans. Program. Lang. Syst. 5,

2 (Apr. 1983), 190-222.

22. LAMPORT, L. What it means for a concurrent program to satisfy a specification: Why no one

has specified priority. In Proceedings of the 12th ACM Symposium on Principles of Program-

ming Languages (New Orleans, Jan. 1985). ACM, New York, 1985.

23. LAMPORT, L. A simple approach to specifying concurrent systems. Commun. ACM 32, 1
(Jan. 1989).

24. LYNCH, N. A., AND TUTTLE, M. R. Hierarchical correctness proofs for distributed algo-

rithms. In Proceedings of the ACM Symposium on Principles of Distributed Computing

(Vancouver, B. C., Aug. 1987) .ACM, New York, 1987.

25. MANNA, Z., AND PNUELI, A. Adequate proof principles for invariance and liveness proper-

ties ofconcurrent programs. Sci. Comput. Program.4 (1984).

26. MURPHY, S. L. Service specification and protocol construction for a layered architecture.

Ph.D. dissertation, Dept. of Computer Science, Univ. of Maryland, College Park, May 1990.

(Also available as Tech. Rep. CS-TR 2583 (or UMIACS-TR-91-3), Computer Science Dept.,

Univ. of Maryland, College Park, Jan, 1991.)

27. MURPHY, S. L., AND SHANKAR, A. U. Connection management for the transport layer:

Service specification and protocol verification. Tech. Rep. CS-TR-2051. 1 (or UMIACS-TR-88-

45.1), Computer Science Dept., Univ. of Maryland, College Park, June 1988. (Shortened

version to appear in IEEE Trans. Commun. A preliminary abbreviated version, entitled “A

verified connection management protocol for the transport layer,” appeared in Proceedings

of the ACM SIGCOMM 87 Workshop (Stowe, Vt., Aug. 1987). ACM, New York, 1987,)

28. OWICKI, S., ANn GRIES, D. An axiomatic proof technique for parallel programs I. Acts Infi

6, (1976), 319-340.

29. POSTEL, J,, ED. Transmission control protocol: DARPA internet program protocol specifica-

tion. RFC 793, Network Information Center, SRI International, 1981.

30. SABNANI, K. An algorithmic procedure for protocol verification. IEEE Trans. Commun. 36,

8 (Aug. 1988).

31. SHANKAR, A. U. Verified data transfer protocols with variable flow control. ACM Trans.

Comput. Syst. 7, 3 (Aug. 1989). (An abbreviated version entitled “A verified sliding window

protocol with variable flow control” appeared in Proceedings of the ACM SIGCOMM 86

Symposium (Stowe, Vt., Aug. 1986). ACM, New York, 1986.)

32. SHANKAR, A. U. Modular design principles for protocols with an application to the trans-

port layer. Proc. IEEE (Dec. 1991), (Also available as Tech. Rep. CS-TR-251O. 1, Computer

Science Dept., Univ. of Maryland, College Park, July 1990.)

33. SHANKAR, A. U., AND LAM, S. S. An HDLC protocol specification and its verification using

image protocols. ACM Trans. Compzd. Syst. 1, 4 (Nov. 1983), 331-368.

34. SHANKAR, A. U., AND LAM, S. S. Time-dependent communication protocols. In Principles of

Communication and Networking Protocols, S. S. Lam, Ed., IEEE Computer Society, New

York, 1984.

35. SHANKAR, A. U., AND LAM, S. S. Time-dependent distributed systems: proving safety,

liveness and real-time properties. Distrib. Comput 2, 2 (1987), 61-79.

36. STENNING, N. V. A data transfer protocol. Compzd. Networks 1 (Sept. 1976), 99-110.

Received 1987; revised April 1989, November 1990, and July 1991; accepted August 1991

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 3, July 1992.

