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del is specified by a set of state variables and a set of events.

\ predicate that relates the values of the system state variables

ir values immediately after the event occurrence. The predicate
civuuics spuuasvawons o DOth the event’s enabling condition and action. Measures of
time are explicitly included in our model. Furthermore, clocks are not coupled and they
can tick at any rate within some specified error bounds. Inference rules for both safety
and liveness properties are presented. Liveness properties are expressed in the form of in-
ductive properties of bounded-length paths in a system’s reachability space. Real-time
properties are expressed as safety properties.

We have applied our methodology to the verification of several large communica-
tion protocols including a version of the High-level Data Link Control (HDLC) protocol.
For the sake of brevity, a relatively small data transfer protocol is modeled herein for il-
lustration. This protocol can reliably transfer data over bounded-delay channels that can
lose, reorder and duplicate messages in transit. The protocol’s safety, liveness and real-
time properties are presented.
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1. INTRODUCTION

We consider real-time systems that employ clocks and timers to enforce time con-
straints between system event occurrences. We refer to a system as time-dependent when
it contains time constraints that are essential to the correct functioning of the system.
Our work has been motivated primarily by real-life communication network protocols
which are invariably time-dependent systems [1-4].

Time-dependent behavior arises naturally in communication networks because er-
rors and failures that occur in a network component are usually not communicated ex-
plicitly to other network components that may be affected by these errors and failures.
In such situations, only by the use of timeouts can a component infer that a failure (or
an error) has occurred and initiate recovery action. Because such recovery mechanisms
are themselves subject to the same kinds of failures or errors, the real-time behavior can
be very complex. ‘

We present in Sections 2, 3 and 5 an event-driven process model for specifying and
verifying distributed systems, both time-dependent and time-independent. We have ap-
plied this model to the analysis of several nontrivial protocol examples, including a ver-
sion of the High-level Data Link Control (HDLC) protocol [5]. To illustrate our model,
we present below a transport-level protocol for reliable data transfer over bounded-delay
channels that can lose, reorder and duplicate messages in transit. The protocol employs
cyclic sequence numbers, timers and timeouts.

Review of protocol verification

The aim of protocol verification is to establish that certain desired logical correct-
ness properties of a protocol system are guaranteed by its specifications. For distributed
systems in general, such logical correctness properties are generaly categorized 'into
safety properties and liveness properties. Informally, a sa fety property states that certain
relations always hold between a set of system variables irrespective of whether the sys-
tem progresses or not (e.g., if data blocks are delivered to a remote user, then they are
delivered in the same order as the order in which they were submitted by the local user).
A liveness property states that the system will indeed progress in a certain manner (e.g.,
a data block that is submitted by the local user will eventually be delivered to the
remote user)

However, in the case of communication network protocols, it is often desirable to
describe progress in terms of real-time properties. Typically, if a protocol does not ach-
ieve progress (transfer of data, establishment of a connection, etc.) within a bounded
time duration T, then the protocol resets or aborts. Hence, a liveness assertion stating
progress within a finite but unbounded time duration is not realistic. More appropriate is
a real-time assertion such as *if within a time duration T the data block is not trans-
ferred, then at least n retransmissions of the data block have occurred, all of which
failed.® In our model, such real-time assertions can usualiy be stated as safety assertions.
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Protocol verification consists of proving, in some deductive inference system, that
the correctness properties of a protocol system follow from the system specifications. An
inference system consists of a syntax for expressing statements, as well as a collection of
axioms and inference rules. An axiom is a statement whose truth is taken for granted. An
inference rule specifies how a new statement can be derived from other statements. A
proof of a statement A, in such a system is a sequence of statements (with A, at the end)
where each statement is either an axiom or is derived from previous statements by an
application of an inference rule. First-order predicate logic is an example of a deductive
inference system. An inference system for protocol verification can be obtained by ex-
tending first-order predicate logic with additional inference rules for proving safety and
liveness properties. These additional inference rules define the semantics of constructs
that are used in protocol specification.

Some features of our model

We model distributed systems as networks of processes that communicate with one
another by message-passing. For communication network protocols in particular, each
process in a network is either a communication channel or a protocol entity. Each
process has a set of stafe variables and a set of events. An event is described by a predi-
cate that relates the values of the system state variables immediately before the event
occurrence to their values immediately after the event occurrence. The predicate em-
bodies specifications of both the event’s enabling condition and action. There is no al-
gorithmic code in our model.

What we have is a compromise that incorporates both implementation-dependent
features (the state variables) and implementation-independent features (the use of predi-
cates to specify events). Such a combination has several advantages. First, it allows for
very simple inference rules for safety and liveness properties. In particular, we do not
need any special notation (such as temporal logic [6]) to express liveness properties of
unbounded-length paths in a system’s reachability graph. Instead, we describe such live-
ness properties in the form of inductive properties of bounded-length paths. Second, be-
cause the events are specified by predicates, their specifications can be directly sub-
stituted into proofs in predicate logic. Third, the use of state variables simplifies the
modeling of time measures.

We use discrete-valued time variables to measure the elapse of time, and define
time events to age these time variables. By imposing certain conditions, referred to as
accuracy azioms, on the time events, we are able to model clocks realistically: our
clocks are uncoupled and can tick at any rate within specified error bounds of a given
rate. Additional conditions on the time events, referred to as time axtoms, allow us to
model many types of time constraints between system events.
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Related work .

In addition to time-dependent behavior, another characteristic of real-life com-
munication protocols is that each protocol typically performs multiple distinct functions,
such as connection management, one-way data transfers, etc. The method of projections
provides an approach to transform the analysis of a multi-function protocol into analyses
of smaller single-function protocols, called image protocols [7].

The theory of projections was originally developed in [7] using a set-theoretic nota-
tion. In Part 2 of [8], we specialize the theory to the time-dependent protocol system
model herein. The use of state variables and predicates (to specify events) greatly
facilitates the construction of image protocols.

2. MODELING MEASURES OF TIME

Protocol system components have devices, such as crystal oscillators, that issue
*ticks* at (almost) regular time intervals (e.g., once every microsecond). We refer to
such devices as local tickers. In order to measure intervals of time larger than that bet-
ween consecutive ticks, the system components typically employ counters to accumulate
the number of elapsed ticks generated by a local ticker since the occurrence of some sys-
tem event. These counters are the clocks and timers used in the protocol system. We
refer to such counters as time variables.

The tickers in protocol systems have several properties that should not be ignored
in any realistic modeling. First, the interval between successive ticks is not infinitesimally
small. Second, tickers in different components are not coupled: the ticks of one ticker do
not coincide in time with the ticks of another ticker. Third, the rate at which a ticker
ticks is not constant but may vary within certain error bounds of a constant rate. We ac-
count for each one of these features in our model.

The time variables in our model are discrete-valued variables. Without loss of
generality, we consider them to take values from the set of non-negative integers. For
each local ticker i, there is a local time event (corresponding to a tick) whose occurrence
ages (increments) all time variables driven by the ticker. Since no other ticker is affected,
this ticker is effectively decoupled from other tickers. All the time variables driven by a
local ticker must necessarily lie within a single component of the protocol system. In ad-
dition to being aged, a time variable can be reset to some value by an event of its com-
ponent. Thus, a time variable can be used to measure the time elapsed (in number of
ticks of its local ticker  since an event occurrence.

At this point in the modeling, the tickers are entirely decoupled. There is nothing
to prevent different local tickers from ticking at vastly different rates. To complete the
modeling of real-time measures, we must keep local tickers within specified drifts. To do
this we include in our model a hypothetical ticker, referred to as the global ticker, that is
assumed to tick at an absolutely constant rate. Each local ticker will be allowed to drift
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within a specified bound of the global ticker. For each local ticker i, let 5, denote the
number of ticks issued since system initialization, and let ¢; denote the maximum error in
the tick rate. Let 5 denote the number of global ticks since initialization. The #'s are
(auxiliary) time variables that. do not correspond to actually implemented clocks or
timers, and can never be reset by any system event. Neither the local time event for
ticker i nor the global time event is allowed to occur if such an occurrence will violate
the following accuracy aziom of local ticker i (below, the notation #(a) refers to the
value of 5 at instant a, while n refers to the current value of the time variable 5):

AccuracyAxiom;(#;,n): For any earlier instant a,

| (n; - mi(a)) - (n - n(a)) | < max(1,¢(n-n(a)))-
The above accuracy axiom states that over any time span since initialization, the num-
ber of ticks of local ticker i differs from the number of global ticks by at most ¢, times
the number of global ticks. (The minimum upper bound of 1 is necessary since the tick-
ers are integer-valued.) This accuracy axiom is a discrete version of the following drift
condition for continuous clocks

dn.
1--! €
I1-211< ¢
usually found in the literature [9].

Recall that time variables are used to measure the time elapsed since a system
event occurrence. Thus, by including time variables in the enabling condition of a system
event e, we can model time constraints of the form "event e will not occur unless cer-
tain time intervals have elapsed.® To model time constraints of the form "event e will
occur within certain elapsed time intervals,* we impose conditions, referred to as time
arioms on the allowed values of time variables. As a result, in addition to the con-
straints imposed by accuracy axioms, time events will not be allowed to occur if their oc-
currence will violate any time axioms. This modeling of real-time behavior is valid
provided that the time events do not get deadlocked because of the accuracy and time
axioms. We have shown that the tickers will continue to accumulate ticks if the time
axioms correspond to feasible constraints; i.e., constraints that can be realistically met
by the protocol entities [8]. A precise notation for specifying the time events is presented
with the protocol example in Section 4.

We shall refer to time variables driven by local tickers as local time variables. We
also allow time variables to be driven by the global ticker. These time variables are
referred to as global time variables; they do not correspond to clocks and timers that are
implemented in the system. Rather they are used to record the exact (i.e., global) time
elapsed between system events. Such measurements may be needed in stating assertions
of time-dependent behavior.

In particular, for a local time variable v, we often find it convenient to specify a
global time variable v* such that any system event that resets v also resets v* to the
same value. v* is referred to as the global time variable associated with v. Clearly, if v is
driven by #;, then AccuracyAxiom,(v,v*) holds between all instants after the last reset.
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3. DISTRIBUTED SYSTEM MODEL
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Fig. 1. Network configuration of protocol example in Section 4.

In this section, we specify the messages, state variables and events of the protocol
system model. Instead of describing the model for communication networks in general,
we present the model for the special configuration and channel behavior of the protocol
example in Section 4. (See Fig. 1.) P, and P, are two protocol entities connected by
bounded-delay channels C; and C,. For i=1 and 2, any message attempting to stay in
channel C; for longer than a specified time MaxDelay; is lost (e.g., removed by some in-
termedlate network node [3, 10]). (For a general network configuration with various
types of channels, the reader is referred to [8].)

Messages and state variables

For i=1 and 2, the messages sent by P; are categorized into message types. Each
message type ¢ specifies multi-field messages of the form (g, f},...,f;) where n>0. The
first component indicates the name of the message type, while each of the other com-
ponents f; is a parameter ranging over a specified set of values. The vector notation (g,f)
is used to refer to the message type ¢. We note that multi-field messages are characteris-
tic of most real-life communication protocols. ‘

Let v, be the set of state variables of P;. Every variable in v; takes values from a
specified domam of values. In order to model timing constraints of P;, v; can include
time variables (which may be constrained by time axioms). Assume that all time vari-
ables in v, (if any) are driven by a local ticker with count 5, and maximum error €. v;
can also have auxiliary variables used for verification purposes. An auxiliary variable is
used only to record the behavior of the entity over time (e.g., sequence of data blocks
delivered to a user); its value never affects the behavior of the entity.

For each message in channel C;, we associate with the message a time variable age
that indicates the age of the message (time spent in the channel). Let z; be the sequence
of (message, age) pairs in C,. We let the age time variable be driven by the global ticker.
The channel’s bounded-delay behavior is modeled by the time aziom

TimeAxiom,(z,): For every (m,t) in z;, t < MaxDelay;.

The global state vector is defined as v == (v,v5,2,,25). The initial conditionx of
the protocol system are given by a predicate named Initial(v).
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Events

Before we describe how events are specified, we first introduce our use of predi-
cates to specify relations between sets of input and output parameter values. Let x and
y be sets of parameters that can take values from domains X and Y respectively. As-
sume that x and y have no parameters in common.

Consider a predicate with parameters from x and y. For example, the expression
(x;==y+1) or (xo=y) is a predicate. For every value pair in X XY, a predicate evaluates
to either True or False. The predicate specifies a set of value pairs in X XY, namely
those where the predicate evaluates to True. The predicate is said to be enabled for any
value of x if there is a value of y such that the predicate is True for that value pair.

Instead of using algorithmic code, we use predicates to specify input-output rela-
tions. For example, given integers z and y, an algorithm that assigns to y the value z+1,
can be modeled by the predicate (y=z+1). It can also be modeled by the predicate
(y—z=1). A nondeterministic algorithm that assigns to y either the value z+1 or the
value z—2 provided that y is positive, can be modeled by the predicate (y>0 and
(y=2+1 or y=1+2)). (We use and and or to denote logical conjunction and disjunction
respectively.) Note that within a predicate there is no distinction between the input and
output parameters because there are no assignment statements as found in algorithmic
code.

We now introduce some notation. We use e(x;y) to denote a predicate named e
with parameters from x and y. Note that the input parameters are listed before the
semicolon. The output parameters are listed after the semicolon. For any given values of
x and y, we shall also use e(x;y) to denote the value of the predicate.

We now describe how to use predicates to specify events. Since a system event may
cause certain changes to the values of the system state variables, it corresponds to a col-
lection of input-output value pairs where the input and output parameters are the values
of the system variables before and after the event occurrence. ‘Applying the above nota-
tion, we specify a system event e by a predicate e(v; v*), where the parameter v denotes
the value of the global state vector immediately before the event occurrence and the
parameter v* denotes the value of the global state vector immediately after the event
occurrence.

The events of a distributed system usually have structure that we wish to explicitly
indicate. First, an event e typically affects only a few components of the global state
vector. When specifying such an event e, we will include only these components in its
parameter list, and adopt the convention that the missing components are not affected
by the event. Second, though an entity can affect the value of a channel state variable,
it can do so only in certain ways: namely, sending a message (appending it to the tail of
the channel state variable) and receiving a message (removing it from the head of the
channel state variable). To incorporate these constraints in the model, we define send
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and receive service primitives for the channels, and allow entity events to access the
channel state variables only through these primitives.

For channel C;, the send service primitive is Send;(m,z;z;*) which denotes the
predicate (z;* = ((m,0),2;)) i.e., append m with an age of 0 to the tail of z;. Similarly,
the receive service primitive is Rec(z;m,2,*) which denotes the predicate
((z;*,(m,t))=3,) i.e., if z; has m at its head, then irrespective of m's age, remove it and
pass it out. When these service primitives are included in the predicates of the entity
events, the formal message parameter m is replaced by the actual message sent or
received.

Thus the events of entity P, have the structures indicated below

(1) for each message type (g,f) sent by P;,

Send _q (v;z;;v;," 2,") = eaq(vi;vi",f) and Sendy((¢.f),2;z;")

(2) for each message type (g,f) received by P, from Channel C;»

Rec_q(vi,zj;vi",zj') = erq(vi,f;vi') and Recj(zj;(q,f),zj");

(3) internal events of the form e, ,(v;;v;") used to model timeouts, etc.

where the predicates e q and e, , are to be specified for a particular protocol system

sq e,

For each channel C;, the channel behavior (loss, reordering, etc. is specified by a
predicate called ChannelError(z;;z;").

The time events are completely specified by the accuracy and time axioms in a
straightforward manner: (See Part 1 of (8] and see the protocol example in Section 4 for
an illustration.)

4. A TIME-DEPENDENT DATA TRANSFER PROTOCOL

We now present a data transfer protocol that reliably transfers data blocks from
entity P, to P, using channels C; and C, (see Fig. 1), where we allow the bounded-delay
channels to lose, duplicate and reorder messages in transit.

Let DataSet be the set of data blocks that can be sent in this protocol. P, sends
messages of type (D,data,ns) where D identifies the name of the message type, data is a
data block from DataSet, and ns is a send sequence number. P, sends messages of type
(ACK,nr) where nr is a receive sequence number. In this protocol, ns and nr are
restricted to the values of 0 and 1. When P, receives a (D,data,ns) message, if ns equals
the next expected sequence number then the data block is passed on to the destination,
else it is ignored. In either case, P, sends an (ACK,nr).

In order that the data transfer be reliable in spite of the channel errors, P; must
ensure before sending a new data block that MaxDelay, time has elapsed since the last
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data block was sent, and MaxDelay, time has elapsed since receiving the last ack-
nowledgement to a previously unacknowledged data block. P; will repeatedly transmit
this data block until it is acknowledged. However, neither of the time constraints apply
to the retransmission of a previously sent but unacknowledged data block. The time to
wait before a retransmission should be chosen on the basis of performance goals and the
probability distributions of channel delays, channel loss, etc. Here we see a system with
two different types of time constraints: one necessary for logical correctness and one
concerned only with performance. In other protocols, the separation is not always so
clear.

We now list the state variables and events of the entities. (Below, MDelay; = (1 +
€;) X MaxDelay; for i=1 and 2.)

Variables of P,

Source: array[0..00] of DataSet; {auxiliary history variable initialized to the sequence of
data blocks to be sent to P,}

s: 0..00; {Source[s] is the data block in the next D message to be sent; an auxiliary
variable}

vs: 0..1; {sequence number to be used in the next D message to be sent}
ws: 0..1; {sequence number used in the last D message sent}

DTimer,DTimerG: (0,1,2,..); {time elapsed since the last D message sent; DTimer is a
local time variable and DTimerG is the global time variable associated
with DTimer}

ACKTimer, ACKTimerG: (0,1,2,..); {time elapsed since reception of the last ACK mes-
sage that caused progress; ACKTimerG is the global time variable as-
sociated with ACKTimer}

Let v, denote a list of the above variables. The initial condition of P, is given by
the following predicate.

Initial;(v,) = (s=vs=0 and ws=1 and DTimer > MDelayl and ACKTimer >
MDelay2 and DTimerG = DTimer and ACKTimerG = ACKTimer)

Events of P1

P, has two events, one for sending messages of type D and the other for receiving
messages of type ACK. These events are specified below.
1. Send _ D (v,,z;;v,*,2;")

= ((ws=vs) {Retransmit old data}
or (ws#vs and Dtimer > MDelayl and ACKTimer > MDelay2)) {Transmit new data}
and Send,((D,Source[s},vs),z;;z,*) {Send message}
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and s"=s and vs"=vs and ws*==vs {Update state vector}
and DTimer* =0 and ACKTimer®*=ACKTimer and Source®==Source
and DTimerG*=0 and ACKTimerG*=ACKTimerG

2. Rec_ ACK(v,,29;v,",25") ,
= Rec, (24; (ACK,nr), 2,") {Receive nr}

and ((nr=vs @ 1 and vs=ws  {Outstanding data acknowledged}

and s*=s+1 and vs*=nr and ACKTimer"=0 and ACKTimerG*=0)
or (nr=vs and s"=s and vs*=vs {Old acknowledgement}

and ACKTimer"=ACKTimer
and ACKTimerG* = ACKTimerG))

and ws"=ws and DTimer"=DTimer and Source"=Source

and DTimerG* = DTimerG

In the above, @ denotes addition modulo 2.
Variables of P,

Sink: array [0..c] of DataSet; {auxiliary history variable that records the sequence of
data blocks passed on to the destination}

r: 0..c0; {the next data block received in sequence will be saved in Sink[r]; an auxiliary
variable}

vr: 0..1; {sequence number of next expected data block}

SendACK: Boolean; {Tfue iff a received D message has not been acknowledged}

Let v, denote a list of the above variables. The initial condition of P, is given by
the following predicate.

Initialy(v,) = (r=vr=0 and SendACK = False)

Events of P,
1. Send _ACK (v,,24;v,",2,")
= (SendACK = True) and Send, ((ACK,vr), 25;2,")
and Sink*=Sink and r*=r and vr"=vr and SendACK"=False
2. Rec _D (v,,24;v5",2,")
= Rec, (z,;(D,data,ns), z;*)
and ((ns=vr and Sink"[r]=data and r*=r+1 and vr*=vr @ 1) {in-sequence data}

or (ns 5 vr and Sink*=Sink and r*=r and vr*=vr)) {out-of-sequence data}
and SendACK*" = True
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Other events

The channel events of C; are specified by the predicate ChannelError(zi,zi") that
allows all possible losses, duplications and reorderings of messages in the channel.

The local time event for the local ticker at P, is specified by

AccuracyAxiom,(n;+1,9) {if local tick will not violate accuracy axiom}
and 7,"=n,+1 and DTimer*=DTimer+1 and ACKTimer*=ACKTimer+1
{then age 1, and all time variables driven by local ticker}

The global time event is specified by

AccuracyAxiom,(n,,7+1) and TimeAxiom,(next(z,)) and TimeAxiomz(next(zg))
and n*=n+1 and z,"=next(z,) and z," =next(z,)
and DTimerG" = DTimerG + 1 and ACKTimerG* =-ACKTimerG + 1

where next(z,) is z; with all ages in it incremented by 1

System initial condition
The initial condition of the system is given by the following predicate

Initial(v) = Initial;(v,) and Initialy(v,) and z, is empty and z, is empty,

5. PROVING SAFETY AND LIVENESS PROPERTIES

The set of all possible value assignments to the system state variables define the
global state space of the protocol system. Those global states that satisfy Initial(v) are
referred to as initial global states. Each event specifies a set of transitions between
global states; each transition is from a global state where the event is enabled to a global
state that can result from changes to the state variable values. A global state that can
be reached from an initial state via a sequence of event transitions is referred to as a
reachable global state. The graph whose nodes are the reachable global states and whose
arcs are the event transitions is referred to as the reachability graph of the system. A
realization of the protocol system behavior is represented by some path in the rea-
chability graph starting from an initial state.

Safety properties

A safety property of the protocol system states relationships between values of the
system state variables. It can be represented by a predicate in the variables of the global
state vector v. An example of a safety property involving two integer state variables z
and yis (z < y < 7 + 1). A safety property A(v) holds for the system if it holds at
every reachable state. Such a property is said to be invariant. We now present the in-
ference rule to prove the invariance of a predicate A(v).

514



Inference rule for safety. If B(v) is invariant and A(v) satisfies
(i) ((Initial(v, = A(v)) and
(ii) (¥ e(v;v*) : B(v) and A(v) and e(v;v") = A(v")) and
(i) (A(Y) = Ag(¥)),

then Agy(v) is invariant.

The validity of the rule is obvious from the following. From (ii) we know that at every
global state g where A(g) = B(g) = True, every enabled event e takes the protocol sys-
tem to a state h where A(h) = True. Because B(v) is invariant, B(h) = True. Hence,
once the protocol is in a state where A(v) and B(v) hold, all future states also satisfy the
two predicates. From (i), we know that any initial state satisfies A(v) (and B(v) because
of its invariance). Hence all reachable states satisfy A(v). Because Agy(v) is implied by
A(v) (from (iii)), we know that all reachable states also satisfy Ag(v).

Note that the inference rule is quite simple because of our use of predicates to
define events. Typically, we are given Ay(v) as a service requirement, and are asked to
verify that it is invariant. The above rule does not explain how to obtain A(v) once we
are given Ag(v) and B(v). It just states sufficient conditions that an A(v) must satisfy in
order for us to conclude that Ay(v) is invariant. Generating A(v) given Ag(v) and B(v)
can be done using the method of weakest preconditions [11] or symbolic execution. (In
general, this is a nontrivial task analogous to generating loop invariants in program
verification.)

If in the above rule, B(v)= True, then A(v) is said to be inductively complete.
The time events have been defined so that each of the time and accuracy axioms is in-
ductively complete (and hence invariant) 8]

Liveness properties

A liveness property of the protocol system states relationships that values of the
system variables eventually satisfy. An example of a liveness property involving integer
state variables z and y is as follows: during the course of the protocol operation, if z
does not increase without bounds then y will inerease without bounds. Note that a live-
ness property is not a property of each reachable state (and cannot be stated as a predi-
cate in the variables of v). Rather it is a property of the paths in the reachability graph.

Our method of stating liveness properties is based on specifying inductive
properties of bounded-length paths in the reachability graph. First, we assume that any
implementation of the protocol system is fair, by which we mean the following: any
event that is enabled infinitely often will eventually occur. Next, we have the following
definition.
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Given predicates A(v) and B(v), we say that A(v) leads-nezt-to B(v) if for every
reachable global state g where A(g) = True, the following holds: for every event enabled
in state g, its occurrence takes the system to a state h where either A(h) = True or B(h)
== True, and there is at least one event enabled in state g whose occurrence can take the
system to a state h where B(h) = True.

In any system implementation that is fair, if A(v) leads-next-to B(v) then on any
outgoing path from a reachable state g where A(g) = True, the system will eventually
reach a state h where B(h) = True. We now present the inference rule used to establish
the leads-next-to property.

Inference rule for liveness. If I(v) is invariant, and A(v) and B(v) satisfy
(i) (v e(v;v®): (I(v) and A(v) and e(v;v*)) = B(v") or A(v")) and

(ii) ((A(v) and I(v)) = 3 e(v;v*): (e(v;v") = True
and (I(v) and A(v) and ¢(v;v")) = B(v"))),

then A(v) leads-next-to B(v).

This inference rule is very similar to the definition of leads-nezt-to, except that it allows
us to utilize any safety property I(v) that is known. Next, we extend the leads-next-to
definition.

Given assertions A(v) and B(v), we say that A(v) leads-to B(v) if for some specified
integer n > 1 the following holds: (A(v) leads-next-to (B(v) or C,(v))) and (C,(v) leads-
next-to (B(v) or Cy(v))) and ... and (C__(v) leads-next-to (B(v) or C (v))) and (C,(v)
leads-next-to B(v)).

Using the leads-to construct, the liveness property example above can be specified
by the inductive statement (V n,m: (z = n and y = m) leads-to (z > n or y > m)).
There are other ways to specify liveness properties. For example, one could state live-
ness properties as predicates on the set of paths in the reachability graph, but that would
be too cumbersome. Temporal logic offers another way to specify liveness properties.
The liveness property example would be specified in temporal logic by (not(vn: ¢ z >
n) = (vm: © y > m)), where the operator ¢ is to be read as "eventually.* It has been
our experience that to prove temporal logic statements, it is often necessary to rephrase
them into inductive statements of the leads-to type. Hence, by stating our liveness
properties directly using the leads-to construct, we avoid some unneccessary overhead.
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6. SAFETY, LIVENESS AND REAL-TIME PROPERTIES OF
PROTOCOL EXAMPLE

Safety specification and verification

For the protocol in Section 4, we would like to prove that the following safety
property is invariant:

Al. (a) Source[i] = Sink|i] for 0 <i < 1;
(b)0<s<r<s+ 1L

Al(a) states that the sequence of data blocks placed in Sink is a prefix of the data
blocks in Source. Al(b) states that at most one data block is outstanding (i.e., sent but
not acknowledged).

Al is invariant because Al and A2 and A3 and A4 and A5 is inductively com-
plete (this can be checked easily by applying the inference rule for safety).

A2. (vs = s mod 2) and (vr = r mod 2)

A3. (v(m,t) in z;: m = (D,Source[s],vs) and vs=ws and (r==s or r=s+1) and t > DTimerG)
or (¥(m,t) in z;: m = (D,Source[s-1],vs @ 1) and vs=ws @ 1 and r=s and t > DTimerG)

A4. SendAck = True = t=s or (vs=ws and r=s+1)

A5. ¥(m,t) in z,: (m=(ACK,vr) and (r=s or (vs=ws and r=s+1)))
or (m=(ACK,vr @ 1) and ((r=s and t > ACKTimerG and vs 3 ws)
' or (r=s+1 and vs=ws)))

where ¢ denotes subtraction modulo 2. The above can be shown to be inductively com-
plete by a straightforward application of the inference rule for safety. (See Part 1 of [8].)

Liveness specification and verification

For this protocol, we would like to prove the following: if the channels do not con-
tinually lose messages, then s and r will grow without bound.

To specify and verify this formally in our model, we define the auxiliary varinbles
LCountl and LCount2. LCountl counts the number of times that a (D,Source[n].n mod
2) message in C, has been lost since the previous reception of such a message at I’y Vor-
mally, LCount1=0 initially; whenever a loss event of C; deletes a (D,Source{n},n mod 2)
message in C;, LCountl is incremented by 1; whenever a (D,Source[n],n mod 2) message
is received at P,, LCountl is reset to 0. LCount?2 is similarly specified, except that
(D,Source[n],n mod 2), C, and P, are replaced by (ACK, (n+1) mod 2}, C, and I*,
respectively.
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The desired liveness property is then stated as follows: For any non-negative in-
teger n

L1. (s=r=n and LCountl=m1) leads-to ((s=n and r=n+1)
or (s==r=n and LCountl > ml))

L2. (s=n and r:=n+1 and LCountl=—m1 and LCount2:—m2) leads-to
((s=r==mn+1) or ((s=n and r- :n+1) and
((LCount2 > m2) or (LCount2 > m2 and LCountl > ml)))).

L1 assures us that from any state where s==r==n, we will get to a state where s=n
and r=n+1, provided that LCountl does not grow without bound. L2 assures us that
the system will then get to a state where s=r==n+1, provided that neither LCountl nor
LCount2 grows without bound. Thus, assuming the desired channel behavior, L1 and L2
allow us to say that s and r will grow without bound.

The above liveness (leads-to) property has been verified for the data transfer
protocol in Section 4. The verification is very short and may be found in Part 1 of [8].

Real-time specification and verification

To make our data transfer protocol more realistic, we include the following real-
time behavior into its model.

First, entity P, will send an ACK message within a specified time interval
(MaxResponseTime) of receiving a D message. Second, entity P, will retransmit a given
data block Source[n] at most MaxRetryCount times. Let MRoundTripDelay = MDelay1
+ MDelay2 + MaxResponseTime X (1+¢,+¢,). If after sending Source[n] for Max-
RetryCount times, P, does not receive an (ACK, (n+1) mod 2) within MRoundTrip-
Delay of the last send, it assumes that the channels C, and C, are bad and aborts the
connection (enters a state called RESET).

For this more realistic model, we would like to prove that if P, has reset, then
indeed over a time period T (=MRoundTripDelay x MaxRetryCount), more than Max-
RetryCount messages sent by P, and P, have been lost by C, and C, collectively.

To formally state this real-time specification, define the following auxiliary vari-
ables:

MessagesSentl: sequence of (m,t) pairs where m is a message sent by P, and t denotes
the time at which m was sent; updated whenever P, does a send.

MessagesSent2: as above but for P,.

SCountl: Number of times (D,Source|n], n mod 2) was sent into C; but did not get
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received at P, within MaxDelayl of sending. SCountl is incremented by 1

whenever a global tick occurs and ((D,Sourceln], n mod 2), t) is in
MessagesSentl and r=n and 7 = t + MaxDelay1l. (Recall that 7 is the global
ticker’s count.) SCountl is set to 0 whenever P; gets an ACK that causes

progress.

SCount?2: Same as SCountl, except that (D,Source[n], n mod 2), C. and P, are replaced
by (ACK, n+1 mod 2), C, and P;.

ReferenceTime: Value of 7 when P, last got an ACK that caused progress.

ResetTime: Value of n when P, last reset.
With all these auxiliary variables, the real-time specification can be stated as

P, at RESET = (ResetTime - ReferenceTime) < T
and SCountl + SCount2 > MaxRetryCount.

Notice that this real-time specification is a safety assertion and not a liveness assertion
requiring the leads-to operator. Its verification can be found in Part 1 of (8].
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