Construction of Network Protocols by Stepwise Refinement*

A. Udaya Shankar

Department of Computer Science and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742

Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

Abstract. We present a heuristic to derive specifications of distributed systems by stepwise
refinement. The heuristic is based upon a conditional refinement relation between specifications. It
is applied to construct four sliding window protocols that provide reliable data transfer over unreli-
able communication channels. The protocols use modulo-N sequence numbers, They are less res-
trictive and easier to implement than sliding window protocols previously studied in the protocol
verification literature.

Key words: Specification, refinement, sliding window protocols, transport protocols, distributed
systems.

CONTENTS

1. Introduction
1.1. Construction examples
1.2. Organization of this report
2. Stepwise Refinement Heuristic
3. Sliding Window Protocol Construction: Initial Phase
3.1. Initial system and requirements
3.2. The sliding window mechanism
3.3. Correct interpretation of data messages
3.4. Correct interpretation of acknowledgement messages
3.5. Progress requirement marking
4. Completing the Construction for Loss-only Channels
5. Completing the Construction for Loss, Reordering, and Duplication Channels
5.1. Real-time system model
5.2. A time constraint that enforces Aq
5.3. A time constraint that enforces A 10
5.4. Protocol I: implementation with 2N timers
5.5. Protocol II: implementation with N timers
5.6. Protocol III: implementation with one timer
6. Discussions
Tables 1-5
References

*The work of A. Udaya Shankar was supported by National Science Foundation under grant no. ECS-8502113 and grant
no. NCR-8904590. The work of Simon S. Lam was supported by National Science Foundation under grant no. NCR-
8613338 and by a grant from the Texas Advanced Research Program. This paper is an abbreviated version of [18].

670

1. Introduction

There are many ways to specify a distributed system. We advocate the following approach.
Initially, a system is specified by a set of requirements, namely, desirable safety and progress proper-
ties that are expressed in some language. Subsequently, a specification of an implementation of the
system is obtained in the form of a state transition system together with a set of fairness assump-
tions.! In general, it is quite difficult to derive the implementation specification from the requirements
specification in one step. It is preferable to go through a succession of intermediate specifications,
oy, 0y, -, o, , where each intermediate specification consists of a state transition system, a set of
requirements and some fairness assumptions. In this paper, we present a stepwise refinement heuris-
tic for constructing these specifications. The heuristic is based upon a weaker form of the refinement
relation in [14), called conditional refinement, with the following property: o, is a refinement of o
if the heuristic terminates successfully.

At any point during a construction, we have a state transition system, a set of requirements, and
a Marking. There are three types of requirements: invariant requirements, event requirements and
progress requirements. The invariant and event requirements represent the safety properties desired
of the system, and are specified by state formulas. Each event requirement is associated with a par-
ticular system event. The progress requirements are specified using leads—to assertions and fairness
assumptions [14]. The Marking indicates the extent to which we have established that the require-
ments are satisfied by the specification. ‘

We begin a construction with a set of state variables that provide just enough resolution in the
system state space to specify the desired safety and progress properties of the distributed system. The
desired safety properties are specified by invariant and event requirements. The desired progress pro-
perties are specified by progress requirements. None of the requirements are marked initially.

A succession of state transition systems is derived by applications of some system refinement
steps. These steps increase the resolution of the system state space by adding new state variables,
adding new messages, and refining a message into a set of messages. They change the set of state
transitions by refining existing events and adding new events. We also apply some requirement
refinement steps which can be used to strengthen the requirements. The objective of each refinement
step is to increase the set of requirements that are marked. (Some of these refinement steps are illus-
trated in our construction of the sliding window protocols in Sections 3-5. A presentation of specific
refinement steps is given in [18].)

The construction terminates successfully when all requirements are marked, and the nonauxiliary
state variables and events satisfy the topology of the distributed system. The construction terminates
unsuccessfully when a requirement is generated that is inconsistent with other requirements or with

the initial condition of the system.

UIf the state transition system is given in the relational notation, we refer to this as a relational specification (14).

671

1.1. Construction examples

Our heuristic is illustrated by a rigorous exercise in constructing four sliding window protocols
that provide reliable data transfer between a producer and a consumer connected by unreliable chan-
nels. All protocols use modulo-N sequence numbers.Z The desired property that sequence numbers
in data messages and acknowledgement messages are interpreted correctly is stated as invariant
requirements. We first construct a basic protocol that satisfies these correct interpretation require-
ments for channels that can only lose messages in transit. This basic protocol is then refined to be
used for channels that can lose, duplicate and reorder messages arbitrarily. To satisfy the correct
interpretation requirements for such channels, it is necessary that message lifetimes are bounded so
that certain time constraints can be enforced in producing data blocks. We present three different
ways of enforcing these time constraints, resulting in three protocols. The first and second of these
protocols use 2N and N timers respectively. The third protocol uses a single timer to enforce a
minimum time interval between producing successive data blocks. The minimum time interval is a
function of N, the receive window size, and the maximum message lifetimes. To construct these
three protocols, we use the system model developed in [16,17] in which real-time constraints can be
specified and verified as safety properties.

To our knowledge, this is the first verified construction of sliding window protocols that use
modulo-N sequence numbers where N is arbitrary. Our first and second protocols for loss, duplica-
tion and reordering channels appear to be novel. Our third protocol is best compared with the origi-
nal Stenning’s protocol [20]. Stenning verified certain safety properties assuming unbounded
sequence numbers. He then informally argued that modulo-N sequence numbers can be used pro-
vided N satisfies a bound. His bound is similar to ours but not as tight as ours. Also, his protocol
has several unnecessary requirements. (A detailed comparison is in Section 5.6.)

Knuth [11] has analyzed a sliding window protocol that uses modulo-N sequence numbers. He
gives the minimum value of N that ensures correct data transfer for a special kind of channels, i.e.,
channels that can lose messages and allow messages to overtake a limited number of previously sent
messages. Because of this restriction on the reordering of messages, his protocol does not require
timers and the assumption of bounded message lifetimes.

In [19], we have extended the protocol for loss-only channels and the third protocol for loss,
duplication and reordering channels to include the use of selective acknowledgement messages as
well as variable windows for flow control.

1.2. Organization of this report

In Section 2, we give a brief description of our construction heuristic, including the conditional
refinement relation between specifications. In Section 3, we derive the basic protocol and show that
for channels that can lose, duplicate and reorder messages arbitrarily, its requirements are almost

completely marked; only two invariant requirements concerning sequence numbers in channels

%In a real protocol, sequence numbers in data messages and acknowledgement messages are encoded by a small number
of bits,)

672

remain unmarked. In Section 4, we show that, for channels that can only lose messages, the basic
protocol in fact satisfies all the requirements. In Section 5, we refine the basic protocol to obtain
three different protocols that satisfy all the requirements for channels that can lose, duplicate and
reorder messages arbitrarily. In Section 6, we discuss related work.

2. Stepwise Refinement Heuristic

The reader is assumed to be familiar with [14], which appears in these proceedings. We use the
relational notation (for specifying state transition systems), the distributed systems model, and the
proof rules that are presented therein. In this paper, when we say that an event has fairness, we

mean ‘‘weak fairness.”” We also need the channel progress assumption in [14] for unreliable chan-
nels.

At any point during a construction, we have the following:

e A state transition system defined by a set of state variables v={v,, v,, -- -}, a set of events
€, €y, -, and an initial condition specified by the state formula Initial .
e A set of invariant requirements specified by state formulas Ag, A;, - +. We use A to denote

the conjunction of all the state formulas that are in the set of invariant requirements.
Initial = A holds. (We want A to be invariant.)

e A set of event requirements specified by state formulas S, §;, - - . Each requirement is asso-
ciated with an event. We use S, to denote the conjunction of all the S; s that are associated
with event e. (We want S, to hold prior to any occurrence of e.)

® A set of progress requirements Lo, Ly, - - -, which are leads—to assertions. (To satisfy these
requirements, the specification may include additional fairness assumptions for events.)

e A Marking consisting of (1) event requirements that are marked, (2) (A; , e) pairs that are
marked, (3) progress requirements that are marked with tags (described below), and (4) an order-
ing of the L; ’s (to avoid circular reasoning).

We require that the Marking satisfies the following consistency constraints:

C1. An event requirement S; associated with event e is marked only if A A enabled(e) = S;
holds.

C2. A pair (4;, ¢) is marked only if A AS, Ae = A; " holds.

C3. A progress requirement P leads-to Q is marked with the tag via e; only if the following
hold:
(i) PAAANA'AS, Ne = Q7
(i) - for every event e#¢;, P NANA'AS, Ae =P’V Q7 and
(iii) P ANA NS, => enabled(e;).

C4. A progress requirement L; = P leads-to Q is marked with the tag via M using L; only if
the following hold:

() for every event e, (m) that receives me M, P NA ANA'AS, Ne,(m) = Q,

673

@ii) for every event eze, (m), P AA ANA'AS, Ne = P’vQ’ and

(iii) Lj = P Acount(M)2k leads-to QO V count (M)=k+1, and L; is listed after L; in the
ordering.

C5. A progress requirement L; = P leads-to QO is marked with the tag by closure using
L, - » L, only if P leads-to Q can be derived from A and Li, - Ly
implication, transitivity and disjunction proof rules, and each L; is listed after L; in the

using the

ordering.

At any point in a construction, the Marking indicates the extent to which the requirements are
satisfied by the state transition system at that point. Thus, the Marking gives us the means to back-
track to some extent in applying our heuristic.

Example on Marking: Consider a state transition system defined by integer state variables x Y
both initially 0, and events €9 =x’=x+1 and €1 =y’=y+1. Let there be an invariant requirement
Ag=x=y Vx=y+l, a progress requirement Ly =y #x Ax=pn leads-to Y =n, and an event require-
ment S =x =y associated with €g. We can mark (4, eg) because Sy Aeg = Ay’. We can mark
Lo with tag via e, because YEXAX=n NAghey = y'=n,y#x Ax=np ASg Ney = false (that is,
ey is disabled), and enabled (eq) is rrue. (Ayg, €1) and S, remain to be marked.

The heuristic terminates successfully when

(a) every Sj is marked,

(b) every (4 ;> €) pair is marked, and

(c) every L ; is marked.

Condition (a) implies that A Ae = S, holds for every event e, which together with condition (b)
imply that A Ae = A’ holds, At any point in a construction, we have Initial = A . Thus, A
satisfies the invariance rule. The invariance of A and condition (¢) imply that each progress assertion
L; holds according to the rule indicated in its tag (via event, via M, or closure). There is no circular
Teasoning in the proof of the Ly s, because there is a serial order of the L, ’s such that if L; appears
in the tag of L; then L; follows L; in the ordering. Note that every event e, such that there is a
progress requirement marked via e, must be implemented with weak fairness.

At any point in the construction, conditions (a) and (b) imply that the system satisfies the safety
requirements. Condition (c) alone implies that the System satisfies the progress requirements, assum-
ing that the safety requirements hold.

The construction terminates unsuccessfully whenever we have an event requirement S; of an

event e that is inconsistent with the invariant requirements or with the other event requirements of e;
ie,§; = —Av =S, holds. The only way to mark such an S; will be to remove the event e.

To describe the heuristic, we need to distinguish between the name of an event and the formula
that specifies it. We will use €;’s to refer to event names. At different points in the construction, an
event named e; can be specified by different formulas.

Suppose a sequence of state transition systems is constructed using the heuristic. Let B and o
be two successive systems in the sequence. The system refinement steps used to derive o from B

674

may cause some requirements that are marked for B to become unmarked for o. To minimize the
unmarking of requirements, we require B and o to satisfy the following conditions:

e vgC Vg, Where vp and v, are the state variable sets of B and a, respectively.

e [nitial , = Initialg, where Initial, and Initialy are the initial conditions of o and B, respec-
tively.

o If {e;, -, €; } is the set of event names of 3, then {e;, - - -, e}, where k2], is the set of
event names of . Let every event ¢; of B be specified by the formula b;. Let every event ¢;
of o be specified by the formula g;. Then the following hold:

e AANS, Ng; =b;, fori=l, ---,j.

o ANS, Na; =byV - Vb Vvvg'=vg, fori=j+l, -, k.

If the above conditions are satisfied, we say that o« is a conditional refinement of f, that is, a
refinement of P given that the invariant and event requirements of o hold. The Marking of B is
preserved for @, except in the following two cases: (1) An event requirement S; of e; that is marked
for B becomes unmarked if and only if A A enabled(a;) = Sj does not hold for a. (2) A progress
requirement P leads-to @ that was marked viae; for B becomes unmarked if and only if
P NA NS, = enabled(a;) does not hold for a.

We state a few more definitions to be used in our heuristic. Consider state formulas P and Q,
and an event €. We say that P is a weakest precondition of Q with respect to e iff it is logically
equivalent to [¥v': e = 0]. Note that P is false at a state iff e is enabled at the state and its
occurrence can cause O to be falsified.> We say that P is a sufficient precondition iff it implies the
weakest precondition; that is, it satisfies [Wv”: P Ae => Q’]. We say that P is a necessary precon-
dition iff it is implied by the weakest precondition; that is, it satisfies —P => [3v":e A =Q"].

3. Sliding Window Protocol Construction: Initial Phase

Consider the distributed system topology of Figure 1. There is a producer of data blocks at
entity 1, and a consumer of data blocks at entity 2. The channels may lose, duplicate, or reorder
messages in transit; these are the only errors in the channels. We want data blocks to be consumed
in the same order as they were produced, and within a finite time of being produced. We will con-
struct a sliding window protocol that uses modulo-N sequence numbers to achieve this objective.

Channel 1

Entity 1 Entity 2

Channel 2

Figure 1. The network topology

3This corresponds to Dijkstra’s weakest liberal precondition [5].

675

Notation: If B is a set of values, then sequence of B denotes the set of finite sequences whose ele-
ments are in B, and sequence (0-M~1) of B denotes the set of M -length sequences whose elements
are in B. For any sequence y, let Iy | denote the length of y, and y (i) denote the ith element in y,
with the 0" element at the left. Thus, y = (y(0), oL yyI-1). We use Y@+ j) to denote
OG@), yG+), L, ¥()) where i, j<lyl; it is null if i>j. We say ““y prefix-of 2’ to mean
lyl<lzl and y =z(0-lyl-1). We define the function Tail(y, i) to return Y@ ~lyl-1) for any i,
O<i<lyl. Lastly, we use ““wrt’’ as an abbreviation for ‘‘with respect to’’,

3.1. Initial system and requirements

The initial system and requirements specify the services to be offered to the producer and con-
sumer. Let DATA denote the set of data blocks that can be sent in this protocol. We use a Pascal-
like notation to define state variables and their domains,

At entity 1, we have the following state variable and event:

Produced: sequence of DATA . Initially null,
Produce (data) = produced "=produced @ data

At entity 2, we have the following state variable and event:

consumed : sequence of DATA . Initially null.

Consume (data) = consumed *=consumed @ daa

sumed. In the sliding window protocols to be constructed, they will be auxiliary variables. The
events Produce and Consume have a parameter data whose domain is DATA .

We have one invariant requirement and two progress requirements:

Ay = consumed prefix-of produced
Ly = lIproduced|>n leads-to lconsumed 1> n
Ly = lIproduced|>n leads-to Iproduced |>n+1

states that if a data block is produced, then it is eventually consumed. L states that at any time
another data block will eventually be produced.

32. The sliding window mechanism

We want to refine the initial State transition system to a sliding window protocol. Let us review
the basic features found in all sliding window protocols. (See Figure 2.) At any time at entity 1, the
data blocks in produced(0--a—1) have been sent and acknowledged, while data blocks in
produced (a - s-1) are unacknowledged, where Iproduced |=s. At any time at entity 2, data blocks
in produced (0r-1) have been received and consumed in sequence, while data blocks in

676

produced(r - r+RW-1) may have been received (perhaps out of sequence) and are temporarily
buffered. The numbers r to r+RW —1 constitute the receive window; RW is its constant size.

a s—-1
012 --- acknowledged unacknowledged J . Entty 1
receive window S
o012 --- consumed T not received or buffered T Entity 2

r r+RW -1

Figure 2. Relationship between a, s, r

A sliding window protocol uses modulo-N sequence numbers to identify data blocks, where
N22. We use 7 to denote n mod N for any integer value n.

Entity 1 sends produced (n) accompanied by sequence number #. When entity 2 receives a data
block with sequence number 7, if there is a number i in the receive window such that i =7, then the
received data block is interpreted as produced (i). Entity 2 sends acknowledgement messages con-
taining 7, where n is the current value of r. When entity 1 receives the sequence number 7, if there
is a number { in the range a+1 to 5 such that { =7, then it is interpreted as an acknowledgement to
data blocks a to i-1, and a is updated to i. Entity 1 increments s when a data block is produced.
Entity 2 increments r when a data block is consumed. '

Observe that each cyclic sequence number 7 corresponds to an unbounded sequence number n.
When a cyclic sequence number is received at an entity, we require the entity to correctly interpret
the value of the corresponding unbounded sequence number (which is not available in the message);
that is, we require i =n in the preceding paragraph.

Refinement of state transition system and requirements

We now incorporate the above protocol features into the state transition system. Let the mes-
sages sent by entity 1 be of type (D, data, cn, n), where D is a constant that indicates the type of
the message, data is a data block, cn is a cyclic sequence number, and n is the corresponding
unbounded sequence number. Let the acknowledgement messages sent by entity 2 be of type
(ACK, cn, n), where ACK is a constant that indicates the type of the message, cn is a cyclic
sequence number, and n is the corresponding unbounded sequence number. In both message types,
n is an auxiliary field that will be used to reason about correct interpretation only. Its value can
never be used to update a nonauxiliary state variable. We have the following invariant requirements,
each of which holds initially:

A, = (D, data, cn, n)e z; = data =produced (n) A cn =it

Ay

(ACK, cn,n)ez, = cn=n

At entity 1, we add the following state variables:

677

§: 0o, Initially 0,
a: 0+ o, Initially 0,
sendbuff: sequence of DATA . Initially null.

5§ and a are as defined above, We will ensure below that sendbuff always equals produced (a - s~1),
the unacknowledged data blocks. Recall that entity 1 must retransmit these until they are ack-
nowledged.

For brevity in specifying events, we use the notation P — g to denote an action that does ¢ if
P holds and does nothing if — P holds. Formally, P — ¢ means (P Ag)V (=P A x=x"), where x
denotes those state variables updated in g. Similarly, [Ji: P — q] means [Ji:P A q] v
(=[3i: P Ax=x".

At entity 1, we refine Produce to appropriately update sendbuff and s. We also add two
events, one for sending data messages and one for receiving ack messages.

Produce (data) = produced’=produced @ data
A Sendbuff’=sendbuff @ data A s ‘=5 +1
SendD (i) = ie[05s-g-1]

A Send (D, sendbuff(i), a+i, a+i)
Rec,(ACK, cn, n) .
NIiells-al: ati=cn
— (@'=a+i A sendbuff’ =Tail (sendbuff, i»i]

RecACK (cn, n)

At entity 2, we add the following state variables, where empty is a constant not in DATA :

r: 0o, Initially 0,
recbuff: sequence (0-RW-1) of DATA U {empty). Initially recbuff(n Y=empty for all n.

r=lconsumed| is as defined above, recbyff represents the buffers of the receive window. We will
ensure that at any time, recbuff(i) equals either empty or produced (r +i).

At entity 2, we refine Consume so that it passes recbuff(0) only when the latter is not empty.
We also add two events, one for sending ack messages and one for receiving data messages.

Consume (data) = rechuff (O)=empty ‘l ’
A data =recbuff(0) .
A recbuff'=Tail (recbuff, 1)@ empty A r’=r +1
A consumed '=consumed @ data

SendACK = Send,(ACK, F, r)

RecD (data, cn, n) Rec (D, data, cn N n)_
AFie[0-RW-11: r+i=cn — recbuff(i)'=data]

We add the following invariant requirements; each is a desired property mentioned in the dis-
cussion above:

678

A3 = |produced|=s A |consumedi=r

Ay = 0<a<r<s

As = sendbuff =produced(a -~ s-1)

Ag S o= i € [0--RW 1] = recbuff(i)=empty v recbuff i)=produced (r+i)
Marking

For the time being, we concentrate on marking the (4; , e) pairs. We represent the Marking by
a table that has a row for each A; and a column for each e. If (A;, e) is unmarked, its entry in the
table is blank. If (4;, e) is marked, its entry identifies a subset J of the A j ’s and Sj ’s of ¢ such
that J Ae = A; " holds. Thus, the reader can easily check the validity of the Marking. Also, an
(4;, e) entry in the table contains na to indicate that e does not gffect any of the state variables of

A;; thus A; Ae = A;’ holds wivially. We use A;; to denote A; AA;, and A;; to denote

i

A; NAgy A - Ay The LRD column is for the loss, reordering, and duplication events in the chan-
nels.
Produce SendD RecACK Consume SendACK RecD LRD

Ay | Ap na na Aga0 na na na

Ay | na Ais na na na Ay A

Ay | na na A, na Ay na Ay

As | As na na Aj na ’ na na

Ay | Ay na Ag3a na na na

As | Aszq na As na na na na

Ag | Agsa na na Ag na na

The Marking can be easily checked as follows. As an example, consider the entry for
(A4, Consume), which indicates that A3, A Consume => A,’ holds. The details are as follows:
Consume occurs only if recbuff(O)#empty. This and A¢ imply recbuff(0)=produced(r), which
together with A, imply r <s—1. This and A4 imply a <r <s—1. Consume does the update r "=r+1
and does not affect @ or s. Thus A, " holds. In the above proof, we used A first, then A5, and then
A,4. To facilitate checking of the Marking, we have indicated this in the order of the subscripts in
Ag3a ’

Observe that the only (A4;, e) pairs that are unmarked are (A¢, RecD) and (A4, RecACK). We
can mark (A¢, RecD) if we can ensure that RecD correctly interprets the cyclic sequence numbers in
received data messages. Similarly, we can mark (A, RecACK) if we can ensure that RecACK
correctly interprets the cyclic sequence numbers in received acknowledgement messages. In the next
two subsections, we will generate invariant requirements on the sequence numbers that ensure correct
interpretation.

3.3. Correct interpretation of data messages

In this section, we concentrate on marking (A4, RecD). Our general approach to marking an
(A;, e) pair is as follows: Obtain a weakest precondition P of A; with respect to e¢; if A AS, =P

679

does not hold, then introduce P as a new event requirement of e; mark (A;, e). Sometimes we sim-
plify the expression for P to either a sufficient or a necessary precondition. In the latter case,
(A;, e) remains unmarked. Alternatively, if Initial => P holds, we can introduce P as an invariant
requirement.

The following is a weakest precondition of A ¢ wrt RecD :
W = Head (z,)=(D, data, cn, n) Ni€[0~RW-1] Ar+i =7 = data =produced (r+i)

Instead of introducing W as an event requirement, we will strengthen it to obtain a simpler sufficient
“precondition. From A;, we have cn =i and data =produced(n). Thus, the consequent of W is
equivalent to produced (n)=produced (r+i). Let us strengthen this consequent to n=r+i. We do
not expect this to lead to unsuccessful termination. Indeed, it appears necessary in order for
produced (n) and produced (r+i) to be arbitrary entries from DATA, and for the size of DATA not to
be limited. Next, let us weaken the antecedent of W by replacing Head (z))=(D, data, cn, n) by
(D, data, cn, n)ez,. In fact, this is necessary given that channel 1 can lose messages arbitrarily.

Thus, we arrive at the following sufficient precondition:

X = (D,data,cn,n)ez; Nie[0-RW-1]1Ar+ =i = n=r+i

We decide that X will be an invariant requirement, rather than just an event requirement of
RecD. We proceed to generate further refinements from it.

Because produced(r) is the data block to be next consumed, it is reasonable to expect that
(D, data, 7, r)ez, holds at any time. This would violate X with i =N unless RW <N. We also
know that RW 21, otherwise entity 2 will never accept any data block and the progress requirement
Ly will never hold. Thus, we have the following condition:

1<RW <N

Observe that ie[0-RW-1]Arr+i=n iff ie[0~RW-1]1Ai=7A—T iff
A=re[0-RW-1] ANi=/i—F, where we used RW <N => i =i to establish the last ‘‘iff’’. Thus, we
can refine RecD to the following, where we have also used the modulo arithmetic property
(n-r)Ymod N =@m~-r) mod N:

RecD (data, cn, n) = Rec,(D, data, cn, n)
A[cr=T € [0 RW-1] — recbuff (¢w=r)’'=data]

We can now refine X to the following invariant requirement:
Y = (D, data,cn,nyezy Nai=rFe[0-RW-1] = n =r+a=r

Y is satisfied nonvacuously by a-—re[0-~-RW-1], and satisfied vacuously by
n-r e [RW+kN - N-1+kN] for any integer k. We want every unbounded sequence number »n in
channel 1 to be in the union of these intervals. Suppose that n; and n, are in channel 1; let us
assume that channel 1 may contain any n between n, and n,. We expect that an n equal to r may
always be in channel 1. The largest contignous union of intervals containing r is
[r+RW =N --r+N-1], which is the union of [r -r+RW—1] and [r+RW +kN ~r+N—-1+kN] for k=0

680

and —1. Thus, we strengthen Y to the following invariant requirement:

Aq = (D,data,cn,n)ez; = ne[r-N+RW --r+N-1]

We now proceed to mark (Aq, SendD). A weakest precondition of A; wrt SendD is
a2r-N+RW. We will make it an invariant requirement because we want SendD to be always
enabled to send outstanding data. Because r <s (and we expect r =s to be possible at any time), we
strengthen it to the following invariant requirement:

Ag = s—-asN-RW

Because Ay only involves variables of entity 1, it can be enforced by refining Produce as fol-

lows:

Produce (data) = s—a < N-RW-1
A produced '=produced @ data
A sendbuff’=sendbuff @ data N s’'=s+1

In order for Produce not to be permanently disabled (needed for L), we now require the fol-
lowing:

1<RW<N-1

Observe that the upper bound in A;’s consequent is implied by n <s-1 (from A3), A4, and
Ag. There is no need for A to repeat this constraint. Thus, we can rewrite A, as follows:

Aq = (D, data, cn, n)e z; = n2r-N+RW

We can extend the previous Marking to the following, where * is used to indicate an old entry,
and old A; ’s marked wrt every event have been aggregated into one row:

Produce SendD RecACK Consume SendACK RecD LRD
A0_3 5 * % % 3 % * *
A 4 ’ % * £ %k * %
A 6 % * * % * A 71 %
Aq na A 8,4 na na Aq A 7
Ag Ag na Ag na na na na

3.4. Correct interpretation of acknowledgement messages

In this section, we concentrate on marking (A4, RecACK). The treatment is similar to the case
of data messages above, and we shall omit the details. We can obtain the following invariant
requirements:

681

Ay
Ay

(ACK,cn,n)ez, = n<r

(ACK, cn,n)ezy, = n2s-N+1

It

We can refine RecACK 1o the following:

RecACK (cn, n) = Rec,(ACK, cn, n)
Aen—ae([l—-s—a]
= (a’=a+én—a A sendbuff’=Tail (sendbuff, crn —a))]

We have the following Marking:

Produce SendD RecACK Consume SendACK RecD LRD
A0—3,5 6.8 * % * * * * *
A4 * % AS—IO % % * *
A 7 % * * . * * %
Ag na na Ay Ag Ay na Ay
Ao na Ay na Aga na Ap

The invariant requirements and system at this point are specified in Tables 1 and 2. Note that
the only unmarked pairs are (A, Consume) and (A 1o, Produce).

3.5. Progress requirement marking

We now try to mark Ly and L. We assume that SendD (0) and SendACK have weak fairness.
For the current system, we prove that L holds if Consume has weak fairness, and that L; holds if
Produce and Consume have weak fairness. We then show that these properties continue to hold if
entity 2 sends an ack only in response to a received data message. For the progress markings in this
section, we consider the L; ’s to be ordered according to increasing subscripts. Hence, L; is used in
the tag of L; only if j>i.

The following progress requirements imply Lo and L;:

L, = s>a=n leads-to a=2n+1

L, = s=a=n leads-to s=n+l

We have the following Marking, where the tag also indicates the invariant requirements used to
mark: L by closure using L, and A34. L3 via Produce. L by closure using L, L3, and A3 4 as
follows: from L, and A4, we have s2n>a leads-to s=2a=2n; from this, L; and A4, we get
s2n leads-to s>n, which is L, (because of A3). At this point, only L, is unmarked. L, follows
from the closure of the following progress requirements:

682

Ly s>r=a=n leads-to s 2r >a=n

Ls s2r>a=n leads-to a>n

L, and L5 are implied by the following progress requirements, which hold for the current sys-
tem. .Here, (ACK, >n) denotes the message set {(ACK, j): j>n}, and (D, n) denotes the message set
{(D, data, cn, n)}:

Lg= s>r=a=n leads-to s 2r >a=n Vv (recbuff(0)=2empty Ns>r=a=n)
Ly= recbuff (O)#empty As>r=a=n leads-to s 2r>a=n

Lg = s>a=n ANcount(D, n)2k leads-to a>n v count (D, n)2k+1

Lg= s2r>a=n Acount(ACK, >n)2k leads-to a>n vV count (ACK, >n)2k+1

The details are summarized in the following progress Marking: L by closure using L,, A3 4. L, by
closure using L,, L3, A3y Lo by closure using Ly, Ls, Ay. L3 via Produce. L, by closure using
Lg¢, L9. Ls via (ACK, >n) using Lg, Aygio- Lg via (D, n) using Lg, Agyg. Ly via Consume
using A4. Lg via SendD (0) using A3 5. Lg via SendACK using A4.

Weaker acknowledgement policy

Suppose entity 2 sends an ack message only if it has received a data message following the last
ack sent. We can model this by adding a boolean variable drecd initially failse, refining RecD by
adding the conjunct drecd’, and refining SendACK to drecd N Sendo(ACK,7,r) N —drecd’.
The only effect of this refinement on the Marking is to unmark progress requirement Lg, which was
marked via SendACK. However Lo still holds because entity 1 retransmits (D, n) as long as
s2r>a=n holds. To provc this, we introduce the following progress requirements:

L= drecd nr>n ncount(ACK, >n)>k leads-to count (ACK, >n)2k+1

Ly = s2r>a=n A count (ACK, >n)2k leads-to
a>n vV (drecd Ans2r>a=n Acount(ACK, >n)2k)

Ly, = s2r>a=n Acount(ACK, >n)2k A count (D, n)2!l leads-to
a>n N (drecd As2r>a=n Acount(ACK, >n)2k) Vv count (D, n)=1+1

We have a complete Marking by replacing ‘‘Lg via SendACK using A4’ in the above Marking
with the following: Lg by closure using Ly, Ly;. Ly via SendACK. Ly via (D, n) using Ly;.
L1, via SendD (0). '

4. Completing the Construction for Loss-only Channels

At this point, we have obtained a system with entities as specified in Table 2. For channels that
can lose, reorder, and duplicate messages, the construction is incomplete because (A ;4. Produce) and
(A7, Consume) are not yet marked. We now show that if the channels can only lose messages, then

these pairs can be marked for the current system.

683

We start by considering (4, Consume). The following is a weakest precondition of Aq wrt
Consume :

(D, data, cn, n)ez; A recbuff 0)zempty = n2r+RW -N+1
If instead of a single occurrence of Consume, we consider k+1 occurrences, then we obtain the fol-
lowing weakest precondition:

(D.data, cn,n)ez, ANie[0-k]: recbuff (i ytempty] = n2r+RW =N +k +1

Now if there have been no channel errors for a while, then Vi e [0 k]: recbuff(i)#empry] will hold
when recbuff(k)#empty holds. Thus, it is reasonable to strengthen the above weakest precondition
to the following invariant requirement:

By = (D, data, cn, n)e z; A recbuff(k)#empty = n>r +k +RW -N+1

The following is a weakest precondition of By wrt RecD :

B, = (D, dy, cny, n)@ (D, dy, cny, na) subseq z; = ny2n;+RW —N +1

We can see that B is preserved by SendD as follows. recbuff(k yzemptry implies s >r+k,
which together with a2s-N+RW (4 g) implies a >r+k-N+RW. Thus SendD preserves By,
because it sends only produced (n) where n>a. The argument that SendD preserves B is similar,
(D, dy, cny, ny)e z; implies s >n, which implies a >n-N+RW .

We now consider niarking (A 19, Produce). Because entity 2 sends nondecreasing n and chan-
nel 2 does not reorder messages, we expect the following to be invariant:

B, = (ACK, cn,n)ez, = n>a

B, implies Ay because n2s-N+1 if n2a (from Ag)‘. Thus marking (B,, Produce) allows us to
mark (A g, Produce). The following is a weakest precondition of B, wrt RecACK, and is intro-
duced as an invariant requirement:

Bj (ACK, cny, ny) @ (ACK, cny, ny) subseq z, = n;<n,

At this point, we have the following complete Marking:

Produce SendD RecACK Consume SendACK RecD Loss

A0—6,8,9 * % * * * *

Aq * * * By % * *

A 10 32 s A 8 * % * * % *

Bo na Bo, A8.6.3 na By na BO_I By
B, na Bl,As,l'g na na na B, B,
By na na B, na By, A, na B,
B, na ha B, na Aga na Bj

684

5. Completing the Construction for Loss, Reordering, and Duplication Channels

For loss, reordering, and duplication channels, we resume the protocol construction from the end
of Section 3, ie., from the requirements and system shown in Tables 1 and 2, respectively. Recall
that only the pairs (47, Consume) and (A 1o, Produce) are unmarked.

Clearly, if the channels can reorder and duplicate arbitrarily, then A; and A,y cannot be
enforced unless the channels impose an upper bound on the lifetimes of messages in transit. There-
fore, we assume that a message cannot stay in channel i for longer than a specified MAXLIFE; time
units. Given this, we show that A; and A,y are enforced if entity 1 produces a data block for
produced (n) only after (1) MAXLIFE; time units have elapsed since produced(n—-N +RW) was last
sent, and (2) MAXLIFE, time units have elapsed since produced(n—-N+1) was first acknowledged.
We then provide three ways to implement these two time constraints, using 2N timers, N timers, and
1 timer, respectively

5.1. Real-time system model

For this construction, we require a system model in which real-time constraints can be formally
specified and verified. Such a real-time model has been presented in [17]. We now give a summary
description of that model, adequate for our purposes here.

The system model presented is augmented with special state variables, referred to as timers, and
with time events to age the timers. A timer takes values from the domain {OFF,0, 1,2, --- 1.
Define the function next on this domain by next (OFF)=OFF and next(i)=i+1 for i #OFF. A timer
can also have a maximum capacity M, for some positive integer M; in this case, next (M)=OFF.

There are two types of timers: local timers and ideal timers. Local timers correspond to the
timers and clocks implemented within entities of a distributed system. They need not be auxiliary.
For each entity, there is a local time event (corresponding to a clock tick) whose occurrence updates
every local timer within that entity to its next value. No other timer in the system is affected. Thus,
local timers in different entities are decoupled. We assume that the error in the ticking rate of the
local time event of entity entity i is upper bounded by a specified constant g;; e.g., & =107 for a
crystal oscillator driven clock.

Ideal timers are auxiliary variables that record the actual time elapsed. There is an ideal time
event whose occurrence updates every ideal timer in the system. The ideal time event is a hypotheti-
cal event that is assumed to occur at a constant rate. Ideal timers are used to measure the error in
the rate of local time event occurrences. They are also convenient for relating elapsed times across

different entities and channels.

A timer of an entity can be incremented by its time event. It can also be updated to either 0 or
OFF by an event of that entity. Updating to the value 0 is referred to as starting the timer. Updating
to the value OFF is referred to as stopping the timer. Thus, a timer that is started by an event
occurrence measures the time elapsed since that event occurrence.

Given an ideal timer u and a local timer v of entity i, we define the predicate
started—together (4, v) to mean that at some instant in the past # and v were simultaneously started,
and after that instant neither # nor v has been started or stopped. The maximum error in the rate of

685

entity i’s local time event occurrences is modeled by assuming the following condition, which we
shall refer to as the accuracy axiom:

Accuracy axiom. started —together (u, v) = lu —v I<max(1, €; u)

An invariant requirement A; can include started—together predicates. To mark (A;,e), ie, to
derive ¢ NA = A;’, we use the following rules. Rules (i) and (i) are used if ¢ is not a time event,
and rule (iii) is used if ¢ is a time event:

() u’=0Av’=0 implies started —together (u,v)’.
(1)) u'=u Av’=v A started ~together (u, v) implies started —together (u , v)’.

(iii) u’#OFF Nv'#OFF A started —together (u, v) implies started—together (u, v)’.

With timers and time events, time constraints between event occurrences can be specified by
safety assertions. For example, let e; and e, be two events, and let v be a timer that is started by
ey and stopped by e,. The time constraint that €, does not occur within T time units of ey’s
occurrence can be specified by the invariant requirement enabled (e3) = v2T. The time constraint
that e, must occur within T time units of €1’s occurrence can be specified by the invariant require-
ment v <T'. Note that to establish the invariance of an A; involving timers, we have to show that it
is preserved by the time events also.

Specification of finite message lifetime: To every message in a channel, we add an auxiliary
ideal timer field, denoted by age, that indicates the ideal time elapsed since the message was sent.
The age field is started at 0 when the message is sent (this update is specified in the send primitive).
The following are assumed to be invariant:

TA,
TA,

(D, data, 7, n, age)ez; = MAXLIFE, 2age 20

(ACK, T, n, age)e 2, = MAXLIFE, >age >0

52. A time constraint that enforces A,

In this section, we concentrate on marking (A;, Consume). We show that A, is enforced if
entity 1 produces produced(n) only after MAXLIFE, ideal time units have elapsed since
produced (n—N+RW) was last sent.

Due to buffered data blocks, it is always possible for successive occurrences of Consume to
increase r so that it equals s. Unlike in the case of loss-only channels, this does not allow us to
infer constraints on the sequence numbers in channel 1. Thus to enforce A7, we require the follow-
ing stronger invariant requirement to hold:

Co = (D,data,cn,n)ez, = n2s-N+RW

Taking the weakest precondition of Cy wrt Produce, we get the following event requirements
of Produce :

686

So = (D, data, cn, n)ez; = n2s-N+RW+1

Note that this is the first precondition in this construction that we have left as an event require-
ment. This is because S has exactly the same form as the invariant requirement Co from which it
‘was derived, with N being replaced by N—1. Therefore, transforming S into an invariant require-
ment would merely lead us to repeat the step with a smaller N. Repeated reductions like this would
eventually lead to N =RW, at which point we would have a ‘‘dead”’ protocol because of Ag.

S can be enforced by enabling Produce only after MAXLIFE, time units have elapsed since the
last send of any data block in produced (0~ s—N+RW). With this motivation, we add ideal timers
tp(n), n=0, at entity 1 to record the ideal time elapsed since produced (n) was last sent. We also
refine SendD and introduce an invariant requirement as follows:

tp: ‘sequéncc (0 -+ =) of ideal timer. Initially ¢p(n)=OFF for every n.
SendD ()= ie[0~s—a—1] ASend (D, sendbuff(i), a+i,a+i) A tpla+i)’=0

C= (D, data, cn, n, age)e z; = age 2tp(n)20

We can enforce S by having X = ne[0-s-N+RW] = tp(n)>MAXLIFE| V tp(n)=OFF

as an event requirement of Produce. This would make the following invariant:

C, = ne[0s~N+RW-1] = tp(n)>MAXLIFE, N tp(n)=0FF

C, is preserved by SendD because a >s-N+RW-1, and by Produce because of X. Because C, is
an invariant requirement, we can enforce X by enforcing the following event requirement of Pro-
duce:

Sy

n=s-N4+RW 20 = tp(n)>MAXLIFE, N tp(n)=OFF

The above discussion is formalized in the the following Marking, which now includes event
requirements, and where Ite denotes the Ideal time event:

Produce SendD RecACK Consume SendACK ‘RecD LRD Ite
A0—6'8,9 * * * * £ % . na
A7 % £ * CO s A 4 * * * na
A 10 : * % * * * * na
Co So Ag na na na Co Co na
C 1 na Cl na na na C 1 Cl TA 1
C, $1.C» na na na na na na C,

S, marked using Sy, Cq2, TA; | §; not marked

687

To enforce § 1> it is sufficient for entity 1 to keep track of the ideal timers in
tp(s—-N+RW “$~1). This can be done with a bounded number of local timers, each of bounded
capacity.

5.3. A time constraint that enforces A,

In this section, we concentrate on marking (A4, Produce). We show that A5 is enforced if
entity 1 produces a data block for produced (n) only after MAXLIFE, ideal time units have elapsed
since produced (n-N +1) was acknowledged.

Taking the weakest precondition of A 14 wrt Prodyuce » we get the following event requirement of
Produce (which, as in the case of Sy, should not be transformed into an invariant requirement):

S, = (ACK, cn, n)e Z; > n25-N+2

Sy can be enforced only by ensuring that more than MAXLIFE, time units have elapsed since
(ACK ,7,n) was last sent, for any ne Q- s~N +1]. Unlike the previous case involving data mes-
sages, entity 1 does nor have access to the time elapsed since (ACK ,7w,n) was last sent. This is
because ACK messages are sent by entity 2 and not by entity 1. However, entity 1 can obtain a
lower bound on this elapsed time because of the following considerations: (ACK 7 ,n) is not sent
once r exceeds n; a exceeds n only after r exceeds n;a and r are nondecreasing quantities. Thus,
the time elapsed since ¢ exceeded n is a lower bound on the ages of all (ACK ,7,n) in channel 2.
Furthermore, this elapsed time can be measured by entity 1.

With this motivation, we add ideal timers #p (n), n 20, at entity 2 to record the ideal time
elapsed since r first excecded 7, and refine Consume appropriately (for brevity, we only indicate the
addition to the previous definition given in Table 2):

Ig : sequence (0 o) of ideal timer. Initially tp (n)=OFF for every n.

Consume (data) = <definition in Table 2> A p(r)'=0

At entity 1, we add ideal timers z, (n), n20, to record the ideal time elapsed since g first
-xceeded n, and refine RecACK appropriately:

I4 : sequence (0 o) of ideal timer. Initially 24 (n)=0OFF for every n.

RecACK (cn, n) = Recy(ACK, cn, n)
Ner=ae(l s—a)
= (@’'=a+cm=g A sendbuff’=Tail (sendbuff, cn=g)
AN¥Viela-a’-1): 1y 0)’=01)

We have the following invariant requirements:

688

Cy 2 tpO2,(D2 - 243, r=1)20 A tg (r -+ =)=0OFF
Cy = (ACK, 7t, n,age)e z; An<r => age 2ty (n)20

Cs = 1 (22, (D2 - - - 214 (@-1)20 A 24 (a ~=)=0OFF
Cs = nel0-a-1]1=t, (n)<tp (n)

From Ag, C4 ¢, and TA,, and 1<RW <N -1, we see that the following implies S:

S3 = n=s-N+120 = 1, (n)>MAXLIFE,

We have the following Marking. (Using A4’ to mark some entries is acceptable because A4 has
been proven invariant; equivalently, we can replace A" with its tag Ag_jp):

Produce SendD RecACK Consume SendACK RecD LRD lIte
Agog, Coa * * * % * * * *
A S, * * * * * * *
C, na na na Cs na na na Cs
Cy na na C, C,4, TA, Cy na Cy Cy
Cs na na Cs na na na na Cs
CG na na C6,A4', C3 CG,A4 na na na Cs
So marked using Sy, C,,, TA; | S; unmarked | S, marked using §3, Ag, C46 TAy /| S unmarked

5.4. Protocol I: implementation with 2N timers

The only unmarked requirements are S; and S3. In Table 3, we provide a system specification
in which entity 1 enforces §; and S5 using two circular arrays of N local timers, namely timerp and
timery . (It is possible for timerp to be of size N-RW and timer, to be of size N—-1. But it
involves notation for modulo N-RW and N -1 arithmetic.)

Given an ideal timer u and a local timer v of entity 1 which are started together, from the accu-
racy axiom it is clear that u>T holds if v 21+(1+&;)T, or equivalently if v is a timer of capacity
(1+&,)T and is OFF. With this motivation, define MLIFE; = (1+¢&,)MAXLIFE; for i=1 and 2.

timerp is an array (0-N-1) of local timers, each of capacity MLIFE;. For
n € [max(0, s—=N+RW) - s-1], timerp (i) tracks tp(n) up to MLIFE, local time units with an accu-
racy of €. Thus, S; is enforced by including timerp(s—N+RW)=OFF, or equivalently
timer p(s +RW)=OFF, in the enabling condition of Produce, as shown in Table 3.

timer, is an amay (0~N-1) of local timers, each of capacity MLIFE,. For
n € [max(0, s—=N+1) -~ a-1], timer, (%) tracks t4 (n) up to MLIFE, local time units with an accuracy
of . Thus, §3 is enforced by including timer, (s—N+1)=OFF, or equivalently timer, (s +1)=OFF,
in the enabling condition of Produce , as shown in Table 3.

689

For brevity, we omit a formal proof that this protocol satisfies the event requirements S, and
S3. (It is contained in [18].)

The previous Marking of the progress requirements holds with a few minor changes. The
current system is a refinement of the basic protocol, and the only event whose enabling condition has
changed is Produce. Thus the only effect on the previous Marking is to unmark L3, which was
marked via Produce. The previous marking of L, is still valid because it did not use L 3. While 3
does not follow immediately via Produce, it still holds. It is sufficient to show that the two con-
straints involving timers in the enabling condition of Produce eventually become true when s=q.
But this holds because the time events can never deadlock [17]. Therefore, any bounded timer that is
not OFF will eventually become OFF.

5.5. Protocol II; implementation with N timers

In Table 4, we provide an implementation in which both S and S5 are enforced by the N local
timers in timer, . Unlike in the previous implementation with timerp, the enforcement of § 1 is not
tight, i.e., entity 1 takes more than the minimum time to detect that S| holds.

Because produced (n) is not sent after it is acknowledged, we have tp(n)2ty (n) for all

ne[0--a-1]. The proof of this is trivial and is omitted. Thus, an alternative way to enforce S is
to enforce the following:

Sy = n=s-N-RW 20 = t (n)>MAXL1FET!

S4 is analogous to S3 and can be enforced by including timer, (s+RW)>MLIFE| in the ena-
bling condition of Produce. We have to combine this with the other condition
timer, (STI)>ML1FE2 needed to enforce S4, as shown in Table 4. The Marking of the progress
requirements is as in protocol 1.

5.6. Protocol III: implementation with one timer

In Table 5, we provide an implementation that enforces § 3 and §4 by using a single local timer.
The timer, denoted by timers , imposes a minimum time interval & between successive occurrences of
Produce. We also require that s—a does not exceed a constant, SW, which must be less than
N-RW. The following inequalities must be satisfied by & and SW :

1<SW <N -RW -1

MAXLIFE, , MAXLIFE2]

> —_— &
S“ma"[N-RW-SW N-1-SW

For the typical case of MAXLIFE) =MAXLIFE, =MAXLIFE the above constraint on 8 simplifies to
52 NM“’;XWL’FT;. I in addition, N s very large compared to SW or RW (e.g. in TCP, N =22 while

SW, RW <218 then the bound simplifies to §> M-A%

690

Stenning [20] considered the case of MAXLIFE; =MAXLIFE,=MAXLIFE and obtained the bound

__MAXS“FE, We get N=SW+RW +M, which is a tighter

bound. Stenning’s protocol also has several unnecessary requirements, as follows. Whenever the

N 2SW +max(M +RW , SW), where M =

producer retransmits a data block with sequence number i, it also resends every outstanding data
block with a sequence number larger than i. Whenever the consumer receives a data message, it

must send an acknowledgement message.

Observe that the above time constraint on & corresponds to specifying a maximum rate of data
transmission, if we assume that Produce also transmits the accepted data block. (There is no loss of
generality here; entity 1 need merely save in another buffer data blocks that are produced and not yet
sent.) Note that if 8 is sufficiently small, e.g. the hardware clock period, then there is no need for
entity 1 to explicitly use a local timer. This would correspond to the situation in TCP [10] and the
original Stenning’s protocol [20].

6. Discussions

Our stepwise refinement heuristic is influenced by Dijkstra’s work on the derivation of programs
by using weakest preconditions [5], and by his development of distributed programs by incrementally
adding invariants and actions to preserve the invariants [6,7,8,9].

There are differences and similarities between our approach and the approach of Chandy and
Misra [3,4] to derive distributed programs by stepwise refinement. In both approaches, a distributed
system is modeled by a set of state variables and events. Invariant and progress requirements are
maintained throughout the construction. In the approach of Chandy and Misra, most of the effort is
spent on refining the set of requirements; the distributed program is not shown until very detailed
requirements have been obtained. In our approach, most of the effort is spent on refining the state
transition system; the detailed requirements are derived in order to satisfy our various conditions for
one state transition system to be a refinement of another state transition system.

In many of the examples of Chandy and Misra, the topology of the network of processes is
refined by breaking up an event into several events, which are subsequently associated with different
processes. This type of refinement step has also been used by other authors [1,2,15]. We have not
found use for such a refinement step in our examples, which are from the area of communication

protocols.

In summary, event requirements, a Marking, and the conditional refinement relation between
specifications are unique features of our approach. Event requirements allow us to state safety
requirements that cannot yet be made invariant without causing unsuccessful termination. The Mark-
ing provides a useful representation of the extent to which the requirements are satisfied by the
current state transition system and fairness assumptions. - The conditional refinement relation gives us
some flexibility in generating new state transition systems, while keeping any decrease in the Mark-
ing to a minimum.

We find the relational notation to be very convenient for expressing event refinement, and for
reasoning about the effect of an action on invariant requirements. However, our construction heuris-
tic does not require it; events can be specified by guarded multiple-assignment statements as in [3].

691

Table 1: Invariant requirements for the basic protocol

Properties relating state variables at the entities

1<RW <N -1
Ag = consumed prefix-of produced
Ag = lproduced\=s A lconsumed|=r
Ay = 0O<asr<s \
As = sendbuff=produced(a - s~1)
Ag = ie[0-RW-1] = recbuff(i)=empty N recbuff (i)=produced (r +i)
Ag = s-asN-RW

Properties of D messages
A, = (D, data, cn, n)e Z; = data =produced (n) A cn =it
Aq

(D, data,cn, n)e Z; = n2r-N+RW

Properties of ACK messages

LS
L
n

(ACK, cn,n)ezy = cn =i

S
©
1]

(ACK,cn,n)ez, = n<r

A = (ACK, cn,n)ezy = n>s-N+1

692

Table 2: System specification for the basic protocol

Entity 1

produced: sequence of DATA . Initially null.
s : 0+ oo, Initially 0.

a: 0+ o, Initially 0.

sendbuff: sequence of DATA . Initially null.

Produce (data) = s—a <N —-RW -1
A sendbuff’=sendbuff @ data N s'=s+1
A produced '=produced @ data
SendD (i) = ie[0-s—a-1] ASend;(D, sendbuff(i), a+i, a+i)

RecACK (cn, n) Rec,(ACK, cn, n)
ANci=aells—al

— (a’=a+ca—a A sendbuff’=Tail (sendbuff, chi—a))]

Entity 2
consumed : sequence of DATA . Initially null.
r: Q- oo, Initially O.
recbuff: sequence (0 RW -1) of DATA U {empty }. Initially recbuff =empty .

Consume (data) = recbuff (0)=empty
A data =recbuff (0)
A recbuff ' =Tail (recbuff, 1)@ empty N r’=r+1
A consumed '=consumed @ data

SendACK = Send,(ACK, 7, 1)

RecD (data; cn, n)

Rec (D, data, cn, n)
A[ET=F € [0 RW-1] — recbuff(cn—7) =data]

693
Table 3: System specification for protocol I

Entity 1

produced, s, a, sendbuff defined as in Table 2.

Ip, t4 : sequence (0 - o0) of ideal timer. Initially ¢p=t, =OFF.

timer p: sequence (0 N—1) of local timer of capacity MLIFE, . Initially timer , =OFF.,
timery : sequence (0--N-1) of local timer of capacity MLIFE,. Initially timer, =OFF.

Produce (data) = timerp(s+RW)=OFF A timer, (s +)=OFF
A <definition in Table 2>
SendD (i) = <definition in Table 2>

A timerp(@+i)’=0 A tp(a+i)’=0
Rec,y(ACK, cn, n)
ANen=ae[l-5-a]
= (a’=a+A=a A sendbuff’ =Tail (sendbuff, cn=a)
Niela -a’~1]: 14 (0) =timery ()’ =0])]

RecACK (¢n, n)

Entity 2

consumed, r, recbuyff defined as in Table 2.
Ip : sequence (0 o) of ideal timer. Initially z5 =OFF.

Consume (data)
SendACK
RecD (data, cn, n)

<definition in Table 2> A tp (r)'=0

<definition in Table 2>

<definition in Table 2>

694
Table 4: System specification for protocol I

Entity 1

produced, s, a, sendbuff, tp, i defined as in Table 3.
timer, : sequence (0 --N=1) of local timer of capacity max(MLIFE, , MLIFE,). Initially timer, =OFF

Produce (data) = <definition in Table 2> A timery (s +RW)=0OFF if MLIFE| 2MLIFE,

Produce (data) = <definition in Table 2> A timery (s+1)=0FF if MLIFE| <MLIFE,
A (timery (s +RW)-—j0FF vV timery (s+RW)>MLIFE,)

Hll

SendD (i)
RecACK (¢n, n)

<definition in Table 2> A tp(a+i)’=0

<definition in Table 3>

Entity 2 defined as in Table 3.

Table 5: System specification for protocol III

Entity 1
produced, s, a, sendbuff, tp, ty defined as in Table 3.
timerg : local timer of capacity (1+&;)8. Initially timerg =OFF.

Produce (data) = s—a<SW-1 A fimerg =OFF N timerg =0
A sendbuff’ =sendbuff @ dara A s’=s+1
A produced’=produced @ data

SendD (i) = <definition in Table 4>

RecACK (¢cn , n)

Rec,(ACK, cn, n)
Aén=aells-a]
- (a’=a+cr=a A sendbuff’=Tail (sendbuff, cn=a)
ANiela~a’—11: 14 ()'=0D]

Entity 2 defined as in Table 3.

695

References

{11 R.J.R. Back and R. Kurki-Suonio, ‘‘Decentralization of process nets with a centralized control,”’
Second ACM SIGACT-SIGCOPS Symp. on Prin. of Distr. Comput., Montreal, Aug. 1983, pp.
131-142.

[2] R.J.R. Back and R. Kurki-Suonio, “‘A case study in constructing distributed algorithms: Distri-
buted exchange sort,”” Proc. of Winter School on Theoretical Computer Science, Lammi, Fin-
land, Jan. 1984, Finnish Soc. of Inf. Proc. Sc., pp. 1-33.

[3] K.M. Chandy and J. Misra, ‘‘An example of stepwise refinement of distributed programs: Quies-
cence detection,”” ACM Trans. on Prog. Lang. and Syst., Vol. 8, No. 3, July 1986, Pp. 326-343,

[4] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, Reading,
MA, 1988.

[5]1 E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J., 1976.

[6] E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten, ‘‘On-the-fly garbage collection: An exer-
cise in cooperation,” Commun. ACM, Vol. 21, No. 11, November 1978, pp. 966-975.

{71 E.W. Dijkstra, C.S. Scholten, ‘‘Termination detection for diffusing computations,” Inform. Proc.
Letters, Vol. 11, No. 1, August 1980, pp. 1-4.

[8] E.W. Dijkstra, “‘Derivation of a termination detection algorithm for distributed computations,’
Tech. Report, EWD-840.

[91 E.W. Dijkstra, ‘“The distributed snapshot of K.M. Chandy and L. Lamport,”” Tech. Report,
EWD-864, November 1983.

[10] Transmission Control Protocol, DDN Protocol Handbook: DoD Military Standard Protocols,
DDN Network Information Center, SRI, MILSTD1778, Aug 1983.

[11] D.E. Knuth, ‘‘Verification of link-level protocols,”” BIT, Vol. 21, pp. 31-36, 1981.

[12] S.S. Lam and A.U. Shankar, “‘Protocol verification via projections,”’ IEEE Trans. on Software
Engineering, Vol. SE-10, No. 4, July 1984, pp. 325-342.

(13] S.S. Lam and A.U. Shankar, ““‘Specifying implementations to satisfy interfaces: A state transition
system approach,”” presented at the 26th Annual Lake Arrowhead Workshop on How will we
specify concurrent systems in the year 20007, September 1987; full version available as Techni-
cal Report TR-88-30, Department of Computer Sciences, University of Texas at Austin, August
1988 (revised June 1989).

[14] S.S. Lam and A.U. Shankar, ““A relational notation for state transition systems,’’ Technical
Report TR-88-21, Department of Computer Sciences, University of Texas af Austin, May 1988
(revised August 1989); an abbreviated version appears in these proceedings of the REX
Workshop on Refinement of Distributed Systems under the title ‘‘Refinement and projection of
relational specifications.””

[15] K. Sere, ‘‘Stepwise removal of virtual channels in distributed algorithms,”” Second Inr.
Workshop on Dist. Alg., Amsterdam, 1987. .

[16] A.U. Shankar and S.S. Lam, ““Time-dependent communication protocols,”” Tutorial: Principles
of Communication and Networking Protocols, 8. S. Lam (ed.), IEEE Computer Society, 1984.

[17] A.U. Shankar and S.S. Lam, ““Time-dependent distributed systems: proving safety, liveness and
real-time properties,”” Distributed Computing, Vol. 2, No. 2, pp. 61-79, 1987.

[18] A.U. Shankar and S.S. Lam, “A stepwise refinement heuristic for protocol construction,”’
Technical Report CS-TR-1812, Department of Computer Science, University of Maryland,
March 1987 (revised March 1989).

[19] A.U. Shankar, ‘‘Verified data transfer protocols with variable flow control,”” ACM Transactions
on Computer Systems, Vol. 7, No. 3, August 1989; an abbreviated version appears in Proc. ACM
SIGCOMM °86 Symposium, Aug 1986, under the title. “‘A verified sliding window protocol with
variable flow control.”’

[20] N.V. Stenning, ““A data transfer protocol,”” Computer Networks, Vol. 1, pp. 99-110, September
1976.

