A Lesson on Authentication Protocol Design*

Thomas Y.C. Woo Simon S. Lam
Department of Computer Sciences

The University of Texas at Austin
Austin, Texas 78712-1188

1 Introduction

The purpose of this note is to describe a useful lesson we learned on authentication
protocol design. In a recent article [9], we presented a simple authentication protocol
to illustrate the concept of a trusted server. The protocol has a flaw, which was
brought to our attention by Martin Abadi of DEC.

In what follows, we first describe the protocol and its flaw, and how the flaw was
introduced in the process of deriving the protocol from its correct full information
version. We then introduce a principle, called the Principle of Full Information, and
explain how its use could have prevented the protocol flaw. We believe the Principle
of Full Information is a useful authentication protocol design principle, and advocate
its use. Lastly, we present several heuristics for simplifying full information protocols
and illustrate their application to a mutual authentication protocol.

2 A Problematic Protocol

The following protocol appears in [9, pp. 42-43]." It performs only one-way authen-
tication, authenticating a principal P to another principal). We call P and @)
respectively the initiator and responder of the protocol.

*Research supported in part by NSA INFOSEC University Research Program under contract
no. MDA 904-91-C7046 and MDA 904-93-C4089, and in part by National Science Foundation
grant no. NCR-9004464. Published in ACM Operating Systems Review, Vol. 28, No. 3, July 1994.
Postscript files of this and other papers of the Networking Research Laboratory are available from
http://www.cs.utexas.edu/~lam/NRL.

!The protocol specification in [9, pp. 42-43] is more verbose. We have omitted some obvious
internal steps here.

In what follows, {m}, denotes the encryption of m by k& while “,” denotes the
concatenation operator. A is a trusted authentication server which shares a secret
key kx4 with each principal X in the system. A nonce is some information that is
fresh, i.e., has never appeared before. We refer to the following protocol as II.

(1) P—-Q : “lamP.

(2) @ : generate nonce n
B3) @ =P : n

(4) P —Q - {n}kPA

(5) Q — A {P7 {n}kPA}kQA
6) A —Q - {n}kQA

IT was invented by us to illustrate the use of a trusted server for key translation,
a process that takes as input an encrypted message and generates as output a new
message with the same content as the input but encrypted using a different key. Key
translation is mainly used in a shared-key system, and is typically carried out in such
a system by a centralized server that shares a secret key with each principal in the
system. Specifically, in the above protocol, A “translates” the message {n}x,, sent
by P in step (4) into the message {n},, in step (6), which can be understood by Q.

Protocol II is said to be correct if whenever a responder finishes execution of the
protocol, the initiator of the protocol execution is in fact the principal claimed in step
(1) of the protocol.

However, IT turns out to be incorrect. This is illustrated by the following scenario.
7 denotes a saboteur, who also happens to be a legitimate user in the system. In
particular, it shares a key kz4 with A and can initiate authentication exchanges. The
label in each line below identifies both the protocol step and the specific authenti-
cation exchange the step belongs to. For example, (QR.3) refers to step (3) in an
authentication exchange between @) (the initiator) and R (the responder). In a com-
munication step, the principal in parentheses denotes the intended sender or receiver
of the message. G denotes some “gibberish” generated by Z.

) (P)Z - @ : “lam P.”

) Q . generate nonce n
3) Q= (P)Z : n

) (P)Z - Q@ : @
PQ.5) Q — (A)Z : {P,G}p,,
7 waits until) initiates an authentication ex-
change with some principal R.
(QR.1) @ — (R)Z : “lam Q.”
() (R)Z - 7, {n}kZA
() Q — (R)Z : {27 {n}kZA}kQA
(QZ5) (Q)Z - A {27 {n}kZA}kQA
(QZ6) A = (Q)Z : {n}iga
() (A>Z - Q : {n}kQA

The authentication of P by @ in (PQ.1)-(PQ.6) succeeds even though Z, and not
P, is the initiator in step (PQ.1). That is, Z is able to masquerade as P to Q. The
cause of this failure can be attributed to the fact that the reply message from A to
@ in step (6) does not carry information to identify the initiator of an exchange.
The above attack requires () to initiate an outbound authentication when it is
waiting for the inbound authentication from P to complete. Another attack scenario,
suggested by Martin Abadi [1], does not require this. But it does require two concur-
rent inbound authentications: one presumably between P and @ (identified by label

PQ), and the other between Z and @) (identified by label ZQ).

(PQ.1) (P)Z — @ “Tam P.”

(7Q.1) 7 — @ “lam 7.7

(PQ.2) @ generate nonce np
(7Q.2) @ generate nonce ny
(PQ3) Q@ — (P)Z np

(PQ.4) (P)Z — @ G

(ZQ4) Z = Q {nP}kZA

(PQ3) @ — A [P, G,

(ZQ5) Q — A {Zv {nP}sz}kQA
(7Q.6) A abort

(PQG) A= Q {nP}kQA

Again, authentication of P by @ in (PQ.1)-(PQ.6) succeeds even though P did not
participate in the exchange. The cause of this failure is the inability of the responder
(@ in this case) to distinguish messages in concurrent invocations of the protocol.

This in turn can be attributed to the fact that insufficient information is carried in
the reply message from A to @ in step (6).

Interestingly, the above attack can be strengthened such that no error is detected
by Aj; instead, either () would detect an error or a time-out would occur at). To
achieve this, Z must have recorded a message of the form {nyg}s,, from (step (4)
of) a previous (successful) authentication of P by @ using IT, where n,yq is the nonce
generated by P in that exchange. If Z replays {ngq}x,, in step (PQ.4) in place of G,
then the checking at step (ZQ.6) by A would succeed with a reply of {n.4}s,, to Q.
If Z intercepts this reply, a time-out would occur at). If the reply gets through to
@, it would be rejected as an error.

3 The Original Protocol

In this section, we retrace the design process of Il and try to identify where and how
the flaw illustrated in Section 2 was introduced.

The first protocol we came up with to illustrate the idea of key translation (in the
context of one-way authentication) is the following:

1) P—-@Q : “lamP.”
2) @ : generate nonce n
3) Q - P : n

P = A : PQ{PQ,n},
A— P {Pvan}kQA
P — Q : {Pvan}kQA

P Py
e e e N N N’

3
6

In this protocol, key translation is requested by the initiator (i.e., P) before it sends
out its message to the responder (i.e., Q). An “equivalent” protocol in which the key
translation request is made by the responder is shown below:?

1) P—-@Q : “lamP.
2) @ : generate nonce n
3) Q — P : n

P — Q : {Pvan}kPA
Q — A Pva{Pvan}kPA
A — Q : {Pvan}kQA

P
e e N N N’ N’

3
6

Although the above protocols are theoretically correct, they are susceptible to
chosen plaintext attack. Specifically, a saboteur Z can obtain encrypted messages of

2These two protocols represent respectively the well-known push and pull models [12].

the form {7, X, m}, , for any principal X and any message m of its choice.® This is
because a key translation request can be made by any principal independent of the
knowledge or consent of the other principal.

To counter this attack, we modified the protocol to require an additional level
of encryption in the key translation request. The resulting protocol, IT/, is shown

below:
(1) P—-Q : “lamP.
(2) @ : generate nonce n
3) @ =P : n
(4) P —Q : {Pv Q, n}kPA
(5) Q — A {P7Q7n7{P7Q7n}kPA}kQA
(6) A= Q : {Pa Qv n}kQA

Essentially, chosen plaintext attack is curtailed by using encryption to represent an
implicit consent to the key translation. More specifically, in the message sent in
step (5), the inner encryption by kpy and the outer encryption by kg4 represent
respectively P and ()’s consent to the key translation request. A verifies both en-
cryption (i.e., “proof of consent” from both parties) before it would carry out the key
translation.

While IT is shown to be incorrect in Section 2, II/ can be formally shown to be
correct [11]. (The precise notion of correctness adopted is discussed in Appendix A.)

4 The Making of 11

I/ was then simplified as described in the following because we thought that the
simplified protocols would be clearer and more efficient. First from IT/, we deleted
the first occurrence of n from the message in step (5) to obtain protocol II' below:

(1) P—-@Q : “lamP.

(2) @ : generate nonce n

3) Q@ —» P n

(4) P —Q {Pa Q, n}kPA

(5) Q — A {P7Q7{P7Q7n}kPA}kQA
(6) A — Q {Pa Qv n}kQA

From IT', we deleted all occurrences of @) from the encrypted messages in steps (4)
to (6), and obtained protocol II? below:

3Strictly speaking, this is a restricted chosen plaintext attack as Z has no control over the entire
plaintext.

1) P—-Q : “lamP.

2) @ : generate nonce n
3) @ - P : n

4) P = Q : {Pn}i,,

5) Q — A : {Pv{Pvn}kPA}kQA
6) A —= Q : {Pn}r,,

Then, from II?, we obtained II® below by deleting P from the message in step (4)
(and hence also from the innermost encryption of the message in step (5)):

o~

(1) P—-Q : “lamP.

(2) @ : generate nonce n
3) @ —» P n

(4) P —@Q {n}kPA

(5) Q — A {P7 {n}kPA}kQA
(6) A — Q {P, n}kQA

And finally we obtained IT in Section 2 by deleting P from the message in step (6).

Similar to I/, each of IT', II? and IT? can be formally shown to be correct.
Indeed, the correctness proofs for these protocols are similar and involve showing
that messages of certain forms cannot be generated by a saboteur. In other words,
the deletion of P from the message in step (6) was the fatal mistake: it reduced the
“information content” of the message beyond the acceptable limit.

In retrospect, it is clear that the simplification of II/ to ITis not worthwhile.
Specifically, the benefits we gain (i.e., slightly shorter messages together with slightly
less encryption) are insignificant. However, as shown in Section 2, such simplification
would result in protocol error if it is not carried out carefully.

We make two interesting observations. First, if we delete all occurrences of P
instead of Q from the encrypted messages of II/, the resulting protocol would be
incorrect. Specifically, the same attack as outlined in Section 2 would apply. This,
together with the fact that IT/ is correct, suggest that the roles of the initiator and
responder are asymmetric. Therefore if the protocol is extended to perform mutual
authentication, neither the name of the initiator nor the name of the responder can
be deleted.

Second, if nonces are implemented by tagging a fresh number with the names of
its generator and intended receiver,* then IT would be “equivalent” to IT1/,° and hence
correct.

4This ensures that nonces are globally unique.
5 Assuming that proper checking is performed.

5 Principle of Full Information

An authentication protocol is said to be full information if its initiator and responder®
include in every outgoing encrypted message all of the information each has gathered
so far in the authentication exchange.

For example, IIY in Section 3 is full information. Specifically, in step (4), the
information P (the initiator) has gathered regarding the ongoing authentication con-
sists of the names of both participating principals and the nonce n to be used for the
authentication, and it has included them in its outgoing message. Similarly, in step
(5), @ (the responder) knows the names of both participating principals, the nonce
n, and the reply {P, @, n}x,, it has just received from P, and it has included all such
information in its outgoing message. The simplified protocols IT', II2, II® and ITare,
however, not full information.

From the discussion in Section 3, we see that the full information version of an
authentication protocol can be more resistant to attacks than its simplified variants.
Indeed, this is generally true from our experience. Intuitively, this can be explained
as follows: Messages in a full information protocol carry more information than their
simplified versions. Because of the extra information, these messages are more specific
to a particular authentication exchange run, and hence are less likely to be exploited
by a saboteur in compromising another run. In addition, more thorough checking
using the extra information can be performed by the recipients, thus reducing the
likelihood of successful attacks.

We believe that authentication protocols should be designed to be full information.
We call this the Principle of Full Information. Strict adherence to this principle
could have eliminated many of the flaws in published protocols, including our own.
Simplification of full information protocols should be attempted only if it represents
major savings, either in message length or in message processing time, and must be
performed with extreme caution. For example, the simplification from IT/ to IT does
not represent major savings and should not have been carried out.

6 Heuristics

When it is deemed appropriate to simplify a full information protocol, we present
in the following three heuristics, together with a brief explanation of the intuition
behind, that can be of use. We caution, however, that these heuristics are informal
and do not necessarily preserve correctness. They are intended as guidelines for

6We observe that most authentication protocols typically involve at most three principals: an
initiator, a responder and a server. In this paper, we do not consider protocols that have multiple
initiators and responders.

performing simplification; their application does not obviate the need for a formal
verification of the simplified protocol.

Heuristics 1

Each message should contain the names of both the initiator and the re-
sponder. It should also contain at least the nonce of the intended recipient,
if not both the nonces of the initiator and responder.

Intuitively, the quadruple

(initiator name, responder name, initiator nonce, responder nonce)

uniquely identifies an authentication run. Hence, if a message includes this quadruple,
it would be unique to a particular run, and cannot be exploited by a saboteur for use
in another run. The presence of the recipient’s nonce allows the recipient to verify
the timeliness of the message.

Heuristics 2

In a protocol based on a symmetric cryptosystem, an encrypted message
intended for a principal X (i.e., encrypted using X’s secret key) does not
need to include the name of X, but should include the name of the other

party.

If a message is encrypted under X’s secret key, it must either be generated by X or
intended for X. In either case, only X’s key can be used to recover the content of
the message. Hence, the name of X can be implicitly understood to be present.

Heuristics 3

Encrypted replies from one of the parties need not be nested inside en-
crypted messages of the other party.

That is, a nested message of the form “{M},, ,,{M'}¢,,” can often achieve a desired
effect as the message “{M',{M }r, ,try,”- In both cases, “{M},,” is being for-
warded by one of the principals (Y') to the other principal (X). The main difference
between the two cases is that in the latter, when X receives “{ M}, ,,” it can infer
that Y must have received “{M',{M }1, , }x,.” earlier. In particular, if M contains
similar information as M’, then X can infer that ¥ must also be aware of similar
information.

We illustrate application of these heuristics in the next section with an example.

7 Mutual Authentication

In general, mutual authentication may not be achieved if we simply run a one-way
authentication protocol twice, once in each direction. This is because messages com-
municated in one run could be exploited by a saboteur to compromise the run in the
other direction. (See [3] for an example.) The situation may improve, however, if the
one-way protocol is full information. We illustrate this using IT/.

Consider the following mutual authentication protocol obtained by “composing”
two instances of II/, where each instance represents one-way authentication in one

direction:
(1) P generate nonce np
(2) P — Q “lam P.”, np
(3) @ generate nonce ng
4 Q@ — P “Tam Q.”, ng,{P,Q,np}r,.
(5) P = Q {P7Q7nQ}kPA7 {Pvanpv{PvanP}kQA}kPA
(6) Q — A {P7Q7nQ7{P7Q7nQ}kPA}kQA7 {Pvanpv{PvanP}kQA}kPA
(7) A — Q {PvanP}kPAv{PvanQ}kQA
(8) Q — P {PvanP}kPA

The above protocol is correct in the sense that if P finishes executing its part of the
protocol, it believes that it has been talking to (), and vice versa for ().

The above protocol is, however, not full information. For example, ng is not
included in @’s outgoing message in step (4) even though it concerns the current
authentication exchange and has already been generated by @ in step (3).

Fortunately, only slight changes are required to obtain a full information version
of the above protocol. We show it below:

1 generate nonce np
“lam P.”, np
generate nonce ng
“Tam Q.”, ng,{P,Q,np,nq }rg,
{Pa QvannQ}kpAv {Pa QvnpvnQa {P7 Q?nP7nQ}kQA}kPA
{P,Q,np,nQ,{P,Q,TLP,nQ}kPA,
{P, QaannQ7 {Pv Q?np7nQ}kQA}kPA}kQA
{P, Q?nP7nQ}kPA7 {Pv Q?np7nQ}kQA
{PvaannQ}kPA

L4l
BO T O

e e e N N N
(=) e
e e e e e N

(7)
(8)

O OO T

O

_>
_>

There are many redundancies in the above protocol, especially in the messages
communicated in steps (5) and (6). Thus we can try applying the three heuristics in
Section 6 to see if a simplified yet correct protocol can be obtained.

We enumerate our simplification steps below: (For brevity, we refer to the message
communicated in step (i) as message (7).)

Step 1 Using heuristics 3, we simplify the second component of message
(5) to
{P, Q,np, nQ}kPA7 {Pa Q,np, nQ}kQA

Since the first component of message (5) is already contained in the
above, we can eliminate the first component from message (5).

Step 2 With the simplification in Step 1, it is easy to observe that there is
no need for @ to include {P,Q,np,nq}r,, in its message to P in
step (4). Thus, we eliminate { P, Q,np,ng}z,, from message (4).

Step 3 Following Step 2, if {P,Q,np,nq}r,, is eliminated from message
(4), it will also have to be eliminated from message (5).

Step 4 Using heuristics 3 repeatedly, we can eliminate the nested encryp-
tion in message (6). The new message (6) is

{P, Q?np7nQ}kPA7 {Pv Q?np7nQ}kQA

Step 5 To make message (7) different from message (6),”we can use heuris-
tics 2 to eliminate one of the names from each component of message

(7).

The resulting protocol is shown below:

~—~
[u—

generate nonce np

“lam P.”, np

generate nonce ng

“Tam Q.”, ng

{P, Q,np, nQ}kPA

{P, Qv np, nQ}kPA7 {P7 Qv np, nQ}kQA
{Qa np, nQ}kpAv {Pv npe, nQ}kQA
{Q7np7nQ}kPA

This turns out to be a correct (albeit not most message efficient) mutual authen-

1

Lid4i1d
TO x0T O

0¢]
QOO v v

TN TN TN TN TN TN N
Ut

tication protocol and can be easily extended to carry out key distribution as follows:

“This is not strictly necessary if we make the assumption that a principal can recognize and
discard its own messages. See Appendix A.

10

(1) P generate nonce np
(2) P — Q “lam P.”, np
(3) @ generate nonce ng
4 Q@ — P “lam Q.”, ng
(5) P — Q {PvaannQ}kPA
(6) Q — A {PanannQ}kPA7 {P7Q7nP7nQ}kQA
(7) A generate session key k
(8) A — Q {Q?np7nQ7k}kPA7 {P7nP7nQ7k}kQA
(9) Q — P {QvannQak}kPAa {nP7nQ}k
(10) P — Q {no e

8 Conclusion

We have learned a valuable lesson. While it is possible to simplify an authentication
protocol by selectively simplifying encrypted messages, it is not always wise to do
so. Besides, shortening a message may not offer much efficiency improvement for
the class of authentication protocols considered in this paper.® To obtain significant
improvements in efficiency, an authentication protocol designer should instead focus
on reducing the number of messages in a protocol.

We have introduced the Principle of Full Information. This principle, if followed
in our protocol, would have avoided the protocol mistake illustrated in Section 2.
We advocate that authentication protocols be designed using encrypted messages
that carry full information. From our experience, these protocols tend to be more
resistant to attacks than their simplified variants, and are easier to be proved correct.

Our Principle of Full Information can also be viewed as a concrete implementation
of Principle 1 in [2]. Specifically, full information specifies that each message should
carry as much information as possible regarding the current authentication run, to
the extent that it becomes self-contained and uniquely identifiable as belonging to a
particular authentication run. Attacks resulting from messages that do not carry full
information have also been demonstrated in [7] and [8].

We have also proposed several heuristics for simplifying full information protocols.
Although these are informal, we believe they represent useful directions in simplify-
ing authentication protocols and a good first step toward a more formal stepwise
refinement procedure.

8 Authentication protocols intended for lower protocol layers or for connectionless communica-
tion may benefit from such simplification. However, even for these protocols, the principle of full
information should still be observed implicitly. For example, in [3], a low level authentication pro-
tocol is developed in which the names of participating principals are encoded implicitly using the
exclusive-or operation.

11

Notions similar to that of a full information protocol have also been used in other
context. For example, the first protocol proposed for solving the distributed consensus
problem was “full information” [6]. This protocol was then successively simplified to
obtain more efficient solutions.

Acknowledgment

We are grateful to Martin Abadi of DEC for bringing to our attention the error in II
and for comments on this note.

References

[1] M. Abadi. Private communication. March 1993.

[2] M. Abadi and R. Needham. Good engineering practice for security in crypto-
graphic protocols. Manuscript, November 1993.

[3] R. Bird, I. Gopal, A. Herzberg, P.A. Janson, S. Kutten, R. Molva, and M. Yung.
Systematic design of a family of attack-resistant authentication protocols. IKKFE
Journal on Selected Areas in Communications, 11(5):679-693, June 1993.

[4] M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. Technical
Report 39, Systems Research Center, Digital Equipment Corporation, Febru-
ary 28 1989. Revised February 22, 1990. An abbreviated version appears in

[5].

[5] M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18-36, February 1990.

[6] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228-234, April 1980.

[7] E. Snekkenes. Roles in cryptographic protocols. In Proceedings of the 13th
IEEFE Symposium on Research in Security and Privacy, pages 105-119, Oakland,
California, May 4-6 1992.

[8] P. Syverson. On key distribution protocols for repeated authentication. ACM
Operating Systems Review, 27(3):24-30, October 1993.

9] T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. Com-
puter, 25(1):39-52, January 1992. See also “Authentication” revisited. Computer,
25(3):10-10, March 1992.

12

[10] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In
Proceedings of the 14th IEEE Symposium on Research in Security and Privacy,
pages 178-194, Oakland, California, May 24-26 1993.

[11] T.Y.C. Woo and S.S. Lam. Verifying authentication protocols: Methodology and
example. In Proceedings of the International Conference on Network Protocols,
pages 36-45, San Francisco, California, October 19-22 1993.

[12] CCITT Recommendation X.500 The Directory—Overview of concepts, models,
and services, 1988.

A Correctness

For the authentication protocols presented in Section 3, our notion of correctness can
be informally stated as follows: An authentication protocol is correct if for all its
executions, whenever an authenticating principal (also the responder) completes an
authentication exchange, it must be the case that the authenticated principal (also
the initiator) has initiated the exchange earlier.?

More concretely, the completion of an authentication exchange by an authenticat-
ing principal X can be equated with the receipt of the message in step (5) by X from
A; while the initiation of an authentication exchange by an authenticated principal
Y can be interpreted as the sending of either the message in step (1) or the message
in step (4) by Y.

Take protocol II/ as an example. The above criterion says IT/ is correct if for all
its executions, whenever @Q receives a message { P, @, n},, in step (6), it must be the
case that P has sent message {P,Q),n}x,, in step (4) earlier in the execution.

This notion of correctness can be formalized using a correspondence property.
Roughly speaking, a correspondence property specifies a one-to-one temporal relation-
ship between the occurrences of two transitions. A formal definition of correspondence
properties is presented in [10]. Using the proof procedure proposed therein for cor-
respondence properties, we can show that IT/, TI' and II? satisfy the correctness
criterion stated in the previous paragraph.

It should, however, be noted that an extra assumption is needed in the verification
of II' and IT?. That is, a principal is assumed to be able to recognize and hence
discard its own messages. In other words, a naive replay of a principal X’s outbound
messages back to X will be detected and hence ignored. The same assumption is also
postulated in BAN logic [4, p. 5]. Without this assumption, protocol II' can fail as
follows:

°In a mutual authentication protocol, this same notion applies except that a principal is an
authenticating principal in one direction and an authenticated principal in the other direction.

13

(P)Z — @ : “lam P.
. generate nonce n
n

(A)Z {P7Q7n}kQA
(A)Z — Q {P,Q,n}kQA

Similar scenarios can be constructed for II. Interestingly, IT/ and IT are not vulner-
able to this attack.

From a practical standpoint, the assumption can be understood as follows. The
secret key kx 4 shared between principal X and server A can be viewed as representing
two distinct keys k%, and k%4, each of which is easily derivable from kx4.!° For X,
k%, is used whenever it wants to decrypt an incoming message that is supposedly
encrypted by kx4, and k$*% is used whenever it wants to send a message that is
supposedly to be encrypted by kx 4. The opposite convention is followed by A; that
is, it uses k%, to send and k3, to receive.!!

With this assumption, protocol II' can be more accurately specified as:
(1) P—-Q : “lamP.
(2) @ : generate nonce n
3) @Q =P : n
(4) P — Q : {Pa Qan}kopﬂ
(5) Q — A {Pa Qv {Pa Qv n}kopﬁ}k%"lg
(6) A= Q : {Pv Qvn}kg‘A
And the correctness criterion stated above can be more accurately rephrased as

follows: Protocol IT' is correct if for all its executions, whenever () receives a message
{P,Q, n}kglA in step (6), it must be the case that P has sent message {P, (), n}ou in

step (4) earlier in the execution.

100ne simple way to achieve this is to define: kf,?A = kxa ® X and k&lﬂf‘ = kxa ® A where @
denotes the exclusive-or operation.

HTn fact, this can be made symmetric if we postulate that kxa = kax, kZLX = kg}ﬂg and ki“)? =
kg?A. This, for example, is satisfied in the definition given in the above footnote.

14

