Chapter 20

Authentication
for Distributed Systems®

Thomas Y. C. Woo and Simon S. Lam

A fundamental concern in building a secure distributed system is au-
thentication of local and remote entities in the system. We survey au-
thentication issues in distributed system design. Two basic paradigms
underlying the design of authentication protocols are presented. We
then propose an authentication framework that can be used for de-
signing secure distributed systems, including specific protocols for
secure bootstrapping, user-host authentication, and peer-peer authen-
tication. We conclude with an overview of two existing authentication
systems, namely, Kerberos and SPX.

INTRODUCTION

A distributed system—a collection of hosts interconnected by a network—poses
some intricate security problems. A fundamental concern is authentication
of local and remote entities in the system. In a distributed system, the hosts
communicate by sending and receiving messages over the network. Various
resources (like files and printers) distributed among the hosts are shared across
the network in the form of network services provided by servers. Individual
processes (clients) that desire access to resources direct service requests to the
appropriate servers. Aside from such client-server computing, there are many
other reasons for having a distributed system. For example, a task can be divided
up into subtasks that are executed concurrently on different hosts.

A distributed system is susceptible to a variety of threats mounted by
intruders as well as legitimate users of the system. Indeed, legitimate users are
more powerful adversaries since they possess internal state information not
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usually available to an intruder (except after a successful penetration of a host),
We identify two general types of threats.

The first type, host compromise, refers to the subversion of individual
hosts in a system. Various degrees of subversion are possible, ranging from the
relatively benign case of corrupting process state information to the extreme case
of assuming total control of a host. Host compromise threats can be countered
by a combination of hardware techniques (like processor protection modes) and
software techniques (like security kernel/reference monitor). These techniques
are outside the scope of this chapter; we refer interested readers to [4] for an
overview of the area of computer systems security. In this chapter, we assume
that each host implements a reference monitor that can be trusted to properly
segregate processes.

The second type, communication compromise, includes threats associated
with message communications. We subdivide these into:

(T1) eavesdropping of messages transmitted over network links to extract
information on private conversations;

(T2) arbitrary modification, insertion, and deletion of messages transmitted
over network links to confound a receiver into accepting fabricated
messages; and

(T3) replay of old messages; this can be considered a combination of (T1) and

(T2).

(T1) is a passive threat, while (T2) and (T3) are active threats. A passive
threat does not affect the system being threatened, whereas an active threat does.
Therefore, passive threats are inherently undetectable by the system, and can
only be dealt with by using preventive measures. Active threats, on the other
hand, are combated by a combination of prevention, detection, and recovery
techniques.

Additionally, there are threats of “traffic analysis” and “denial of service”;
we will not consider them here because they are more relevant to the general
security of a distributed system than to our restricted setting of authentication.

Corresponding to these threats, some basic security requirements can be
formulated. For example, secrecy and integrity are two common requirements
for secure communication. Secrecy specifies that a message can be read only by
its intended recipients, while integrity specifies that every message is received
exactly as it was sent, or a discrepancy is detected.

A strong cryptosystem can provide a high level of assurance of both the
secrecy and integrity (see “Basic Cryptography” sidebar). More precisely, an
encrypted message provides no information regarding the original message,
hence guaranteeing secrecy, and if tampered with, would not decrypt into an
understandable message, hence guaranteeing integrity.

Replay of old messages can be countered by using nonces or time-
stamps [4, 11]. A nonce is information that is guaranteed fresh, that is, it has not
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appeared or been used before. Therefore, a reply that contains some function
of a recently sent nonce should be believed timely because the reply could
have been generated only after the nonce was sent. Perfect random numbers
are good nonce candidates; however, their effectiveness is dependent upon the
randomness that is practically achievable. Timestamps are values of a local clock.
Their use requires at least some Joose synchronization of all local clocks, and
hence their effectiveness is also somewhat restricted.

The balance of this chapter is organized as follows. In the next section,
we discuss what authentication means as well as the various authentication
needs in a distributed system. Then we describe the different types of au-
thentication exchanges in a distributed system. Following this, we present two
paradigms of authentication protocol design and discuss why realistic authen-
tication protocols are difficult to design. Next, we propose an authentication
framework for distributed systems, and present specific authentication proto-
cols that can be used within the framework. Finally, we describe authentication
protocols in two existing systems: Kerberos and SPX, and then present some
conclusions.

WHAT NEEDS AUTHENTICATION?

In simple terms, authentication is identification plus verification. Identification
is the procedure whereby an entity claims a certain identity, while verification
is the procedure whereby that claim is checked. Thus the correctness of an
authentication relies heavily on the verification procedure employed.
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The entities in a distributed system that can be distinctly identified are
collectively referred to as principals. There are three main types of authentication
of interest in a distributed system:

(A1) message content authentication—verifying that the content of a message
received is the same as when it was sent;

[A2) message arigin authentication—veritying that the sender ot a received
message is the same one recorded in the sender field of the message; and

(A3) general identity authentication—verifying that the principal’s identity is as
claimed.

(A1) is commonly handled by tagging a key-dependent message authen-
tication code (MAC) onto a message before it is sent. Message integrity can be
confirmed upon receipt by recomputing the MAC and comparing it with the one
attached. (A2) is a subcase of (A3). A successful general identity authentication
results in a belief held by the authenticating principal (the verifier) that the
authenticated principal (the claimant) possesses the claimed identity. Hence,
subsequent claimant actions are attributable to the claimed identity. General
identity authentication is needed for both authorization and accounting func-
tions. In the balance of this chapter, we restrict our attention to general identity
authentication only.

In an environment where both host and communication compromises can
occur, principals must adopt a mutually suspicious attitude toward one another.
Therefore, mutual authentication, whereby both communicating principals
verify each other’s identity, rather than one-way authentication, whereby only
one principal verifies the identity of the other principal, is usually required.

In a distributed system environment, authentication is carried out us-
ing a protocol involving message exchanges. We refer to these protocols as
authentication protocols.

Most existing systems use only very primitive authentication measures or
none at all. For example:

# The prevalent login procedure requires users to enter their passwords in
response to a system prompt. Users are then one-way authenticated by
verifying the (possibly transformed) password against an internally stored
table. However, no mechanism lets users authenticate a system. Such a design
is acceptable only when the system is trustworthy, or the probability of
compromise is low.

® In a typical client-server interaction, the server—on accepting a client’s
request—has to trust that (1) the resident host of the client has correctly
authenticated the client, and (2) the identity supplied in the request actually
corresponds to the client. Such trust is valid only if the system’s hosts are
trustworthy and its communication channels are secure.
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FIGURE 1 Principals in a distributed system.

These measures are seriously inadequate because the notion of trust in
distributed systems is poorly understood. A satisfactory formal explication of
trust has yet to be proposed. Second, the proliferation of large-scale distributed
systems spanning multiple administrative domains has produced extremely
complex trust relationships.

In a distributed system, the entities that require identification are hosts,
users, and processes [10]. They thus constitute the principals involved in an
authentication, which we describe (see also Figure 1).

Hosts. These are addressable entities at the network level. A host is distinguished
from its underlying supporting hardware. For example, a host H running
on workstation W can be moved to run on workstation W' by performing
on W' the bootstrap sequence for H. A host is usually identified by its
name (for example, a fully qualified domain name) or its network address
(for example, an IP address), whereas a particular host hardware is usually
identified by its factory assigned serial number (for example, an ID burned
into its boot PROM).

Users. These entities are ultimately responsible for all system activities. In other
words, users initiate and are accountable for all system activities. Most
access control and accounting functions are based on users. (For com-
pleteness, a special user called root can be postulated, who is accountable
for system-level activities like process scheduling.) Typical users include
humans, as well as accounts maintained in the user database. Note that
users are considered to be outside the system boundary.

Processes. The system creates processes within the system boundary to rep-
resent users. A process requests and consumes resources on behalf of its
unique associated user. Processes fall into two classes: client and server.
Client processes are consumers who obtain services from server processes,
who are service providers. A particular process can act as both a client
and a server. For example, print servers are usually created by (and hence
associated with) the user root, and act as servers for printing requests by
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other processes. However, they act as clients when requesting files from
file servers.

AUTHENTICATION EXCHANGES

For the various principals introduced in the above section, we identify the
following major types of authentication exchanges in a distributed system.

Host-host. Host-level activities often require cooperation between hosts. For
example, individual hosts exchange link information for updating their
internal topology maps. In remote bootstrapping, a host, upon reini-
tialization, must identify a trustworthy bootstrap server to supply the
information (for example, a copy of the operating system) required for
correct initialization.

User-host. A user gains access to a distributed system by logging into a host in
the system. In an open access environment where hosts are scattered across
unrestricted areas, a host can be arbitrarily compromised, necessitating
mutual authentication between the user and host.

Process-process. Two main subclasses exist:

® Peer-peer communication. Peer processes must be satisfied with each
other’s identity before private communication can begin.

® Client-server communication. An access decision concerning a client’s
request can be made only when the client’s identity is affirmed. A client
is willing to surrender valuable information to a server only after it has
verified the server’s identity.

As shown later, these two classes of authentication are closely related, and can
be handled by similar protocols.

From now on, we use authentication to refer to general identity
authentication.

AUTHENTICATION PROTOCOL PARADIGMS

Authentication in distributed systems is invariably carried out with protocols. A
protocol is a precisely defined sequence of communication and computation steps.
A communication step transfers messages from one principal (the sender) to
another (the receiver), while a computation step updates a principal’s internal
state. Two distinct states can be identified upon termination of the protocol, one
signifying successful authentication and the other failure.
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Although the goal of any authentication is to verify the claimed identity of
a principal, specific success and failure states are highly protocol dependent. For
example, the success of an authentication during the connection establishment
phase of a communication protocol is usually indicated by the distribution of
a fresh session key between two mutually authenticated peer processes. On the
other hand, in a user login authentication, success usually results in the creation
of a login process on behalf of the user.

We present protocols in the following format. A communication step
whereby P sends a message M to Q is represented as P — Q : M whereas a
computation step of P is written as P : ... where “...” is a specification of the
computation step. For example, following is the typical login protocol between
a host H and a user U (f denotes a one-way function, that is, given y it is
computationally infeasible to find an x such that f(x) = y):

U—-H : U
H — U : “Please enter password”
U—-H : p

H : computey = f(p)
. retrieve user record (U, f(password 7)) from user database
ify = f(password ;) then accept; otherwise reject

We next examine the key ideas that underlie authentication protocol design
by presenting several protocol paradigms.

Since authentication protocols directly use cryptosystems, their basic
design principles also follow closely the type of cryptosystem used. Specifically,
we identify two basic paradigms for authentication, one based on symmetric
cryptosystems and the other on asymmetric cryptosystems.

Note that protocols presented in this section are intended to illustrate
basic design principles only. A realistic protocol is necessarily a refinement of
these basic protocols and addresses weaker environment assumptions, stronger
postconditions, or both. Also, a realistic protocol may use both symmetric and
asymmetric cryptosystems.

The protocols presented in the balance of this chapter have been slightly
revised from the ones published in [16]. The revisions ensure that they follow
a design principle for authentication protocols called the Principle of Full
Information as expounded in [18]. According to the principle, a principal should,
in an authentication exchange, include in each outgoing encrypted message all
of the information it has gathered so far in the exchange. In particular, each
message should contain the names of the authenticating principals. A conclusion
of [18] is that to optimize an authentication protocol, a designer should focus
on reducing the number of messages (or rounds) in the protocol, rather than
simplifying encrypted messages.
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Protocols Based upon Symmetric Cryptosystems

In a symmetric cryptosystem, knowing the shared key lets a principal encrypt
and decrypt arbitrary messages. Without such knowledge, a principal cannot
create the encrypted version of a message, or decrypt an encrypted message.
Hence, authentication protocols can be designed according to the following
principle called SYM:

Ifaprincipal can correctly encrypt a message using a key that the verifier
believes is known only to a principal with the claimed identity (outside
of the verifier), this act constitutes sufficient proof of identity.

Thus SYM embodies the proof-by-knowledge principle for authentication,
that is, a principal’s knowledge is indirectly demonstrated through its ability to
encrypt (see “Approaches to Authentication” sidebar). Using SYM, we imme-
diately obtain the following basic protocol: (k denotes a symmetric key shared
between P and Q)

P : createm =“TamP.
compute m’ = {m, Q};
P-Q : mm'

Q : verify {m, Q}h 2 m'
:  if equal then accept; otherwise reject

Clearly, the SYM design principle is sound only if the underlying cryp-
tosystem is strong (one cannot create the encrypted version of a message without
knowing the key) and the key is secret (it is shared only between the real principal
and the verifier). Note that this protocol performs only one-way authentication;
mutual authentication can be achieved by reversing the roles of P and Q.

One major weakness of the protocol is its vulnerability to replays. More
precisely, an adversary could masquerade as P by recording the message m’
and later replaying it to Q. As mentioned, replay attacks can be countered by
using nonces or timestamps. We modify the protocol by adding a challenge-and-
response step using nonces:

P—->Q : “IamP’
! generate nonce #
Q—P : n

P : computem = {P,Q,n}
P—>Q : m

Q v verify{P,Q,n} L m
: if equal then accept; otherwise reject

Replay is foiled by the freshness of n. Thus, even if an eavesdropper
has monitored all previous authentication conversations between P and Q, it
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still could not produce the correct n'. (This also points out the need for the
cryptosystem to withstand a known plaintext attack. That is, the cryptosystem
must be unbreakable given the knowledge of plaintext-ciphertext pairs.) The
challenge-and-response step can be repeated any number of times until the
desired level of confidence is reached by Q.

This protocol is impractical as a general large-scale solution because
each principal must store in memory the secret key for every other principal
it would ever want to authenticate. This presents major initialization (the
predistribution of secret keys) and storage problems. Moreover, the compromise
of one principal can potentially compromise the entire system. These problems
can be significantly reduced by postulating a centralized authentication server A
that shares a secret key kx4 with every principal X in the system [11]. The basic
authentication protocol then becomes:

P—-Q : “lamP’

Q 1 generate nonce n

Q—=P : n

p : computex = {P,Q,nk,,

P—->Q : x

Q : computey = {P,Q,x}x,,

Q—>A : vy

A : recover P, Q, x from y by decrypting with kqa

recover P, Q, n from x by decrypting with kpa
: compute m = {P,Q, nl,,
A—=Q : m
Q o verify {P, Q, n}y,, £ m
:  if equal then accept; otherwise reject

Thus Q’s verification step is preceded by a key translation step by A. The
protocol correctness now also rests on A’s trustworthiness—that A will properly
decrypt using P’s key and reencrypt using Q’s key. The initialization and storage
problems are greatly alleviated because each principal needs to keep only one key.
The risk of compromise is mostly shifted to A, whose security can be guaranteed
by various measures, such as encrypting stored keys using a master key and
putting A in a physically secure room,

Protocols Based upon Asymmetric Cryptosystems

In an asymmetric cryptosystem, each principal P publishes his public key
kp and keeps secret his private key kP L. Thus only P can generate {m }k -1 for
any message m by signing it using k5 !. The signed message {m }k | can be verified
by any principal with knowledge of kp (assuming a commutative asymmetric
cryptosystem). The ASYM design principle is:
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If a principal can correctly sign a message using the private key of the
claimed identity, this act constitutes a sufficient proof of identity.

This ASYM principle follows the proof-by-knowledge principle for au-
thentication, in that a principal’s knowledge is indirectly demonstrated through
its signing capability. Using ASYM, we obtain a basic protocol as follows:

P—-Q : “IamP’>

Q : generate nonce n

Q—P : n

p : computem = {P,Q, n}kp—l
P—->Q : m

Q : verify (P, Q,n) & {m},
:  if equal then accept; otherwise reject

This protocol depends on the guarantee that {n},-1 cannot be produced
without the knowledge of k5 ! and the correctness of kp as published by P and
kept by Q.

As in the protocols that use symmetric keys, the initialization and storage
problems can be alleviated by postulating a centralized certification authority A
that maintains a database of all published public keys. The protocol can then be
modified as follows:

P—-Q : “TamP’”

Q : generate nonce n

Q—=P : n

P : computem = {P,Q, n}kp—1

P—->Q : m

Q — A : “Ineed P’s public key”

A : retrieve public key kp of P from key database

: create certificate c = {P, kp}kA—l
A—>Q : Pc
Q : recover (P, kp) from ¢ by decrypting with k4
: verify (P, Q,n) £ {m},
if equal then accept; otherwise reject

Thus ¢, called a public-key certificate, represents a certified statement by A
that P’s public key is kp. Other information such as an expiration date and the
classification of principal P (for mandatory access control) can also be included
in the certificate (such information is omitted here). Each principal in the system
need only keep a copy of the public key k4 of A.

In this protocol, A is an example of an on-line certification authority. It
supports interactive queries and is actively involved in authentication exchanges.
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A certification authority can also operate off-line, in which case, a public-key
certificate is issued to a principal when it first registers. The certificate is kept
by the principal and is forwarded during an authentication exchange, thus
eliminating the need to make a separate query. Forgery is impossible, since a
certificate is signed by the certification authority.

Notion of Trust

Correctness of both the symmetric and asymmetric protocols presented above
requires more than the existence of secure communication channels between
principals and the appropriate authentication servers and certification authori-
ties. In fact, such correctness is critically dependent on the ability of the servers
and authorities to faithfully follow the protocols. Each principal bases its judg-
ment on its own observations (messages sent and received) and its trust of the
server’s judgment.

An authentication server in a symmetric protocol is trusted not to divulge
the secret keys of principals and to apply the correct secret key as specified
by the protocol. An on-line certification authority is trusted not to divulge its
own private key and to have the correct public keys of principals. An off-line
certification authority is trusted not to divulge its own private key and to properly
verify the identity of a principal before issuing a public-key certificate for the
principal.

A formal understanding of authentication would require both a formal
specification of trust and a rigorous reasoning method wherein trust is a basic
element. Presently, our formal understanding of trust in distributed systems is
at best inadequate.

AUTHENTICATION PROTOCOL FAILURES

Despite the apparent simplicity of their basic design principles, realistic authen-
tication protocols are notoriously difficult to design. Various published protocols
have exhibited subtle security problems [3, 4, 11].

There are several reasons for such difficulty. First, most realistic cryptosys-
tems satisfy algebraic identities additional to those in (C1) and (C2). These extra
properties may generate undesirable effects when combined with protocol logic.
Second, even assuming that the underlying cryptosystem is perfect, unexpected
interaction among the protocol steps can lead to subtle logical flaws. Third,
assumptions regarding the environment and the capabilities of an adversary
are not explicitly specified, making it extremely difficult to determine when a
protocol is applicable and what final states have been achieved.
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We illustrate the difficulty by showing an authentication protocol proposed
in [11] that contains a subtle weakness [4] (kp and k¢, are symmetric keys shared
between P and A, and Q and A, respectively, where A is an authentication server
and k is a session key).

) P—->A : PQ,np

(2) A=P {nP) Q. k, {k) P}kQ}kp
3) P—>Q : ik P}kQ

4 Q—=P : {ngk

(5) P—=Q : {ng+1k

The message {k, P}y, in step (3) can only be decrypted and hence un-
derstood by Q. Step (4) reflects Q’s knowledge of k, while step (5) assures
Q of P’s knowledge of k; hence the authentication handshake is based en-
tirely on knowledge of k. The subtle weakness in the protocol arises from the
fact that the message {k, P}kQ sent in step (3) contains no information for
Q to verify its freshness.? In fact, this is the first message sent to Q about
P’s intention to establish a secure connection. An adversary who has com-
promised an old session key k' can impersonate P by replaying the recorded
message {k’, P}, in step (3) and subsequently executing the steps (4) and
(5) using k'.

To avoid protocol failures, formal methods may be employed in the
design and verification of authentication protocols. A formal design method
should embody the basic design principles as illustrated in the previous section.
Informal reasoning such as, “If you believe that only you and Bob know k, then
you should believe any message you receive encrypted with k was originally sent
by Bob,” should be formalized by a verification method.

Early attempts at formal verification of security protocols mainly followed
an algebraic approach [5]. Messages exchanged in a protocol were viewed as
terms in an algebra. Various identities involving the encryption and decryption
operators (for example, (C1) and (C2)) were taken to be term-rewriting rules.
A protocol was secure if it was impossible to derive certain terms (for example,
the term containing the key) from the terms obtainable by an adversary. The
algebraic approach was limited, since it had been used mainly to deal with
one aspect of security, namely secrecy. Recently, various logical approaches
have been proposed to study authentication protocols [3]. Most of these
logics adopt a modal basis, with belief and knowledge as central notions. The
logical approaches appear to be more general than the algebraic ones, but
they lack the rigorous foundations of more well-established logics like first-
order logic and temporal logic. In particular, a satisfactory semantic model
for these logical systems has not been developed. Much research is needed
to obtain sound design methods and to formally understand authentication
issues.
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AN AUTHENTICATION FRAMEWORK

We have so far presented various basic concepts of authentication. In this
section, we synthesize these concepts into an authentication framework that
can be incorporated into the design of secure distributed systems. In particular,
we identify and describe five aspects of secure distributed system design and
the associated authentication needs. This section is not exhaustive in scope;
other issues may have to be addressed in an actual distributed system security
framework,

Host initializations. All process executions take place inside hosts. Some hosts
(like workstations) also act as system entry points by allowing user logins.
The overall security of a distributed system is highly dependent on the
security of each of the hosts. However, in an open network environment,
not all hosts can be physically protected. Thus resistance to compromise
must be built into a host’s software to ensure secure operation. This
suggests the importance of host software integrity. In particular, for a host
that employs remote initialization, loading it with the correct host software
is essential to its proper functioning. In fact, one way to compromise a
public host is to reboot the host with incorrect initialization information.
Authentication can be used to implement secure bootstrapping.

User logins. User identity is established at login, and all subsequent user
activities are attributed to this identity. All access control decisions and
accounting functions are based on this identity. Correct user identification
is thus crucial to the functioning of a secure system. Also, any host in
an open environment is susceptible to compromise. Therefore a user
should not engage in any activity with a host without first ascertaining the
host’s identity. A mutual user-host authentication can achieve the required
guarantees.

Peer communications. Distributed systems can distribute a task over multiple
hosts to achieve a higher throughput or more balanced utilizations than
centralized systems. Correctness of such a distributed task depends on
whether peer processes participating in the task can correctly identify each
other. Authentication can be used here to identify friend or foe.

Client-server interactions. The client-server model provides an attractive
paradigm for constructing distributed systems. Servers are willing to
provide service only to authorized clients while clients are interested in
dealing only with legitimate servers. Authentication can be used to establish
a verified consumer-supplier relationship.

Inter-domain communications. Most distributed systems are not centrally
owned or administered; for example, a campus-wide distributed system
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Assumptions
In the kind of malicious environments postulated in our threats model, some
basic assumptions about the system must be satisfied to achieve some level of
security. We offer a set of assumptions below (for other possible assumptions,

see [1, 10]). These assumptions are also depicted in Figure 2.
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mechanisms across domains.
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FIGURE 2 Authentication architecture.
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8 Cryptographic Facility. Each host hardware W has a unique built-in im-
mutable identity idw, and contains a tamper-proof cryptographic facility
(CF) that encapsulates the public key kw and the private key ky,! of W.
That is, the keys are permanently sealed inside a CF and cannot be directly
read from the outside, even by the host itself. The second function of a CF
is to act as a black box for all cryptographic computation. A CF accepts
commands and data from the host reference monitor and carries out any
requested computation using both the supplied data and its internal infor-
mation. A CF can communicate with the host reference monitor via a secure
channel.

Ideally, a CF is implemented in hardware either as an add-on card or
directly on the motherboard. In this case, the tamper-proof property can be
enforced by engineering design and tremendous computational advantages
can be gained. Alternatively, a CF can be implemented in software. In this
case, explicit trust assumptions (for example, the root file system is secure)
will be needed.

® Smartcard. Our framework makes use of smartcards for user logins. The
main function of a smartcard is to serve as an aid for a human user to
carry out (mostly cryptographic) computation required by the user-host
authentication protocol. A smartcard is a calculator-like device that has a
display and a keypad, and contains a CF and a clock.

Each legitimate user U is issued a smartcard C that has a unique built-in
immutable identity id c. Each smartcard C encapsulates in its CF its private
key k2!, the public key of the authentication server k4, and a pin number
PIN¢ for its legitimate holder. (The pin number is chosen in a card-issuing
procedure.) Each host that supports user logins using smartcards is equipped
with a smartcard reader.

The smartcards are assumed to be customizable. That is, the authority
issuing a smartcard can initialize its contents with specific chosen values. In
particular, the value of PIN ¢ is chosen by a user, while the value of kg4 is fixed
for a particular security domain.

B Physical Security. Certain assumptions regarding physical security are also
needed for our framework. These assumptions are typical of most secu-
rity frameworks. In fact, it can be informally argued that some minimal
physical security is always required for “bootstrapping” security. In other
words, a security framework should be thought of as an “amplifier” for
security.

The bootstrap and authentication servers in our framework are assumed
to be secure. Typically, this is achieved by running these servers in a dedicated
fashion on physically secure machines. No regular user accounts are allowed
on these machines and they are locked in physically secure rooms.
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The bootstrap server B is used in secure bootstrapping. It maintains
a database of host information. In our framework, we make a distinction
between host and host hardware. A host hardware refers to a bare machine, for
example, a Sun SPARC 10 workstation with a particular serial number. A host
refers to a specific instance of an operating system on some host hardware.
A host typically has a high-level (for example, DNS) host name and an IP
address.

The host database contains, for each host H, a record of the form

(ldH) kH) kgl) ld W kW) k[Xll)

specifying the unique host hardware W that can be initialized to run H. For
added security, all records in the database can be encrypted under a secret
master key.

The authentication server A maintains a database on principals. More
precisely, for each user U, A keeps a record (U, id ¢, k¢), binding U to its
smartcard C. Also, for each “end” server S, A keeps a record of its public
key ks.

Each of the above assumptions is achievable with current technology. In
particular, the technology of a battery-powered credit-card-sized smartcard with
a built-in LCD display and keypad that can perform specialized computations
has steadily progressed in recent years. Also, some vendors are starting to include
specialized cryptographic facilities and smartcard readers for hosts as options.
The use of a smartcard or other form of computation aid is essential to realizing
mutual authentication between a host and a user. Unaided human users simply
cannot carry out the intensive computations required by an authentication
protocol.

To simplify our presentation, the bootstrap server and the authentication
server are assumed to be centralized. Decentralized servers can be supported
by adding authentication between them (see the section on inter-domain
authentication). Such authentication can be carried out in a hierarchical manner
as suggested in the protocol standard CCITT X.509 [19].

Protocol Overview

In the following subsections, we present protocol solutions to address the
authentication needs outlined above. Specifically, we present concrete protocols,
namely, a secure bootstrap protocol, a user-host authentication protocol and
a peer-peer authentication protocol, to address respectively the authentication
needs of host initializations, user logins, and peer communications. Client-server
authentication is a special case of peer-peer authentication, and can be achieved
with a similar protocol.
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FIGURE 3 Relationship between protocols.

The secure bootstrap protocol is used to initialize a host into a “safe” and
well-defined initial state prior to resuming normal operation. In particular, a
correctly loaded reference monitor is ready to assume control of the host in
this state. The user-host authentication protocol is responsible for user logins; it
allows mutual authentication between a user and a host. The peer authentication
protocol mutually authenticates two peer processes.

These protocols are inter-related to one another in that the information
acquired in one protocol is used in another protocol (see Figure 3). For example,
a bootstrap certificate or host license is generated upon successful termination
of the secure bootstrap protocol. This host license is in turn used in the user-
host authentication protocol to generate a login certificate. Similarly, the login
certificate can be used in the authentication exchange of the peer authentication
protocol.

Our protocols should not be considered definitive or optimal. They are
presented in this chapter to illustrate possible solution approaches and, together,
they demonstrate a coherent and consistent solution for authentication in
distributed systems. In the last subsection, we briefly discuss the issues of
inter-domain authentication.

Secure Bootstrapping

The secure bootstrap protocol is initiated when a host hardware attempts a
remote initialization. This could occur after a voluntary shutdown, a system
crash, or a malicious attack by an adversary attempting to subvert the host.
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FIGURE 4 Secure bootstrap protocol.

The secure bootstrap protocol specification is shown in Figure 4. A step by step
specification including some computation steps is given below. OS denotes the
operating system to be bootstrapped.

w : generate new secret sy
(SB1) W —all : idw,{sw, idW}kW
B . retrieve record (id u, ke, ki7*, idw, kw, k')

for W from database
: generate new session key k
(SB2) B =W : {sw,ka ks kh,

w . if sy present, proceed; otherwise abort
(SB3) W — B : {sw,idw, “ready”}
B : generate nonce ng

(SB4) B — W : {sw,np, {idy, kﬁl}kw) OSh
(SB5) W — B : {{mpidm, idwhk
(SB6) B> W : licensefl

The basic idea of the protocol is as follows: Upon resetting, W generates
a new secret sy for use as a challenge. A secret is like a nonce but with the
additional property that it is not predictable. In step (SB1), W announces its
intention to reboot by broadcasting a boot request. We assume that W and
the bootstrap server B are on the same broadcast network, thus allowing B to
receive the boot request. The boot request is encrypted using ky . Therefore,
only B, which has knowledge of k!, can recover the secret sw. On receiving
the boot request, B retrieves the record for idw, and uses kv_vl in the record to
recover sw from the boot request. B then generates a fresh key k to be used for
loading OS. In step (SB2), the new key k, together with the public keys of B
and authentication server A, are sent to W. W ascertains that {sw, k4, kg, k}kw
came from B by checking the presence of sy, since only B could have composed
the message. The nonce property of sy demonstrates that the message is not a
replay. Thus, k4, kp, and k in the message can be safely taken to be respectively
the public keys of A and B, and the session key to be used for loading OS. At
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this point, W has authenticated B. It proceeds by sending the “ready” message
in step (SB3).

When the “ready” message is received, B is certain that the original
boot request actually came from W, because only W could have decrypted
{sw, ka, kg, k}1,, to retrieve k. The boot request is timely because the session key
k also serves as a nonce. At this point, B and W have mutually authenticated
each other.

Step (SB4) is the actual loading of OS and the transferring of host H’s
private key kg 1. OS includes its checksum, which should be recomputed by W
to detect any tampering in transit. W acknowledges the receipt of ky 1and OS
by returning the nonce np, and idg and id w signed with k! in step (SB5).
B then verifies that the correct ng and IDs are returned. In step (SB6), a host
license

license?, = {idg,idw, ke, Ty, Lh}kB‘l

signed by B affirming the binding of host idy with public key kg and host
hardware id  is sent to W. The fields T, and L within the license denote the
creation time and expiration date of the license, respectively.

After receiving the license, W officially “becomes” H, which retains the
license as proof of successful bootstrapping and of its own identity. Observe
that if secrecy is not required, OS can be transferred unencrypted. However, the
checksum of OS must be sent in encrypted form.

Discussion
The design of the secure bootstrap protocol violates one common principle for
using asymmetric cryptosystems, namely, the private key of a principal is not
shared so that trust requirements are reduced. In our design, the private key
kﬁ,l of W is shared between W and B, and it is used essentially as a shared
secret key (as in a symmetric cryptosystem) in the initial authentication steps
((SB1) and (SB2)). The rationale behind this is to avoid the need to customize the
cryptographic facilities of hosts (for example, preloading each host’s CF with kg ).
Another approach is to have a host’s CF pre-certify (that is, sign in the
form of a certificate) the public keys it will need. For example, W’s CF can
pre-certify both A and B’s public keys by creating two certificates, one each for A
and B, and storing them in some on-line certificate depository D. On receiving
a boot request from W, D sends these certificates to W, which recognizes its
own signature and recovers the public keys it needs to continue bootstrapping.

User-Host Authentication

User-host authentication occurs when a human user U walks up to a host H
and attempts to log in. Our authentication protocol requires a smartcard C. A
successful authentication guarantees host H that U is the legitimate holder of
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C and guarantees user U that H is a “safe” host to use. That is, host H holds a
valid license (obtained through secure bootstrapping) and possesses knowledge
of the private key k;; !.

In most systems, the end result of a successful user authentication is the
creation of a login process by the host’s reference monitor on the user’s behalf.
Thelogin process is a proxy for the user, and all requests generated by this process
are taken as if they are directly made by the user. However, a remote host/server
has no way of confirming such proxy status, except to trust the authentication
capability and integrity of the local host. Such trust is unacceptable in a
potentially malicious environment because a compromised host can simply
claim the existence of user login processes to obtain unauthorized services.

This trust requirement can be alleviated if a user explicitly delegates its
authority to the login host [1, 10]. The delegation is carried out by having the
user’s smartcard sign a login certificate to the login host upon the successful
termination of a user-host authentication protocol. The login certificate asserts
the host’s proxy status with respect to the user, and can be presented by the host
in future authentication exchanges with others.

Because of the possibility of forgery, the possession of a login certificate
should not be taken as sufficient proof of delegation. The host must also
demonstrate knowledge of a private delegation key kd_1 whose public counterpart
k; is named in the certificate. In addition, to reduce the potential impact of a host
compromise, an expiration timestamp is included so that the login certificate is
given only a finite lifetime.

We present such a user-host authentication protocol in Figure 5. A
specification with computation steps is given below. We assume that the host

Login
User Server

UH2: UH3:
UHS: idy, idw | | UH6: pin ide, licenses,
licensed {U.ide, kol
UH1: id¢,nc o
\ UH4: licensefs, {U, kq, nc}k; 7
C -t
/ UHT: loging &
Smartcard Host

FIGURE 5 User-Host authentication protocol.
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holds a valid license licenseZ; as would be the case if the host has executed the
secure bootstrap protocol.

C : generate nonce n¢
(UH1) C - H : id¢,nc
(UH2) H—A : idc, licenseIB{

A : check host license lifetime; if expired, abort
(UH3) A—H licensetr, {U, zdc,kc}k 1

H : generate new delegauon key pair (kg, k; D)
(UH4) H — C : licensely,{U, kg, nc }k 1

C :  check license lifetime; i expired, abort
(UH5) C—=U : idg,idw

U . verify if id g /id v is the host desired; if not, abort
(UH6) U — C : pin

C . verify pin 2 PIN c; if not equal, abort

(UH7) C — H : loginc

The protocol proceeds as follows: A user inserts his/her smartcard into the
host’s card reader. This activates the card and it generates a nonce n¢. In step
(UH1), the card’s identity i dc together with nc are sent through the card reader
to the host. In step (UH2), H requests user information associated with id¢
from the authentication server A. Since the license held by H was signed by B
and hence is not decipherable by C, a key translation is requested by H in the
same step.

Upon receiving the request from H, A first checks that the host license
submitted has not expired. Then it retrieves the user record for i dc and forwards
that along with the translated license license?y = {idp,idw, kua, T}, Ll}k | to
H in step (UH3). (Note that this license can be cached by H and need not be
requested for every user authentication.)

H now knows both the legitimate holder U of the smartcard C and the
public key k¢ associated with C. Knowledge of U can be used to enforce local
discretionary control to provide service (or not), while k¢ is needed to verify the
authenticity of C. H proceeds to generate a new delegation key pair (ka, kg .
H keeps k; ! private, to be used in the future for demonstrating its delegation
from U.

In step (UH4), H returns the nonce n¢ with the public delegation key k4,
and a copy of its translated license to C. C retrieves (id i, id w), the identity of
H, from the translated license by decrypting it with k4. A check is made to ensure
that the license has not expired. Then in step (UH5), the identity (id g, idw) is
displayed on the card’s own screen. In step (UH6), if the user decides to proceed,
he/she enters on the card’s keypad his/her pin number (pin ) assigned when the
card was issued. The pin number entered is compared with the one stored in the
card, PIN ¢. If they are equal, C signs a login certificate
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loginc = {U,idu, kg, T, Lek

binding the user U with the host i dy and the public delegation key kj; this is
sent to H in step (UH7), completing the delegation. The fields T and L, within
the login certificate denotes the time of creation and expiration date of the login
certificate, respectively. Host H (and others) can verify the validity of the login
certificate using k¢.

When user U logs out, the host erases its copy of the private delegation key
ky ! to void the delegation from U. If H is compromised after the delegation,
the validity of the login certificate is limited by its lifetime, L.

Discussion

When smartcard C is issued, its CF is loaded with the public key of a particular
server. For C to verify a host license, the license must be signed with a private
key whose public counterpart is known to C. Thus, each card must be mapped
to a particular authentication server A. Typically, a card is mapped to the
authentication server associated with the authority that issues the card. If a
user and a host belong to different domains (see the section on client-server
authentication), multiple key translations may be needed before the license of
the host can be presented to the user.

To reduce the smartcard’s complexity, various implementation techniques
can be used to eliminate the need for a clock on the card. Also, the keypad of
the smartcard can be a simple one with just a few keys for making changes.
Eliminating the keypad altogether requires more ingenuity, but can be done [1].

The display on a smartcard is crucial to many of its functionalities, and
hence should not be eliminated. Indeed, the cost of an LCD display is insignificant
compared to the extra trust required if it were eliminated.

Peer-Peer Authentication

The primary goal of peer authentication is to establish the identities of two
peer principals. Most peer authentication protocols, however, also accomplish
a secondary goal, namely, the negotiation of cryptographic parameters (for
example, a new session key) for future communication between the peers. These
cryptographic parameters are collectively referred to as a security association.

In connection-oriented communication schemes, peer authentication and
the associated cryptographic parameters negotiation are performed in the
connection establishment phase. In connectionless communication schemes,
both authentication and cryptographic parameters negotiation can be performed
the first time a principal is contacted.

The peer authentication protocol in our framework is shown in Figure 6.
It actually consists of two separate protocols, one for connection establishment
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Connection Establishment
Authentication
Server
CE3: {{P, nPaQ:nQ’k}k;l}kq
CE2;: Pnp,Q,nqQ
CEl: P,np
P ) CE4: {{P,np,Q,1q, K}t }kes{npynols & Q
Z
CES: {no}x

Connection Release?®

CR1: {P,np,@,nQ}k
P CR2: {np,nq} Q

.

*Either P or @ can initiate connection release. P is shown here as the initiator for illustration purpose.
FIGURE 6 Peer-Peer authentication protocol.

and one for connection release.? This protocol was first introduced in [16]. An
implementation of the protocol to provide a secure socket service was reported
in [15]. Its design principles and correctness proof were presented in [17].

The protocol assumes that the public key of each principal is known by all
other principals. For example, Q knows kp and ky, the public keys of P and A,
respectively. If P and Q are processes started from login shells, their public keys
are the public delegation keys in their login certificates.

p :  generate nonce #p
(CEl) P—>Q : Pmnp
Q : generate nonce 1
(CE2) Q > A : Pnp,Q,ng
A :  generate new session key k

(CE3) A—=Q : {{P np, Q, nQ, k}k l}kQ
(CE4) Q — P : {P,np, Q, nQ, k}k l}kp’ {np, nQ}k
i create security assoc1at10n to Q with k as session
key
(CE5) P —> Q : {nok
:  create security association to P with k as session
key
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Consider the connection establishment protocol. Before P initiates a
connection establishment request, it generates a nonce np for use as a challenge.
In step (CE1), P initiates the authentication exchange by informing Q of its
identity and nonce. Upon receiving P’s connection establishment request, Q
generates its own nonce nq. In step (CE2), Q forwards both the identity of P
and P’s nonce together with its own identity and nonce to A.

A serves the authentication request from Q by generating a new session
key k to be used for future communication between P and Q. In step (CE3), A
sends k in a signed and encrypted message to Q. After verifying that the nonces
np and ng are returned, Q recovers k and forwards in step (CE4) the signed
component to P, together with an authenticator {np, nq}. The authenticator
allows P to infer that the correspondent principal must be Q, as only Q (aside
from A) knows k. At this point, P has authenticated Q and is willing to accept
k as the session key for its security association to Q. In step (CE5), P returns
an acknowledgment {ng}; to Q. This authenticates P to Q, which proceeds to
install a security association to P with k as the session key.

For key distribution only, the authenticator in step (CE4) and the subse-
quent acknowledgment in step (CE5) are not necessary. They are included for
key handshake, that is, to assure each other that the correct session key has been
properly established by both principals.*

Consider the connection release protocol with P as the initiator. (Either P
or Q can initiate connection release.)

(CR1) P—>Q : {Pnp,Q, nQ}k
Q : verify presence of same nonces as used in
connection establishment
:  destroy security association with P
(CR2) Q—=P : {np, nQ
P :  destroy security association with Q

In step (CR1), P sends a request for termination in the form {P, np, Q, nQ bk
to Q. The nonces np and nqg are the same ones used in their connection
establishment, and are stored as part of the security association. On receiving the
termination request, Q checks that the nonces contained therein match those
in its own security association. If so, Q acknowledges the request by returning
{np, nq} in step (CR2) and destroys the security association. P, on receiving the
termination acknowledgment, destroys the corresponding security association,
thus completing the connection release exchange. The scenario when Q initiates
the termination request is symmetric.

Discussion

The connection establishment protocol was actually obtained by “compos-
ing” two subprotocols, one for key distribution and the other for mutual
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authentication. Qur design of these two subprotocols and their composition are
described in [17].

The connection establishment protocol is interesting in another regard:
it can be viewed as a secure extension of the three-way handshake used in
TCP connection establishment. Specifically, steps (CE1), (CE4), and (CE5)
correspond to the three-way handshake. In (CE1), P communicates its sequence
number (nonce np) to Q. In (CE4), Q acknowledges P’s sequence number as
well as forwarding its own (nonce ng). Finally, P acknowledges Q’s sequence
number in (CE5). The encryption required for (CE1), (CE4), and (CE5) together
with the extra messages to A can be considered the cost of adding security to a
three-way handshake.

The connection establishment protocol uses a trusted server A in its authen-
tication exchange. This is not strictly necessary in an asymmetric encryption-
based protocol (see the section on SPX). Whether or not an on-line trusted
server should be used is a controversial topic. We believe that judicious use of
on-line trusted servers can enhance security by providing on-line supervisory
functions (for example, management, audit, and revocation) that cannot be
achieved off-line. The key is achieving a balance between the desire for on-line
functionalities and the degree of security risks one is willing to accept.

In our protocol, a trusted server A provides the following functionalities.

1. A provides a source of high-quality unbiased session keys for use between
authenticating principals. This is especially important in an environment
where the authenticating principals do not have a reliable local source of
randomness. Moreover, it is generally agreed that an on-line random number
service is essential to a distributed systems security infrastructure [8].

2. A provides an on-line audit service for tracking authentication exchanges.
P, Q, and A can periodically reconcile their authentication records to reveal
potential attacks.

3. A facilitates on-line management of principals. For example, A can be used
to track where a principal is currently logged on.

4. A provides a simple revocation mechanism. It invalidates expired certificates
and aborts authentications involving principals whose privileges have been
revoked.

Client-Server Authentication

Since both clients and servers are implemented as processes, the basic protocol
for peer-peer authentication can be applied here as well. However, several issues
peculiar to client-server interactions need to be addressed.

In a general-purpose distributed system environment, new services (hence
servers) are made available dynamically. Thus, instead of informing clients of
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every service available, most implementations use a service broker to keep track
of and direct clients to appropriate service providers. A client first contacts the
service broker by using a purchase protocol that performs the necessary mutual
authentication prior to the granting of a ticket. The client later uses the ticket to
redeem services from the actual server using a redemption protocol.

Authentication performed by the purchase protocol proceeds in the same
way as the protocol for peer-to-peer authentication, while in the redemption
protocol authentication is based upon possession of a ticket and knowledge of
some information recorded in the ticket. Such a ticket contains the names of
the client and the server, a key, and a timestamp to indicate lifetime (similar to
a login certificate). A ticket can be used only between the specified client and
server. A prime example of this approach is the Kerberos authentication system,
which we discuss in a following section.

Another special issue of client-server authentication is proxy authenti-
cation [7]. To satisfy a client’s request, a server often needs to access other servers
on behalf of the client. For example, a database server, upon accepting a query
from a client, may need to access the file server to retrieve certain information
on the client’s behalf. A straightforward solution would require the file server
to directly authenticate the client. However, this may not be feasible. In a long
chain of service requests, the client may not be aware of a request made by
a server in the chain, and hence may not be in a position to perform the
required authentication. An alternative is to extend the concept of delegation [7]
previously used in user-host authentication. Specifically, a client can forward a
signed delegation certificate affirming the delegation of its rights to a server along
with its service request. The server is allowed to delegate to another server by
signing its own delegation certificate as well as relaying the client’s certificate. In
general, for a service request involving a sequence of servers, delegation can be
propagated to the final server through intermediate servers, forming a delegation
chain,

Various refinements are possible to extend the delegation scheme described.
For example, restricted delegation can be carried out by explicitly specifying a
set of rights and/or objects in a delegation certificate.

Inter-Domain Authentication

Up to now, we have assumed a centralized certification authority trusted by
all principals. However, a realistic distributed system is often composed of
subsystems independently administered by different authorities. We use the
term domain to refer to such a subsystem. Each domain D maintains its
own certification authority Ap that has jurisdiction over all principals within
the domain. Intra-domain authentication refers to an authentication exchange
between two principals belonging to the same domain, whereas inter-domain
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authentication refers to an authentication exchange that involves two principals
belonging to different domains.

Using the previously described protocols, Ap is sufficient for all intra-
domain authentications for each domain D. However, a certification authority
has no way of verifying a request from a remote principal, even if the request is
certified by a remote certification authority. Hence, additional mechanisms are
required for inter-domain authentication.

To allow inter-domain authentication, two issues need to be addressed:
naming and trust. Naming is concerned with ensuring that principals are uniquely
identifiable across domains, so that each authentication request can be attributed
to a unique principal. A global naming system spanning all domains can be used
to provide globally unique names to all principals.‘A good example of this is the
Domain Name System used in the Internet.

Trust refers to the willingness of a local certification authority to accept
a certification made by a remote authority regarding a remote principal. Such
trust relationships must be explicitly established between domains, which can
be achieved by:

® sharing an inter-domain key between certification authorities that are willing
to trust each other,

® installing the public keys of all trusted remote authorities inalocal certification
authority’s database, and

® introducing an inter-domain certification authority for authenticating
domain-level authorities.

A hierarchical organization corresponding to that of the naming system
can generally be imposed on the certification authorities. In this case, an
authentication exchange between two principals P and Q involves multiple
certification authorities on a path in the hierarchical organization between P
and Q [6]. The path is referred to as a certification path.

CASE STUDIES

We study two authentication services: Kerberos and SPX. Both primarily address
client-server authentication needs. Their services are generally available to an
application program through a programming interface. While Kerberos uses
only a symmetric cryptosystem, SPX uses an asymmetric cryptosystem as well,

Kerberos

Kerberos is an authentication system designed for MIT’s Project Athena [12, 13].
The goal of Project Athena is to create an educational computing environment
based on high-performance workstations, high-speed networking, and servers of
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various types. Researchers envisioned a large-scale (10,000 workstations to 1,000
servers) open network computing environment in which individual workstations
can be privately owned and operated. Therefore, a workstation cannot be trusted
to identify its users correctly to network services. Kerberos is not a complete
authentication framework required for secure distributed computing in general;
it only addresses issues of client-server interactions.

We limit our discussion to the Kerberos authentication protocols and omit
various administrative issues.

Kerberos’s design is based on the use of a symmetric cryptosystem together
with trusted third-party authentication servers. It is a refinement of ideas
presented in [11]. The basic components include authentication servers (Kerberos
servers) and ticket-granting servers (TGSs). A database is maintained that contains
information on each principal. It stores a copy of each principal’s key that is
shared with Kerberos. For a user principal U, its shared key k7 is computed
from its password password y;; specifically kyy = f(password ;) for some one-
way function f. The database is read by Kerberos servers and TGSs in the course
of authentication.

Kerberos uses two main protocols. The credential initialization protocol
authenticates user logins and installs initial tickets at the login host. A client uses
the client-server authentication protocol to request services from a server.

The credential initialization protocol uses Kerberos servers. Let U be a user
who attempts to log into a host H. The protocol is specified in Figure 7.5

(1) U—-H : U
(2) H — Kerberos : U, TGS
(3) Kerberos ¢ retrieve ky and krgs from database

generate new session key k
create ticket-granting ticket ticktgs =

{U, TGS, k, T, Ly,
(4) Kerberos = H : {TGS,k, T, L, ticktgs},
(5) H—-U : “Password?”
(6) U—H 1 passwd

(7) H : compute p = f(passwd)
: recover k ticktgs by decrypting {TGS, k, T, L,
tiCkTGS}kU with p
if decryption fails, abort login; otherwise
retain ticktgs and k
erase passwd from memory

FIGURE 7 Kerberos credential initialization protocol.



Thomas Y. C. Woo and Simon S. Lam 349

In step (1), user U initiates login by entering his/her user name. In step
(2), the login host H forwards the login request to a Kerberos server. In steps
(3) and (4), the Kerberos server retrieves the user record of U and returns a ticket-
granting ticket ticktgs = {U, TGS, k, T, L}, to H, where T is a timestamp
and L is the ticket’s lifetime. In steps (5) and (6), U enters his/her password
in response to H’s prompt. In step (7), If passwd is not the valid password of
U, p would not be identical to ki7, and decryption in the last step would fail.5
Upon successful authentication, the host obtains a new session key k and a copy
of tickygs. The ticket-granting ticket is used to request server tickets from a
TGS. Note that ticktgs is encrypted with krgs, the shared key between TGS and
Kerberos.

Because a ticket is susceptible to interception or copying, it does not by
itself constitute sufficient proof of identity. Therefore, a principal presenting a
ticket must also demonstrate knowledge of the session key k named in the ticket.
An authenticator (to be described) provides the demonstration. Figure 8 shows
the protocol for a client C to request network service from a server S. T; and
T, are timestamps.

In step (1), client C presents its ticket-granting ticket tickTgs to TGS to
request a ticket for server S.” C’s knowledge of k is demonstrated using the
authenticator {C, T1};. In step (2), TGS decrypts ticktgs, recovers k, and uses it
to verify the authenticator. If both step (2) decryptions are successful and T is
timely, TGS creates a ticket ticks for server S and returns it to C. Holding ticks,
C repeats the authentication sequence with S. Thus, in step (5), C presents S
with ticks and a new authenticator. In step (6), S performs verifications similar
to those performed by TGS in step (2). Finally, step (7) assures C of the server’s

(1) C —> TGS : S, ticktgs, {C, Tl}k
(2) TGS : recover k from tickgs by decrypting with krgs
: recover T from {C, T'1}; by decrypting with k
check timeliness of T'; with respect to local clock
generate new session key k'
:  create server ticket ticks = {C, S, k', T', L'},
(3) TGS — C : {S,k',T' L' ticks}

4) C :  recover k', tickg by decrypting with k
) C—=S : tiCks,{C, T2}k’

(6) S : recover k' from ticks by decrypting with kg
: recover T, from {C, T2} by decrypting with k'
: check tiimeliness of T, with respect to local clock
77 §—>C s {T2 + 1}

FIGURE 8 Kerberos client-server authentication protocol.
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identity. Note that this protocol requires “loosely synchronized” local clocks for
the verification of timestamps.

Kerberos can also be used for authentication across administrative or
organizational domains. Each domain is called a realm. Each user belongs to a
realm identified by a field in the user’s ID. Services registered in a realm will
accept only tickets issued by an authentication server for that realm.

To support cross-realm authentication, an inter-realm key is shared between
two realms. The TGS of one realm can be registered as a principal in another
realm by using the shared inter-realm key. A user can thus obtain a ticket-
granting ticket for contacting a remote TGS from its local TGS. When the
ticket-granting ticket is presented to the remote TGS, it can be decrypted by
the remote TGS, which uses the appropriate inter-realm key to ascertain that it
was issued by the user’s local TGS. In general, an authentication path spanning
multiple intermediate realms is possible.

Kerberos is an evolving system on its fifth version (V5). Various limitations
of previous versions of Kerberos were discussed in [2, 9], some of which have
been remedied.

SPX

SPX is another authentication service intended for open network environments
[14]. It is a major component of the Digital Distributed System Security
Architecture [6] and its functionalities resemble those of Kerberos. SPX has a
credential initialization and a client-server authentication protocol. In addition,
it has an enrollment protocol that registers new principals. In this subsection, we
focus only on the first two protocols and omit the last, along with most other
administrative issues.

SPX has a Login Enrollment Agent Facility (LEAF) and a Certificate
Distribution Center (CDC) that corresponds to Kerberos servers and TGSs.
LEAF, similar to a Kerberos server, is used in the credential initialization
protocol. CDC is an on-line depository of public-key certificates (for principals
and certification authorities) and the encrypted private keys of principals. Note
that CDC need not be trustworthy as everything stored in it is encrypted and
can be verified independently by principals.

SPX also contains hierarchically organized certification authorities (CAs)
which operate off-line and are selectively trusted by principals. Their function
is to issue public-key certificates (binding names and public keys of princi-
pals). Global trust is not needed in SPX. Each CA typically has jurisdiction
over just one subset of all principals, while each principal P trusts only a
subset of all CAs, referred to as the trusted authorities of P. System scala-
bility is greatly enhanced by the absence of global trust and on-line trusted
components.



Thomas Y. C. Woo and Simon S. Lam 351

(1) U—-H . U, passwd
(2) H — LEAF 0 UAT, n, hi(passwd ) par
(3) LEAF—>CDC : U
(4) CDC — LEAF : {{k(-J_ 1}hz(password u) hi(password U)}k’ {k}kLEAF
(5) LEAF : recover k by decrypting with k;zh ¢
. recover {k;; '}, (password ;) and hi(password ;) by
decrypting with k
verify hy (passwd ) £ hy(password ;)
if not equal, abort

(6) LEAF — H : {{k(—]_ l}hz (password U)}n
(7) H : recover kj;! by decrypting first with # and then
with hy(passwd )

generate (RSA) delegation key pair (ky, k; D)
. create ticket ticky = {L, U, k4 }kl;l
(8) H — CDC : U
(99 CDC — H : {4, kA}kl-j:l

FIGURE 9 SPX credential initialization protocol.

The credential initialization protocol is performed when a user logs in (see
Figure 9). It installs a ticket and a set of trusted-authority certificates for the
user upon successful login. In the protocol, U is a user who attempts to login a
host H; passwd is the password entered by U; T is a timestamp; L is the lifetime
of a ticket; n is a nonce; h; and h; are publicly known one-way functions; k is
a (DES) session key; ku, krgap, and ky are respectively the public keys of U, the
LEAF server, and a trusted authority A of U and k;;! and k(g are the private
keys of U and LEAF, respectively.

In step (1), user U enters its ID and password. In step (2), H applies the
one-way function h; to the password U entered and sends the result, along
with a timestamp T and a nonce #, in a message to LEAF. Upon receiving the
message from H, LEAF forwards a request to CDC for U’s private key. This key
is stored as a record ({kﬁl}hz(password o) M (password 7)) in CDC. Note that a
compromise of CDC would not reveal these private keys. In step (4), CDC sends
the requested private-key record to LEAF using a temporary session key k. In
step (5), LEAF recovers both {k; l}hz(PasswordU) and hy (password ;) from CDC’s
reply. LEAF then verifies passwd by checking h (passwd ) against hy (password ;).
If they are not equal, the login session is aborted and the abortion logged.
Because hy (password ;) is not revealed to any principal except LEAF, password
guessing attacks would require contacting LEAF for each guess or compromising
LEAF’s private key.
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Having determined the password to be valid, LEAF sends the first part of
the private-key record encrypted by n to H in step (6). (The nonce n sent in
step (2) is used as a symmetric key for encryption.) In step (7), H recovers k;
by decrypting the reply from LEAF first with n and then with h;(passwd ). H
then generates a pair of delegation keys and creates a ticket ticky. In step (8),
H requests the public-key certificate for a trusted authority of U from CDC.
CDC replies with the certificate in step (9). In fact, multiple certificates can be
returned in step (9) if U trusts more than one CA. These trusted authorities’
certificates were previously deposited in the CDC by U using the enrollment
protocol.

The authentication exchange protocol between a client C and a server S
is shown is Figure 10. To simplify the protocol specification so that a single
public-key certificate is sent in step (2) and in step (5), we made the following
assumption: Let C’s public-key certificate be signed by Ac where A¢ denotes a
trusted authority of S. Similarly, let S’s public-key certificate be signed by Ag
where As denotes a trusted authority of C. T is a timestamp and k is a (DES)
session key.

In step (1), C requests S’s public-key certificate from CDC. In step (2),
CDC returns the requested certificate. C can verify the public-key certificate by
decrypting it with ka,, which is the public key of Ag obtained by C when it
executed the credential initialization protocol. In step (3), tickc (referred to as
ticky in the credential initialization protocol) and the private delegation key k !
(generated in step (7) of the credential initialization protocol), along with a new
session key k, are sent to S. Only S can recover k from {k};, and subsequently
decrypt {k; '} to recover k1. Possession of tickc and knowledge of the private
delegation key constitute sufficient proof of delegation from C to S. However, if
such delegation from C to S is not needed, {{k}, }; -1 is sent in step (3) instead of
{kd_l}k; this acts as an authenticator for proving C’s knowledge of k; * without

() ¢C—=>CDC : §
(2) ChbC —= C {S, ks}kA—l
s

() C—S & Tikhe ticke, 5k
4 S—=CDC : C
(5) CDC—S i {Ckchp
6) S : recover k from {k},
1 recover kd_1 from {k; '}
recover k; from tickc

: verify that k; and k; ! form a delegation key pair
(7)) S—=C : {T+1}k

FIGURE 10 SPX client-server authentication protocol.



Thomas Y. C. Woo and Simon S. Lam 3583

revealing it. In steps (4) and (5), S requests C’s public-key certificate, which is
used to verify tickc in step (6). In step (7), S returns {T + 1}; to C to complete
mutual authentication between C and S.

Since SPX is a relatively recent proposal, its security properties have not
been studied extensively. Such study would be necessary before it could be
generally adopted.

Although SPX offers services similar to those of Kerberos, its elimination
of on-line trusted authentication servers and the extensive use of hierarchical
trust relationships are intended to make SPX scalable for very large distributed
systems.

CONCLUSION

With the growth in scale of distributed systems, security has become a major
concern—and a limiting factor—in their design. For example, security has been
strongly advocated as one of the major design constraints in both the Athena
and Andrew projects. Most existing distributed systems, however, do not have
a well-defined security framework and use authentication only for their most
critical applications, if at all.

Various authentication needs for distributed systems have been described
in this chapter, and some specific protocols are presented. Most of them are
practically feasible with today’s technology and their adoption and use should
be just a matter of need.
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ENDNOTES
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2. Note that only P and A know k to be fresh.
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3. Secure connection release is seldom addressed in the literature. Although a
premature release (for example, one forced by a saboteur) may not cause
problems with respect to confidentiality or integrity, it is a potential denial
of service attack.

4. An implicit key handshake is performed when the session key is first used,
for example, in the first transmission of user data.

5. Kerberos in the protocol refers to a Kerberos server.

6. In practice, f may not be one-to-one. It suffices to require that given two
distinct elements x and y, the probability of f(x) being equal to f(y) is
negligible.

7. Note that each client process is associated with a unique user who created
the process. It inherits the user ID and the ticket-granting ticket issued to the
user during login.
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