
Computer Networks 50 (2006) 3083–3104

www.elsevier.com/locate/comnet
Failure recovery for structured p2p networks: Protocol
design and performance under churn q

Simon S. Lam a,*, Huaiyu Liu b,1

a Department of Computer Sciences, The University of Texas at Austin, 1 University Station,

C0500, Austin, TX 78712-0233, United States
b Wireless Networking Lab, Intel Corporation, Hillsboro, OR 97124, United States

Received 19 November 2005; accepted 16 December 2005
Available online 23 January 2006

Responsible Editor: I.F. Akyildiz
Abstract

Measurement studies indicate a high rate of node dynamics in p2p systems. In this paper, we address the question of
how high a rate of node dynamics can be supported by structured p2p networks. We confine our study to the hypercube
routing scheme used by several structured p2p systems. To improve system robustness and facilitate failure recovery, we
introduce the property of K-consistency, K P 1, which generalizes consistency defined previously. (Consistency guarantees
connectivity from any node to any other node.) We design and evaluate a failure recovery protocol based upon local infor-
mation for K-consistent networks. The failure recovery protocol is then integrated with a join protocol that has been
proved to construct K-consistent neighbor tables for concurrent joins. The integrated protocols were evaluated by a set
of simulation experiments in which nodes joined a 2000-node network and nodes (both old and new) were randomly
selected to fail concurrently over 10,000 s of simulated time. In each such ‘‘churn’’ experiment, we took a ‘‘snapshot’’
of neighbor tables in the network once every 50 s and evaluated connectivity and consistency measures over time as a func-
tion of the churn rate, timeout value in failure recovery, and K. We found our protocols to be effective, efficient, and stable
for an average node lifetime as low as 8.3 min. Experiment results also show that the average routing delay of our protocols
increases only slightly even when the churn rate is greatly increased.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Hypercube routing; K-Consistency; Failure recovery; Sustainable churn rate; Peer-to-peer networks
1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2005.12.009

q Research sponsored by NSF grants ANI-0319168 and CNS-0434515, and Texas Advanced Research Program grant 003658-0439-2001.
This paper is an extended version of a paper in Proceedings of ACM SIGMETRICS, June 2004 [4].

* Corresponding author. Tel.: +1 512 471 9531; fax: +1 512 471 8885.
E-mail addresses: lam@cs.utexas.edu (S.S. Lam), huaiyu.liu@intel.com (H. Liu).

1 Fax: +1 503 264 4230.

mailto:lam@cs.utexas.edu
mailto:huaiyu.liu@intel.com

3084 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
1. Introduction

Structured peer-to-peer networks are being inves-
tigated as a platform for building large-scale distrib-
uted systems [8,10,12,14]. The primary function of
these networks is object location, that is, mapping
an object ID to a node in the network. For efficient
routing, each node maintains O(logn) pointers to
other nodes, to be called neighbor pointers, where
n is the number of network nodes. To locate an
object, the average number of application-level hops
required is O(logn). Each node stores neighbor
pointers in a table, called its neighbor table. The
design of protocols to construct and maintain ‘‘con-
sistent’’ neighbor tables for network nodes that may
join, leave, and fail concurrently and frequently is
an important foundational issue.

Of interest in this paper is the hypercube routing
scheme used to achieve scalable routing in several
proposed systems [8,10,14]. Our first objective is
the design of a failure recovery protocol for nodes
to re-establish consistency of their neighbor tables
after other nodes have failed.2 Neighbor table con-
sistency guarantees the existence of at least one path
from any source node to any destination node in the
network [7]. Such consistency however may be bro-
ken by the failure of a single node. To increase
robustness and facilitate the design of failure recov-
ery, we introduce K-consistency, K P 1, which gen-
eralizes consistency previously defined [7]. We design
and evaluate a failure recovery protocol, which
includes recovery from voluntary leave as a special
case, for K-consistent networks. The protocol was
found to be highly effective for K P 2. From 2080
simulation experiments in which up to 50% of net-
work nodes failed at the same time, we found that
all ‘‘recoverable holes’’ in neighbor tables due to
failed nodes were repaired by our protocol for
K P 2, that is, the neighbor tables recovered K-con-
sistency after the failures in every experiment for
K P 2. Furthermore, the vast majority of the
holes in neighbor tables were repaired with no com-
munication cost. The protocol uses only local
information at each node and is thus scalable to a
large n.

Our second objective is integration of the failure
recovery protocol with a join protocol that has been
2 When a node fails, it becomes silent. We do not consider
Byzantine failures in this paper.
proved to construct K-consistent neighbor tables for
an arbitrary number of concurrent joins in the
absence of failures and also shown to be scalable
to a large n [7,3]. Such integration requires exten-
sions to both the failure recovery and join protocols.
For a network with concurrent joins and failures,
the failure recovery protocol needs to distinguish
between nodes that are still in the process of joining,
called T-nodes, and nodes that have joined success-
fully, called S-nodes. The join protocol, on the other
hand, needs to be extended with the ability to
invoke failure recovery and to backtrack. Further-
more, when a node is performing failure recovery,
its replies to some join protocol messages must be
delayed. We ran 980 simulation experiments in
which the number of concurrent joins and failures
was up to 50% of the initial network size. We found
that, for K P 2, our protocols constructed and
maintained K-consistent neighbor tables after the
concurrent joins and failures in every experiment.

Our third objective is to explore how high a rate
of node dynamics can be sustained by the integrated
protocols for hypercube routing. We performed a
number of (relatively) long duration experiments,
in which nodes joined a 2000-node network at a
given rate, and nodes (both existing and joining
nodes) were randomly selected to fail concurrently
at the same rate. In each such churn experiment,
we took a snapshot of neighbor tables in the
network once every 50 simulation seconds and eval-
uated network connectivity and consistency mea-
sures over time as a function of the churn rate,
timeout value in failure recovery, and K. Our proto-
cols were found to be effective, efficient, and stable
for a churn rate up to four joins and four failures
per second. By Little’s Law, the average lifetime
of a node was 8.3 min at this rate. For comparison,
the median lifetime measured for Gnutella and
Napster was 60 min [11].

We also found that, for a given network, its sus-
tainable churn rate is upper bounded by the rate at
which new nodes can join the network successfully
(become S-nodes). We refer to this upper bound
as the network’s join capacity. We found that a net-
work’s join capacity decreases as the network’s fail-
ure rate increases. For a given failure rate, we found
two ways to improve a network’s join capacity: (i)
use the smallest possible timeout value in failure
recovery, and (ii) choose a smaller K value. Since
improving a network’s join capacity improves its
sustainable churn rate, our observation that a smal-
ler K (less redundancy) leads to a higher join capac-

3 In this paper, we follow PRR [8] and use suffix matching,
whereas other systems use prefix matching. The choice is
arbitrary and conceptually insignificant.

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3085
ity is consistent with the conclusion in [1]. Further-
more, we found that a network’s maximum sustain-
able churn rate increases at least linearly with n (the
number of network nodes) for n from 500 to 2000.
This validates a conjecture that our protocols’ sta-
bility improves as the number of S-nodes in the net-
work increases. Experiment results also show that
our protocols, by striving to maintain K-consis-
tency, were able to provide pairwise connectivity
higher than 99.9995% (between S-nodes) at a churn
rate of two joins and two failures per second for
n = 2000 and K = 3. Furthermore, the average rout-
ing delay increased only slightly even when the
churn rate was greatly increased.

The balance of this paper is organized as follows.
In Section 2, we present an overview of the hyper-
cube routing scheme and define K-consistency. In
Section 3, we describe our failure recovery protocol
and present results from 2080 simulation experi-
ments. In Section 4, we present our join protocol
that has been proved to construct and maintain K-
consistent networks for concurrent joins. In Section
5, we describe how to extend the join and failure
recovery protocols to handle concurrent joins and
failures and present results from 980 simulation
experiments. In Section 6, we present results from
long-duration churn experiments in which nodes
join and fail continuously. In Section 7, we investi-
gate the routing performance of our protocols under
different churn rates. We discuss related work in
Section 8 and conclude in Section 9.

2. Foundation

2.1. Hypercube routing scheme

In this section, we briefly review the hypercube
routing scheme used in PRR [8], Pastry [10], and
Tapestry [14]. Consider a set of nodes. Each node
has a unique ID, which is a fixed-length random
binary string. A node’s ID is represented by d digits
of base b, e.g., a 160-bit ID can be represented by 40
Hex digits (d = 40, b = 16). Hereafter, we will use
x.ID to denote the ID of node x, x[i] the ith digit
in x.ID, and x[i � 1] � � � x[0] a suffix of x.ID. We
count digits in an ID from right to left, with the
0th digit being the rightmost digit. See Table 1 for
notation used throughout this paper.

Given a message with destination node ID, z.ID,
the objective of each step in hypercube routing is to
forward the message from its current node, say x, to
a next node, say y, such that the suffix match
between y.ID and z.ID is at least one digit longer
than the match between x.ID and z.ID.3 If such a
path exists, the destination is reached in O(logb n)
steps on the average and d steps in the worst case,
where n is the number of network nodes. Fig. 1
shows an example path for routing from source
node 21233 to destination node 03231 (b = 4,
d = 5). Note that the ID of each intermediate node
in the path matches 03231 by at least one more
suffix digit than its predecessor.

To implement hypercube routing, each node
maintains a neighbor table that has d levels with b
entries at each level. Each table entry stores link
information to nodes whose IDs have the entry’s
required suffix, defined as follows. Consider the
table in node x. The required suffix for entry j at
level i, j 2 [b], i 2 [d], referred to as the (i, j)-entry
of x.table, is j Æ x[i � 1] � � � x[0]. Any node whose
ID has this required suffix is said to be a qualified

node for the (i, j)-entry of x.table. Only qualified
nodes for a table entry can be stored in the entry.

Note that node x has the required suffix for the
(i,x[i])-entry, i 2 [d], of its own table. For routing
efficiency, we fill each node’s table such that Nx(i,
x[i]).first = x for all x 2 V, i 2 [d]. Fig. 2 shows an
example neighbor table of node 21233. The string
to the right of each entry is the required suffix for
that entry. An empty entry indicates that there does
not exist a node in the network whose ID has the
entry’s required suffix.

Nodes stored in the (i, j)-entry of x.table are
called the (i, j)-neighbors of x, denoted by Nx(i, j).
Ideally, these neighbors are chosen from qualified
nodes for the entry according to some proximity cri-
terion [8]. Furthermore, node x is said to be a rever-

se(i, j)-neighbor of node y if y is an (i, j)-neighbor of
x. Each node also keeps track of its reverse-neigh-
bors. The link information for each neighbor stored
in a table entry consists of the neighbor’s ID and IP
address. For clarity, IP addresses are not shown in
Fig. 2. Hereafter, we will use ‘‘neighbor’’ or ‘‘node’’
instead of ‘‘node’s ID and IP address’’ whenever the
meaning is clear from context.

2.2. K-consistent networks

Constructing and maintaining consistent neigh-
bor tables is an important design objective for

Table 1
Notation

Notation Definition

hV ;NðV Þi a hypercube network: V is the set of nodes in the network, NðV Þ is the set of neighbor tables
[‘] the set {0, . . . ,‘ � 1}, ‘ is a positive integer
d the number of digits in a node’s ID
b the base of each digit
x[i] the ith digit in x.ID

x[i � 1] � � � x[0] suffix of x.ID; denotes empty string if i = 0
x.table the neighbor table of node x

j Æ x digit j concatenated with suffix x
jxj the number of digits in suffix x
Nx(i, j) the set of nodes in (i, j)-entry of x.table, also referred as the (i, j)-neighbors of x

Nx(i, j).first the first node in Nx(i, j)
csuf(x1,x2) the longest common suffix of x1 and x2

jVj the number of nodes in set V

0

1

2

3

033

133

233

333

03

13

23

33

01100

33121

12232

21233

22303

13113

00123

21233

31033

21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233 (b=4, d=5)

Fig. 2. An example neighbor table.

21233 0323133121 13331 30231

Fig. 1. An example hypercube routing path.

3086 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
structured peer-to-peer networks. Consider a hyper-
cube routing network, hV ;NðV Þi, where V denotes
a set of nodes and NðV Þ the set of neighbor tables
in the nodes. (Hereafter, we will use ‘‘network’’
instead of ‘‘hypercube routing network’’ for brev-
ity.) Consistency was defined in [7] as follows: A net-
work, hV ;NðV Þi, is consistent if and only if the
following conditions hold: (i) For every table entry
in NðV Þ, if there exists at least one qualified node
in V, then the entry stores at least one qualified
node. (ii) If there is no qualified node in V for a par-
ticular table entry, then that entry must be empty.
In a consistent network, any source node x can
reach any destination node y using hypercube rout-
ing in k steps, k 6 d. More precisely, there exists a
neighbor sequence (path), (u0, . . . ,uk), k 6 d, such
that u0 is x, uk is y, and uiþ1 2 Nuiði; y½i�Þ, i 2 [k].

If nodes may fail frequently in a network, an
excellent approach to improve robustness is to store
in each table entry multiple qualified nodes. For this
approach, we generalize the definition of consis-
tency to K-consistency as follows. A network,
hV ;NðV Þi, is K-consistent if and only if the follow-
ing conditions hold: (i) For every table entry in
NðV Þ, if there exist H qualified nodes in V,
H P 0, then the entry stores at least min(K,H) qual-
ified nodes. (ii) If there is no qualified node in V for
a particular table entry, then that entry must be
empty. (A more formal definition is presented in
the Appendix of [4].)

It is easy to see that, for K P 1, K-consistency
implies consistency (in particular, 1-consistency is
the same as consistency). Furthermore, for a given
set of nodes, K-consistent neighbor tables exist for
any realization of node IDs (recall that IDs are gen-
erated randomly). In Section 4, we will present a
join protocol that generates K-consistent tables for
an arbitrary number of concurrent joins to an ini-
tially K-consistent network (which may be a single
node).

Multiple neighbors stored in each table entry
provide alternative paths from a source node to a
destination node, and some of them are disjoint.
We have proved that a K-consistent network pro-
vides at least K disjoint paths to every source–desti-
nation pair with a probability approaching one as
the number of nodes in the network increases [3].

3. Basic failure recovery

In this section, we present a basic failure recovery
protocol for K-consistent networks and demon-
strate its effectiveness. We consider the ‘‘fail-stop’’
model only, i.e., when a node fails, it becomes silent
and stays silent. If some neighbor in a node’s table
has failed, we assume that the node will detect the
failure after some time, e.g., timeout after sending
a periodic probe. Note that the failure of a

4 In implementation, a failed node only needs to stay in the list
long enough for all its neighbors and reverse-neighbors to detect
its failure. To keep the list from growing without bound, x can
delete nodes that have been in the list for a sufficiently long time.

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3087
reverse-neighbor affects neither K-consistency nor
consistency of a neighbor table. Therefore, if a
reverse-neighbor has failed, the reverse-neighbor
pointer is simply deleted without any recovery
action. Hence, the protocol being designed is for
recovery from neighbor failures only.

Consider a network of n nodes that satisfies K-
consistency initially. Suppose f out of the n nodes
(chosen randomly) fail at the same time or within
a short time duration. Our objective in this section
is to design a protocol for each remaining node to
repair its neighbor table such that some time after
the f failures have occurred, neighbor tables in the
remaining n � f nodes satisfy K-consistency again.

Suppose a node in the network, say y, has failed
and y has been stored in the (i, j)-entry of the table
of node x. We say that the failure of y leaves a hole

in the (i, j)-entry of x.table. To maintain K-consis-
tency, x needs to find a qualified substitute for y,
i.e., x needs to find a qualified node u for the entry,
such that u has not failed and u is not already stored
in the entry. (It is possible that u fails later and
x needs to find a qualified substitute for u.) To
determine whether or not the network of n � f

remaining nodes satisfies K-consistency, we distin-
guish between recoverable holes and irrecoverable

holes. A hole in the (i, j)-entry of x.table is irrecover-

able after the f failures if a qualified substitute does
not exist among the n � f remaining nodes.

The objective of failure recovery is to find a qual-
ified substitute for every recoverable hole in neigh-
bor tables of all remaining nodes. Irrecoverable
holes, on the other hand, cannot possibly be filled
and do not have to be filled for the neighbor tables
to satisfy K-consistency. The main difficulty in fail-
ure recovery is that individual nodes do not have
global information and cannot distinguish recover-
able from irrecoverable holes. (If the network is
not partitioned, a broadcast protocol can be used
to search all nodes to determine if a hole is recover-
able. A broadcast protocol, of course, is not a scal-
able approach.)

The recovery process for each hole in a node’s
table is designed to be a sequence of four search
steps executed by the node based on local informa-

tion (its neighbors and reverse-neighbors). After
the entire sequence of steps has been executed and
no qualified substitute is found, the node considers
the hole to be irrecoverable and the recovery process
terminates. The effectiveness of our failure recovery
protocol is evaluated in a large number of simula-
tion experiments. In a simulation experiment, we
can check how fast our failure recovery protocol
finds a qualified substitute for a recoverable hole.
Furthermore, we can check how often our failure
recovery protocol terminates correctly when it
considers a hole to be irrecoverable (since we have
global information in simulation).

3.1. Protocol design

Suppose a node, x, detects that a neighbor, y, has
failed and left a hole in the (i, j)-entry, i 2 [d], j 2 [b],
in x.table. Let x denote the required suffix of the
(i, j)-entry in x.table. To find a qualified substitute
for y with reasonable cost, we propose a sequence
of four search steps, (a)–(d) below, based upon node
x’s local information. At the beginning of each step,
except step (a), x sets a timer. If the timer expires
and no qualified substitute for y has been found,
then x proceeds to the next step.

To determine whether some node u is a qualified
substitute for y, x needs to know whether u has
failed. In our protocol, x makes this decision also
based upon local information. More specifically, x

maintains a list of failed nodes it has detected so
far.4 x accepts u as a qualified substitute for y if u

is not on the list, u has the required suffix x, and
u 62 Nx(i, j).

Step (a) x deletes y from its table, then searches its
neighbors and reverse-neighbors to find a
qualified substitute for y.

Step (b) x queries each of the remaining neighbors
in the (i, j)-entry of its table (if any). In
each query, x includes a copy of nodes in
Nx(i, j). When a node, say z, receives such
a query from x, it searches its neighbors
and reverse-neighbors to find a node that
has suffix x and is not in Nx(i, j). If one
is found, z replies to x with the node’s
ID (and IP address).

Step (c) x queries each of its neighbors at level-i
(all entries) including neighbors in the
(i, j)-entry, using a protocol same as the
one in step (b).

Step (d) x queries each one of its neighbors (all
levels) including neighbors at level-i, using
a protocol same as the one in step (b).

Table 2
Results from 2080 simulation experiments (f was 0.05n, 0.1n, 0.15n, 0.2n, 0.3n, 0.4n or 0.5n)

K, n Number of
simulations

Number of
perfect recoveries

K, n Number of
simulations

Number of perfect
recoveries

1, 1000 100 51 1, 2000 180 96
2, 1000 100 100 2, 2000 180 180
3, 1000 100 100 3, 2000 180 180
4, 1000 100 100 4, 2000 180 180
5, 1000 100 100 5, 2000 180 180

1, 4000 116 65 1, 8000 20 14
2, 4000 116 116 2, 8000 20 20
3, 4000 116 116 3, 8000 20 20
4, 4000 116 116 4, 8000 20 20
5, 4000 116 116 5, 8000 20 20

5 The maximum end-to-end delay in 8000-node simulations was
969 ms.

6 In Tapestry, b = 16 and d = 40. In Pastry, b = 16 and d = 32.

3088 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
When the timer in step (d) expires and no quali-
fied substitute has been found, x terminates the
recovery process and considers the hole left by y

to be irrecoverable. The earlier a hole is repaired
with a qualified substitute, the less is the communi-
cation overhead incurred. If a hole is repaired in
step (a), there is no communication overhead. If a
hole is repaired in step (b), at most 2(K � 1) mes-
sages are exchanged, K � 1 queries and K � 1
replies. If a hole is repaired in step (c), there are at
most 2Kb messages, plus the messages exchanged
in step (b). If a hole is repaired in step (d), approx-
imately 2Kb logb n messages, plus the messages in
steps (b) and (c), are exchanged.

3.2. Simulation experiments

3.2.1. Methodology

To evaluate the performance of our failure
recovery protocol, 2080 simulation experiments
were conducted on our own discrete-event
packet-level simulator. We used the GT_ITM
package [13] to generate network topologies. For
a generated topology with a set of routers, n nodes
(end hosts) were attached randomly to the routers.
For the simulations reported in Table 2, three
topologies were used. The 1000-node and 2000-
node simulations used a topology with 1056 rou-
ters. The 4000-node simulations used a topology
with 2112 routers. The 8000-node simulations used
a topology with 8320 routers. We simulated the
sending of a message and the reception of a mes-
sage as events, but abstracted away queueing
delays. The end-to-end delay of a message from
its source to destination was modeled as a
random variable with mean value proportional to
the shortest path length in the underlying
network.5

In each simulation, a network of n nodes with K-
consistent neighbor tables was first constructed.
Then a number, f, of randomly chosen nodes failed.
For 1000-node and 8000-node simulations, the f

nodes failed at the same time. For 2000-node simu-
lations and each specific K value, the f nodes failed
at the same time for 84 out of the 180 experiments; a
Poisson process was used to generate failures in the
balance of the experiments, with half of the experi-
ments at the rate of 1 failure per second and the
other half at the rate of 1 failure every 10 s. For
comparison, the timeout value used to determine
whether a neighbor has failed was 5 s, and the time-
out value used in each of the protocol steps (b)–(d)
was 20 s. Therefore, most failure recovery processes
ran concurrently even when the Poisson rate was
slowed to one failure every 10 s. For 4000-node
experiments and each specific K value, the f nodes
failed at the same time in 104 out of the 116 exper-
iments, with a Poisson process at the rate of 1
failure per second used in the balance of the experi-
ments.

We conducted simulations for different combina-
tions of b, d, K, n and f values. For each network of
n nodes, n 2 {1000,2000, 4000,8000}, four pairs of
(b,d) were used, namely: (4, 16), (4, 64), (16,8), and
(16, 40).6 Then, for each (b,d) pair, K was varied
from 1 to 5. For each (n,b,d,K) combination, f

was varied from 0.05n to 0.1n, 0.15n, 0.2n, 0.3n,
0.4n, and 0.5n (1540 experiments were run for

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3089
f = 0.05n to f = 0.2n, with approximately the same
number of experiments for each; 540 experiments
were run for f = 0.3n to f = 0.5n, with 180 experi-
ments for each).

To construct the initial K-consistent networks for
simulations, we experimented with four approaches
to choose neighbors for each entry: (i) choose K

neighbors randomly from qualified nodes, (ii)
choose K closest neighbors from qualified nodes,
(iii) choose K neighbors randomly from qualified
nodes that are within a multiple of the closest neigh-
bor’s distance, (iv) use our join protocol in Section 4
to construct a K-consistent network. We conjecture
that a K-consistent network constructed by
approach (iii) would be closest to a real network
whose neighbor tables have been optimized by some
heuristics. As shown below, we found that for
K P 2, our failure recovery protocol was very effec-
tive irrespective of the approach used for initial net-
work construction. (All four approaches were used
for different experiments in the set of 2080
experiments.)

3.2.2. Results

Table 2 shows a summary of results from the
2080 simulation experiments. In a simulation, if all
recoverable holes are repaired (thus K-consistency
recovered) at the end of the simulation, it is
recorded as a perfect recovery in Table 2. In the
2080 simulation experiments, every simulation for
K P 2 finished as a perfect recovery, i.e., every
recoverable hole was repaired with a qualified sub-
stitute. Thus in K-consistent networks, for K P 2,
our failure recovery protocol is extremely effective.

Table 3 presents results from ten simulations for
a network with 4000 nodes and 800 failures, where
the initial neighbor tables were constructed using
approach (iii), described above. The results show
Table 3
Cumulative fraction of recoverable holes repaired by the end of each s

b, d, K Step (a) Step (b)

4, 64, 1 0.451594 0.451594
4, 64, 2 0.668176 0.938131
4, 64, 3 0.760213 0.98974
4, 64, 4 0.816133 0.997837
4, 64, 5 0.851577 0.999126

16, 40, 1 0.453649 0.453649
16, 40, 2 0.633784 0.932868
16, 40, 3 0.716517 0.989295
16, 40, 4 0.77311 0.997785
16, 40, 5 0.823924 0.999441
the cumulative fraction of recoverable holes that
were repaired by the end of each step in the recovery
protocol. For instance, for the simulation with
parameters b = 4, d = 64 and K = 2, more than
66.8% of recoverable holes were repaired by the
end of step (a), 93.8% were repaired by the end of
step (b), 99.8% were repaired by the end of step
(c), and all were repaired by the end of step (d).
From Table 3, observe that step (d) in our recovery
protocol was rarely used. There was a dramatic
improvement in the recovery protocol’s perfor-
mance when K was increased from 1 to 2. Also
observe that the fraction of recoverable holes that
were repaired after each step increases with K.

Aside from being extremely effective, our failure
recovery protocol is also very efficient because
recoverable holes repaired in step (a) incur no com-
munication cost, while each hole repaired in step (b)
incurs a communication cost of at most 2(K � 1)
messages. Table 3 shows that, for K P 2, the major-
ity of recoverable holes were repaired in step (a) and
almost all of them were repaired by the end of step
(b). Note that if a recoverable hole is repaired in
step (a), its recovery time is (almost) zero. The time
required for each subsequent step ((b)–(d)) is at
most the step’s timeout value. For the timeout value
of 20 s per step, the average time to repair a recov-
erable hole was less than 5.88 s for b = 16, d = 40,
and K = 3 in Table 3. For a timeout value of 5 s
per step, the average time to repair a recoverable
hole was found to be less than 1.45 s for b = 16,
d = 40, and K = 3 from a different set of
experiments.

Table 4 shows the total number of holes, the
number of irrecoverable holes, as well as the num-
ber of recoverable holes repaired at each step for
the same simulation experiments shown in Table
3. Observe from Table 4 that when K was increased,
tep, n = 4000, f = 800

Step (c) Step (d)

0.920969 0.998883
0.998077 1.000000
0.998774 1.000000
0.999252 1.000000
0.999736 1.000000

0.999093 1.000000
0.999854 1.000000
0.999986 1.000000
1.000000 1.000000
1.000000 1.000000

Table 4
Total number of holes, irrecoverable holes, and recoverable holes repaired at each step, n = 4000, f = 800

b, d, K Total number
of holes

Irrecoverable holes Number of recoverable holes repaired at each step

Step (a) Step (b) Step (c) Step (d) Not recovered

4, 64, 1 13,125 1484 5257 0 5464 907 13
4, 64, 2 28,616 3660 16,675 6737 1496 48 0
4, 64, 3 43,323 5798 28,527 8613 339 46 0
4, 64, 4 57,462 7997 40,370 8988 70 37 0
4, 64, 5 70,798 10,174 51,626 8945 37 16 0

16, 40, 1 29,803 4442 11,505 0 13,833 23 0
16, 40, 2 55,977 8161 30,305 14,301 3203 7 0
16, 40, 3 81,406 9945 51,203 19,493 764 1 0
16, 40, 4 107,547 10,500 75,028 21,804 215 0 0
16, 40, 5 132,257 10,696 100,157 21,336 68 0 0

3090 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
even though the total number of holes increased, the
number of recoverable holes repaired in step (b) did
not increase much with K; the number of holes
repaired actually declined in steps (c) and (d). Thus
while increasing K causes the number of recoverable
holes repaired in step (a) to increase, these repairs
are performed with zero communication cost.

Nevertheless, the communication cost of failure
recovery increases with K because the number of
irrecoverable holes increases with K. Note that for
each irrecoverable hole, all four steps of failure
recovery are executed.

3.3. Voluntary leaves

A voluntary leave can be handled as a special
case of node failure if necessary. When a node,
say x, leaves, it can actively inform its reverse-neigh-
bors and neighbors. To each reverse-neighbor, x

suggests a possible substitute for itself. When a node
receives a leave notification from x, for each hole
left by x, it checks whether the substitute provided
by x is a qualified substitute. If so, the hole is filled
with the substitute; otherwise, failure recovery is
initiated for the hole left by x.

4. Join protocol for K-consistency

We present in this section a join protocol that
constructs and maintains K-consistent neighbor
tables for an arbitrary number of concurrent joins
[3]. In the next section, we will show how to extend
the failure recovery and join protocols to handle
concurrent joins and failures.

In designing a protocol for nodes to join network
hV ;NðV Þi, we make the following assumptions: (i)
V 5 ; and hV ;NðV Þi is a K-consistent network, (ii)
each joining node, by some means, knows a node in
V initially, (iii) messages between nodes are deliv-
ered reliably, and (iv) there is no node leave or fail-
ure during the joins. Then, the tasks of the join
protocol are to update neighbor tables of nodes in
V and construct tables for the joining nodes so that
some time after the joins, the network is K-consis-
tent again.

Each node in the network maintains a state var-
iable named status, which begins in copying, then
changes to waiting, notifying, and in_system in that
order. A node in status in_system is called an S-

node; otherwise, it is a T-node. Briefly, in status
copying, a joining node, say x, copies neighbor
information from other nodes to fill in most entries
of its table. In status waiting, x tries to ‘‘attach’’
itself to the network, i.e., to find an S-node, y, that
will store it as a neighbor. In status notifying, x

seeks and notifies nodes that share a certain suffix
with x, which is also a suffix shared by x and y.
Lastly, when it finds no more node to notify,
x changes status to in_system and becomes an
S-node.

Fig. 3 presents the state variables of a joining
node and the join protocol messages. Note that each
node stores, for each neighbor in its table, the neigh-
bor’s state, which can be S indicating that the neigh-
bor is a S-node or T indicating it is a T-node. Once a
node has become an S-node, the state variables in
the second part of the list are no longer needed.

Next, we describe the join protocol informally.
(A specification of the protocol in pseudocode and
a correctness proof are given in [3].) In status copy-

ing, a joining node, x, fills in most entries of its
table, level by level, as follows. To construct its table
at level-i, i 2 [d], x needs to find an S-node, gi, that
shares the rightmost i digits with it and send a

Fig. 3. State variables and protocol messages.

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3091
CpRstMsg to gi to request a copy of gi.table. We
assume that each joining node knows a node in V.
Let this node be g0 for x. x begins with g0. From
g0.table, x copies level-0 neighbors of g0, finds a
node g1 that shares the rightmost digit with it, if
such a node exists and is an S-node, and requests
g1.table from g1. From g1.table, x copies level-1
neighbors of g1 and tries to find g2, and so on.

In status copying, each time after receiving a
CpRlyMsg, x checks whether it should change sta-
tus to waiting. Suppose x receives a CpRlyMsg from
y. The condition for x to change status to waiting is:
(i) there exists an ‘‘attach-level’’ for x in the copy of
y.table included in the reply, or (ii) an attach-level
does not exist for x and node u is a T-node, where
u = Ny(k,x[k]).first and k = jcsuf(x.ID,y.ID)j. (A
precise definition of attach-level is given in the
Appendix of our conference paper [4].) If the condi-
tion is satisfied, then x changes status to waiting and
sends a JoinWaitMsg to y (if case (i) holds) or to u

(if case (ii) holds). Otherwise, x remains in status
copying and sends a CpRstMsg to u.

In status waiting, the main task of x is to find an
S-node in the network to store x as a neighbor by
sending out JoinWaitMsg; another task is to copy
more neighbors into its table. When a node, y,
receives a JoinWaitMsg from x, there are two cases.
If y is not an S-node, it stores the message to be pro-
cessed after it has become an S-node. If y is an S-
node, it checks whether there exists an attach-level
for x in its table. If an attach-level exists, say
level-j, y stores x into level-j through level-k, k =
jcsuf(x.ID,y.ID)j, and sends a JoinWaitRlyMsg

(positive, j,y.table) to x, to inform x that the lowest
level x is stored is level-j. Level-j is then the
attach-level of x in the network, stored by x in
x.att_level. If an attach-level does not exist for x,
y sends a negative JoinWaitRlyMsg including
y.table to x. After receiving the reply (positive or
negative), x searches the copy of y.table included
in the reply for new neighbors to update its own
table. If the reply is negative, x has to send another
JoinWaitMsg, this time to u, u = Ny(k,x[k]).first.
This process may be repeated for several times (at
most d times since each time the receiver shares at
least one more digit with x than the previous recei-
ver) until x receives a positive reply, which indicates
that x has been stored by an S-node and therefore

3092 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
attached to the network. x then changes status to
notifying.

In status notifying, x searches and notifies nodes
that share the rightmost j digits with it, j = x.att_
level, so that these nodes will update their neighbor
tables if necessary. x starts this process by sending
JoinNotiMsg, which includes j and a copy of x.table,
to its neighbors at level-j and higher levels. Each
JoinNotiMsg serves as a notification as well as a
request for a copy of the receiver’s table. Upon
receiving a JoinNotiMsg, a receiver, z, stores x into
all (i,x[i])-entries that are not full with K neighbors
yet, where j 6 i 6 jcsuf(x.ID,z.ID)j, searches x.table

for new neighbors to update z’s table, and then
replies to x with z.table. From the reply, x may find
more nodes that share the rightmost j digits with it
and send JoinNotiMsg to these nodes. Meanwhile, x

searches the copy of z.table for new neighbors to
update its own table.

When x has received replies from all nodes it has
notified and finds no more node to notify, it changes
status to in_system and becomes an S-node. It then
informs all of its reverse-neighbors, i.e., nodes that
have stored x as a neighbor, that it has become an
S-node. If x has delayed processing JoinWaitMsg

from some nodes, it should process these messages
and reply to these nodes at this time.

5. Protocol design for concurrent joins and failures

In this section we describe how to integrate the
basic failure recovery protocol presented in Section
3 with the basic join protocol presented in Section 4.
Such integration requires extensions to both
protocols.

Consider a K-consistent network, hV ;NðV Þi.
Suppose a set of new nodes, W, join the network
while a set of nodes, F, fail, F � V [W and
V � F 5 ;. Our goal in this section is to design
extended join and failure recovery protocols such
that eventually the join process of each node
in W � F terminates and hðV [W Þ � F ;
NððV [W Þ � F Þi is a K-consistent network. In gen-
eral, designing a failure recovery protocol to pro-
vide perfect recovery is an impossible task; for
example, consider a scenario in which an arbitrary
number of nodes in V [W fail. On the other hand,
we observed in Section 3 that the basic failure recov-
ery protocol achieved perfect recovery for K-consis-
tent networks, for K P 2, in which up to 50% of the
nodes failed. This level of performance, we believe,
would be adequate for many applications.
Design of extended join and failure protocols in
this section follows the approach in [5] on how to
compose modules. The service provided by a com-
position of the two protocols herein is construction
and maintenance of K-consistent neighbor tables.
The extended join protocol is designed with the
assumption that the extended failure recovery pro-
tocol provides a ‘‘perfect recovery’’ service, that is,
for every hole found in the neighbor table of a node,
the node calls failure recovery and within a bounded
duration, failure recovery returns with a qualified
substitute for the hole or the conclusion that the
hole is irrecoverable at that time. To avoid circular
reasoning [5], we ensure that progress of the failure
recovery protocol does not depend upon progress of
the join protocol. Thus in the extensions to be pre-
sented, failure recovery actions are always executed
before join actions.

5.1. Protocol extensions

For networks with concurrent joins and failures,
the failure recovery protocol needs to distinguish
between nodes that are still in the process of joining
(T-nodes) and nodes that have joined successfully
(S-nodes). The join protocol, on the other hand,
needs to be extended with the ability to invoke fail-
ure recovery and to backtrack. Furthermore, when
a node is performing failure recovery, its replies to
some join protocol messages must be delayed. A
more detailed description follows.

We specify extensions to the basic join protocol
in Section 4 and basic failure recovery protocol in
Section 3.1 as a set of eight rules. Rule 0 extends
the basic join protocol with the ability to invoke
failure recovery. Rule 1 is an extension that applies
to both the basic failure recovery and join protocols.
Rules 2–7 are extensions to the basic join protocol.

Rule 0. Each node, S-node or T-node, starts an
error recovery process when it detects a hole in its
neighbor table left by a failed neighbor.

Rule 1. In filling a table entry with a qualified
node, do not choose a T-node unless there is no
qualified S-node.

Rule 1 extends the basic failure recovery protocol
as follows: When a node, x, locates a qualified sub-
stitute for a hole in x.table using step (a), (b), (c), or
(d) of the failure recovery protocol, if the qualified
substitute is an S-node, then x fills the hole with it
and terminates the recovery process. However, if
the qualified substitute is a T-node, x saves the T-
node in a waiting list for the entry and continues

7 Let x denote the T-node in status notifying and y the
substitute node received. The condition for x to notify y is
jcsuf(x.ID,y.ID)jP x.att_level and x has not sent a JoinNotiMsg

to y.

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3093
the recovery process. Only when the recovery pro-
cess terminates at the end of step (d) without locat-
ing any S-node as a qualified substitute, will x

remove a T-node from the entry’s waiting list to fill
the hole (provided that the list is not empty). Also,
because of Rule 1, when a node searches among its
neighbors and reverse-neighbors to find a qualified
substitute in response to a recovery query from
another node, it does not select a T-node as long
as there are S-nodes that are qualified.

Rule 1 extends the basic join protocol as follows:
Consider a node, x, that discovers a new neighbor,
y, for one of its table entries after receiving a join
protocol message from another node. x can store
y in the table entry, if the table entry is not full with
K neighbors yet and y is an S-node, according to the
following steps. First, x checks if there exists any
vacancy among the K ‘‘slots’’ of the entry that is
not a hole for which failure recovery is in progress.
If there exists such a vacancy, y is filled into it;
otherwise, y (an S-node) is filled into a hole in the
entry and the recovery process for the hole is termi-
nated. On the other hand, if the new neighbor y is a
T-node, then y can be stored in the entry if the total
number of neighbors and holes in the entry is less
than K. Otherwise, y (a T-node) is saved in the
entry’s waiting list and may be stored into the entry
later when the recovery process of a hole in the
entry terminates.

Rule 2. Each node, S-node or T-node, cannot
reply to CpRstMsg, JoinWaitMsg or JoinNotiMsg,
if the node has any ongoing recovery process at
the time it receives such a message.

When a node, x, receives a CpRstMsg, Join-

WaitMsg or JoinNotiMsg, if x has at least one
recovery process that has not terminated, x needs
to save the message and process it later. Each time
a recovery process terminates, x checks whether
there is any more recovery process still running. If
not, x can process the above three types of messages
it has saved so far.

Rule 3. When a T-node detects failure of a neigh-
bor in its table, it starts a failure recovery process
for each hole left by the failed neighbor according
to Rule 0 with the following exception, which
requires the T-node to backtrack in its join process.

Consider a T-node, say x. In order to backtrack,
x keeps a list of nodes, (g0, . . . ,gi), to which it has
sent a CpRstMsg or a JoinWaitMsg, in order of
sending times. Backtracking is required if one of
the following conditions holds: (i) x is in status
copying, waiting for a CpRlyMsg from gi, and has
detected the failure of gi; (ii) x is in status waiting,
waiting for a JoinWaitRlyMsg from gi, and has
detected the failure of gi; (iii) x, in status notifying,
finds that it has no live reverse-neighbor left and it
is not expecting any more JoinNotiRlyMsg when
it receives a negative JoinNotiRlyMsg or when it
detects the failure of gi, some neighbor y, or a node
from which x is waiting for a JoinNotiRlyMsg.

In cases (i) and (ii), x has not been attached to the
network (no S-node has stored it as a neighbor). In
case (iii), x is detached from the network and has no
prospect of attachment since it is not expecting a
JoinNotiRlyMsg. In each case, x backtracks by
deleting from its table the failed node(s) it detected,
setting its status to waiting, and sending a Join-

WaitMsg to gi�1 to inform gi�1 about the failed
node(s) and request gi�1 to store x into gi�1.table.
If gi�1 has also failed, then x contacts gi�2, and so
on. If x backtracks to g0 and g0 has also failed, then
x has to obtain another S-node from the network to
start joining from the beginning again.

Rule 4. A T-node must wait until its status is noti-

fying before it can send RvNghNotiMsg to its neigh-
bors, which will then store it as a reverse-neighbor.
(This is to prevent a T-node from being selected as a
substitute for a hole before it is attached to the
network.)

Rule 5. When a T-node receives a reply with a
substitute node for a hole in its table, if the T-node
is in status notifying and the substitute node should
be notified,7 then the T-node sends a JoinNotiMsg

to the substitute, even if the substitute is not used
to fill the hole.

Rule 6. A T-node cannot change status to in_sys-

tem (become an S-node) if it has any ongoing failure
recovery process.

Rule 7. When a T-node changes status to in_sys-

tem, it must inform all its reverse-neighbors (by
sending InSysNotiMsg), in addition to its neighbors,
that it has become an S-node.

5.2. Simulation results

We implemented the extended join and failure
recovery protocols and conducted 980 simulation

Table 5
Results for concurrent joins and failures

n No. of events
(jWj + jFj)

K = 1 K = 2,3,4,5

No. of
simulations

No. of simulations
w/perfect outcome

No. of
simulations

No. of simulations
w/perfect outcome

1600 200 (38 + 162) 16 16 64 64
1600 200 (110 + 90) 16 16 64 64
1600 200 (160 + 40) 12 12 48 48
1600 400 (85 + 315) 12 10 48 48
1600 400 (204 + 196) 12 11 48 48
1600 400 (323 + 77) 12 12 48 48
1600 800 (386 + 414) 24 22 96 96
3600 400 (81 + 319) 16 13 64 64
3600 400 (210 + 190) 16 15 64 64
3600 400 (324 + 76) 12 12 48 48
3600 800 (169 + 631) 12 9 48 48
3600 800 (387 + 413) 12 11 48 48
3600 548 (400 + 148) 12 10 48 48
3200 1600 (780 + 820) 12 9 48 48

3094 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
experiments to evaluate them. Each simulation
began with a K-consistent network, hV ;NðV Þi, of
n nodes (n = jVj). Then a set W of nodes joined
and a set F of randomly chosen nodes failed during
the simulation. Each simulation was identified by a
combination of b, d, K, n, and jWj + jFj values,
where jWj + jFj is the total number of join and fail-
ure events. K was varied from 1 to 5, (b,d) values
were chosen from (4, 16), (4, 64), (16, 8) and
(16,40), and three values, 1600, 3200 and 3600, were
used for the initial network size (n). For 3200-node
and 3600-node simulations, all joins and failures
occurred at the same time. For 1600-node simula-
tions, join and failure events were generated accord-
ing to a Poisson process at the rate of 1 event per
second in 220 experiments, 1 event every 10 s in
180 experiments, 1 event every 20 s in 60 experi-
ments, and 1 event every 100 s in 60 experiments.
K-consistent neighbor tables for the initial network
were constructed using the four approaches
described in Section 3.2.

At the end of every simulation, we checked
whether the join processes of all joining nodes that
did not fail (nodes in W � F) terminated. We then
checked whether the neighbor tables of all remain-
ing nodes (nodes in V [W � F) satisfy K-consis-
tency. Table 5 presents a summary of results of
the 980 simulation experiments. We observed that,
for K P 2, in every simulation, the join processes
of all nodes in W � F terminated and the neighbor
tables of all remaining nodes satisfied K-consis-
tency. Each such experiment is referred to in Table
5 as a simulation with perfect outcome.
6. Churn experiments

Our simulation results in the previous section
show that for K P 2, K-consistency was recovered
in every experiment some time after the simulta-
neous occurrence of massive joins and failures. Such
convergence to K-consistency provides assurance
that our protocols are effective and error-free. For
a real system, however, there may not be any quies-
cent time period long enough for neighbor tables to
converge to K-consistency after joins and failures.
Protocols designed to achieve K-consistency,
K P 2, provide redundancy in neighbor tables to
ensure that a dynamically changing network is
always fully connected, i.e., there exists at least one
path from any node to every other node in the net-
work. In this section, we investigate the impact of
node dynamics on protocol performance. In partic-
ular, we address the question of how high a rate of
node dynamics can be sustained by our protocols
and, more specifically, what are the limiting factors?
By ‘‘sustaining a rate of node dynamics’’, we mean
that the system is able to maintain a large, stable,
and connected set of S-nodes under the given rate
of node dynamics.

6.1. Experiment setup

To simulate node dynamics, Poisson processes
with rates kjoin and kfail are used to generate join
and failure events, respectively. For each join event,
a new node (T-node) is given the ID and IP address
of a randomly chosen S-node to whom it sends a

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3095
CpRstMsg to begin its join process. For each failure
event, an existing node, S-node or T-node, is ran-
domly chosen to fail and stay silent. In experiments
to be presented in this section, we set kjoin =
kfail = k, which is said to be the churn rate. Periodi-
cally in each experiment, we took snapshots of the
neighbor tables of all S-nodes. Intuitively, the set
of S-nodes is the ‘‘core’’ of the network. The peri-
odic snapshots provide information on network
connectivity and indicate whether our protocols
can sustain a large stable core for a particular churn
rate over the long term. The time from when a new
node starts joining to when it becomes an S-node is
said to be its join duration. Note that each new node
can get network services as a ‘‘client’’ as soon as it
has the ID and IP address of an existing S-node.
However, it cannot provide services to others as a
‘‘server’’ until it has become an S-node.

Each experiment in this section began with 2000
S-nodes, where b = 16, d = 8, and K was 3 or 2.
Neighbor tables in the initial network were con-
structed using approach (iii) as described in Section
3.2. The underlying topology used in the experi-
ments had 2112 routers. Of the average end-to-end
delays, 23.3% were below 10 ms and 72.2% were
below 100 ms, with the largest average value being
596 ms. The timeout value for each step in failure
recovery (see Section 3.1) was 10, 5 or 2 s.8 We
ran experiments for values of k ranging from 0.25
to 4 joins/s (also failures/s). By Little’s Law, at a
churn rate of k = 4, the average lifetime of a node
in a 2000-node network is 8.3 min.9 (For compari-
son, the median node lifetime in Napster and Gnu-
tella was measured to be 60 min [11].) Each
experiment ran for 10,000 s of simulated time. After
10,000 s, no more join or failure event was gener-
ated, and the experiment continued until all join
and failure recovery processes terminated. We took
snapshots of neighbor tables and evaluated connec-
tivity and consistency measures once every 50 simu-
lation seconds throughout each experiment. We also
checked whether a network converged to K-consis-
tency (K = 3 or 2) at termination and measured
the time duration needed for convergence.
8 The timeout value is used in each failure recovery step to wait
for replies. A timeout value of 10 s might be unnecessarily long
for today’s Internet.

9 By Little’s Law, the average node lifetime is n/k (in seconds),
where n is the number of nodes in the network.
6.2. Results

Fig. 4 plots the total number of nodes (S-nodes
and T-nodes) and the number of S-nodes in the net-
work at each snapshot, for experiments with
k = 0.5, k = 1, and k = 1.5, and K = 3. Fluctuations
in the curves are mainly due to fluctuations in the
Poisson processes for generating join and failure
events. The difference between the two curves of each

experiment is the number of T-nodes. With kjoin =
kfail = k, a stable number of T-nodes over time indi-
cates that our protocols were effective and stable.
Observe that some time after 10,000 s, all T-nodes
became S-nodes (the two curves converged). Exper-
iments illustrated on the left side and the right side
of Fig. 4 used timeout values of 10 s and 5 s, respec-
tively. For the same k, the average number of S-
nodes is larger and the average number of T-nodes
is smaller in experiments with 5-s timeouts than
those with 10-s timeouts. This is because join dura-
tion is much smaller with 5-s timeouts than with 10-
s timeouts, which suggests that the timeout value in
failure recovery should be as small as possible.

In general when the failure rate of a network
increases, join duration increases. In our protocol
design, to avoid circular reasoning, failure recovery
actions have priority over join protocol actions.
More specifically, when a node has an ongoing fail-
ure recovery process, it must wait until the process
terminates before it can reply to certain join proto-
col messages; moreover, a T-node must wait to
change status to an S-node if it has an ongoing
recovery process. With more failures, there are more
holes in neighbor tables and the join processes of T-
nodes will be delayed longer. Fig. 5(a) shows the
cumulative distribution of join duration for different
values of k. When k increases (failure rate increases),
join duration increases. In Fig. 5(a), observe that
not only is the mean join duration for k = 1 larger
than that of k = 0.5, but the tail of the distribution
is very much longer. (In the absence of failures, join
durations of nodes are substantially shorter. From a
different set of experiments in which 1000 nodes
concurrently join an existing 3000-node network
with no failure, the average join duration was found
to be 1.9 s and the 90 percentile value 2.7 s.)

For a given failure rate, the join durations of
nodes can be reduced by two system parameters,
namely: timeout value in failure recovery and K.
We have already inferred from Fig. 4 that join dura-
tion can be reduced by using a smaller timeout in
failure recovery. This point is illustrated explicitly

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

s
e

d
o

n f
o r

e
b

m
u

N

Time (seconds)

Number of nodes in network
Number of S-nodes

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

s
e

d
o

n f
o r

e
b

m
u

N

Time (seconds)

Number of nodes in network
Number of S-nodes

a b

c d

e f

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

s
e

d
o

n f
o r

e
b

m
u

N

Time (seconds)

Number of nodes in network
Number of S-nodes

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000
s

e
d

o
n f

o r
e

b
m

u
N

Time (seconds)

Number of nodes in network
Number of S-nodes

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

s
e

d
o

n f
o r

e
b

m
u

N

Time (seconds)

Number of nodes in network
Number of S-nodes

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

s
e

d
o

n f
o r

e
b

m
u

N

Time (seconds)

Number of nodes in network
Number of S-nodes

Fig. 4. Number of nodes and S-nodes in the network, K = 3. (a) k = 0.5, timeout = 10 s, (b) k = 0.5, timeout = 5 s, (c) k = 1,
timeout = 10 s, (d) k = 1, timeout = 5 s, (e) k = 1.5, timeout = 10 s and (f) k = 1.5, timeout = 5 s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

n
oit

u
birtsi

d
evit

al
u

m
u

C

Join duration (seconds)

lambda=0.5, K=3, 10sec timeout
lambda=1, K=3, 10sec timeout

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

n
oit

u
birtsi

d
evit

al
u

m
u

C

Join duration (seconds)

lambda=1, K=3, 5sec timeout
lambda=1, K=3, 10sec timeout

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

n
oit

u
birt si

d
evit

al
u

m
u

C

Join duration (seconds)

lambda=1, K=2, 10sec timeout
lambda=1, K=3, 10sec timeout

a b c

Fig. 5. Cumulative distribution of join durations. (a) K = 3, timeout = 10 s, (b) k = 1, K = 3, (c) k = 1, timeout = 10 s.

3096 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
from comparing the two curves in Fig. 5(b), where
one curve shows the cumulative distribution for
k = 1, K = 3, and 10-s timeout, and the other shows
the cumulative distribution for k = 1, K = 3, and 5-s
timeout. (Intuitively, using a smaller timeout value
reduces the average duration of failure recovery
processes. As a result, join processes that wait for
failure recovery processes can terminate faster.)
Also observe from Fig. 5(c) for k = 1 and 10-s time-
out, reducing the K value from 3 to 2 decreases the
mean join duration slightly. However, the tail of the
distribution is substantially shorter for K = 2 than

1000

1200

1400

1600

1800

2000

2200

0 2000 4000 6000 8000 10000
Time (seconds)

Number of nodes in network
Number of S-nodes 800

1000

1200

1400

1600

1800

2000

0 2000 4000 6000 8000 10000

sedonfo
reb

mu
N

sedonfo
reb

mu
N

s edonf o
re b

m u
N

Time (seconds)

Number of nodes in network
Number of S-nodes

1000

1200

1400

1600

1800

2000

2200

0 2000 4000 6000 8000 10000
Time (seconds)

Number of nodes in network
Number of S-nodes

a b c

Fig. 6. Number of nodes and S-nodes in the network, k = 2. (a) K = 3, timeout = 10 s, (b) K = 2, timeout = 10 s, (c) K = 3, timeout = 5 s.

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3097
for K = 3. The tradeoff is that a K-consistent net-
work for a smaller K offers fewer alternate paths
and its connectivity measures are slightly lower.

Fig. 6(a) shows results for an experiment with
k = 2, K = 3, and 10-s timeout. Observe that the
number of S-nodes declines while the number of
T-nodes increases over time (from 0 to 10,000 s).
This behavior indicates that at a failure rate of
2 nodes/s, the network’s join capacity (definition in
Section 1) was less than two joins per second. As
a result, the number of T-nodes grows like a queue
whose arrival rate is higher than its service rate. The
network’s join capacity can be increased by reduc-
ing the join durations of T-nodes. As shown in
Fig. 5, the average join duration can be reduced
substantially by changing the timeout value from
10 s to 5 s, or it can be reduced slightly by changing
K from 3 to 2 (with the variance greatly reduced).
We found that either of these approaches would sta-
bilize the network for k = 2. The results of another
experiment with k = 2, K = 2, and 10-s timeout are
shown in Fig. 6(b), and the results of a third exper-
iment with k = 2, K = 3, and 5-s timeout are shown
in Fig. 6(c). Observe that the number of T-nodes
was stable over time indicating that the network’s
join capacity was higher than the join rate. In all
three experiments in Fig. 6, some time after
10,000 s, when no more join or failure event was
generated, all T-nodes became S-nodes, showing
that our join protocol worked correctly irrespective
of the network’s join capacity. In both the experi-
ments in Figs. 6(b) and (c), the network converged
to K-consistency at termination (see Tables 7 and 8).

We next examine neighbor tables at each snap-
shot more carefully. For each snapshot at time t,
the following properties were checked:

• Percentage of connected S–D pairs. For each
source–destination pair of S-nodes, if there exists
a path (definition in Section 2.2) from source to
destination, then the pair is connected. (Both
S-nodes and T-nodes can appear in a path.)

• Full connectivity. If at time t, all S–D pairs of S-
nodes are connected, then full connectivity holds
(over the set of S-nodes at time t).

• K-consistency. Same as the K-consistency defini-
tion in Section 2.2, with V being the set of
S-nodes at time t.

• K-consistency-SAT. Suppose there is no more
node failure after time t. If each recoverable hole
in the neighbor tables of S-nodes at time t can be
repaired by the four steps of failure recovery,
then K-consistency is satisfiable or K-consis-
tency-SAT holds.

Note that full connectivity in the presence of con-
tinuous churn is a desired property of any routing
infrastructure. Consistency is a stronger property
than full connectivity, and K-consistency, for
K P 2, is even stronger. In any network with churn,
it is obvious that K-consistency is most likely not
satisfied by the neighbor tables in a snapshot at time
t, because some failure(s) might have occurred just
prior to t and failure recovery takes time. On the
other hand, the neighbor tables at time t contain
sufficient information for us to check whether
K-consistency is satisfiable at time t or not. If K-
consistency-SAT holds for every snapshot in an
experiment, then we are assured that our protocols
are effective and error-free.

Table 6 presents a summary of results from exper-
iments for K = 3 and 10-s timeouts, versus the churn
rate (top row). The second and third rows show the
number of joins and failures, respectively, for each
experiment. Observe that 3-consistency-SAT holds
for every snapshot in every experiment. Each exper-
iment also converged to 3-consistency some time
after 10,000 s, except the one for k = 2, with the con-
vergence time shown in the sixth row. Since we took
a snapshot once every 50 s, the convergence time has

Table 6
Summary of churn experiments, n = 2000, K = 3, timeout = 10 s

k (#joins/s = #failures/s) 0.25 0.5 0.75 1 1.25 1.5 2

Number of joins 2413 5095 7621 10,080 12,474 15,011 19,957
Number of failures 2473 5066 7423 9890 12,468 14,919 19,960

% Snapshots, 3-consistency-SAT 100 100 100 100 100 100 100
Convergence to 3-consistency at end Yes Yes Yes Yes Yes Yes No
Convergence time (s) 150 200 400 350 450 400 –

% Snapshots, 1-consistency 100 100 99.5 97.5 97.5 88.5 62
% Snapshots, full connectivity 100 100 99.5 98 98 98.5 92
Average %, connected S–D pairs 100 100 99.99998 99.99991 99.99993 99.99991 99.9996

3098 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
a granularity of 50 s. The seventh and eighth rows of
Table 6 present the percentage of snapshots (taken
from 0 to 10,000 s) for which 1-consistency and full
connectivity held. Even though these properties did
not hold for 100% of the snapshots for k P 0.75,
perfection was missed by a very small margin, as
shown in the last row of Table 6. The average
percentage of connected S–D pairs of S-nodes
was higher than 99.9996% in every experiment.

In the k = 2 experiment shown in Table 6, 3-con-
sistency-SAT held at time 10,000 s, but the network
did not converge to 3-consistency at termination.
Why? It was due to the very large number of T-
nodes at time 10,000 s. Note that only S-nodes in
neighbor tables are considered in testing whether
3-consistency holds. 3-consistency (among S-nodes)
was satisfiable at time 10,000 s when some qualified
substitutes for ‘‘irrecoverable holes’’ were T-nodes.
Subsequently, at termination when all T-nodes
became S-nodes, these previously irrecoverable
holes became recoverable, and 3-consistency did
not hold because all error recovery processes had
already terminated by then (the network did satisfy
1-consistency at the end). We conclude that our pro-
tocols behaved as intended.

As discussed above, one way to increase the join
capacity of a network is to reduce the timeout value.
Table 7
Summary of churn experiments, n = 2000, K = 3, timeout = 5 s

k 0.25 0.5 0.75

Number of joins 2413 5095 7621
Number of failures 2473 5066 7423

% Snapshots, 3-consistency-SAT 100 100 100
Convergence to 3-con. Yes Yes Yes
Convergence time (s) 50 150 150

% Snapshots, 1-consistency 100 100 99.5
% Snapshots, full connectivity 100 100 99.5
Average connected S–D pairs 100 100 99.99999
Table 7 summarizes results for experiments with
timeout value reduced to 5 s (K = 3). Reducing the
timeout value provides improvement in every per-
formance measure in the table (provided that there
is room for improvement). In particular, compari-
son with Table 6 shows that convergence time to
3-consistency is shorter, percentage of snapshots
with full connectivity is higher, and average percent-
age of connected S–D pairs is higher in Table 7.

Reducing the value of K is another way to
increase the join capacity of a network. There is a
tradeoff involved however. Choosing a smaller K

results in less routing redundancy in neighbor
tables. We conducted experiments for K = 2, time-
out = 10 s, with k equal to 0.5, 1 and 2. The results
are summarized in Table 8. Comparing Tables 8 and
6, we see that the percentage of snapshots with 1-
consistency (also full connectivity) was much lower
for K = 2 than that for K = 3. The average percent-
age of connected S–D pairs was also lower.

6.3. Maximum sustainable churn rate

We performed experiments with increasing val-
ues of k to estimate the maximum sustainable churn
rate as a function of the initial network size (n) for
K = 2 or 3. For given values of n and K, our esti-
1 1.25 1.5 1.75 2

10,080 12,474 15,011 17,563 19,957
9890 12,468 14,919 17,563 19,960

100 100 100 100 100
Yes Yes Yes Yes Yes
150 150 400 250 350

100 99.5 99 95.5 93
100 99.5 99.5 96.5 95
100 99.99998 99.99998 99.99993 99.9997

0

1

2

3

4

5

0 500 1000 1500 2000

M
ax

im
um

 c
hu

rn
 r

at
e

 (
no

de
s

/s
ec

on
ds

)

Network size (n)

K=3
K=2

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000

M
in

im
um

 a
ve

ra
ge

 li
fe

tim
e

(s
ec

on
ds

)

Network size (n)

K=3
K=2

a b

Fig. 7. Maximum churn rate (a) and minimum average lifetime (b), timeout = 5 s.

Table 8
Summary of churn experiments, n = 2000, K = 2, timeout = 10 s

k 0.5 1 2

Number of joins 5095 10,080 19,911
Number of failures 5066 9890 20,017

% Snapshots, 2-consistency-SAT 100 100 100
Convergence to 2-consistency at end Yes Yes Yes
Convergence time (seconds) 150 150 400

% Snapshots, 1-consistency 88 62.5 12.5
% Snapshots, full connectivity 91 68.5 27
Average %, connected S–D pairs 99.9994 99.996 99.978

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3099
mate is determined by the largest k value such that
after 10,000 s (simulated time) of churn, the net-
work was able to recover K-consistency after-
wards.10 Fig. 7(a) shows our results from
experiments with 5-s timeout and K = 2 or 3.
Observe that the maximum rate is higher for
K = 2 than for K = 3.

Note also that, for n P 500, the maximum rate
increases at least linearly as n increases. This obser-
vation validates a conjecture that our protocols’ sta-
bility improves as the number of S-nodes increases.
However, the conjecture does not hold for n < 500.
This can be explained as follows. For n < 500 and
b = 16, the number of neighbors stored in each node
is a large fraction of n and failure recovery is rela-
tively easy to do. As n decreases further, the number
of neighbors stored in each node as a fraction of n

increases, and failure recovery becomes even easier.
Using Little’s law, we calculated the minimum

average node lifetime for each maximum rate in
Fig. 7(a). The results are presented in Fig. 7(b).
The trend in each curve suggests that as n increases
10 Since the maximum sustainable churn rate is a random
variable, our estimate is only a sample value of that random
variable.
beyond 2000 nodes, the average node lifetime can be
as low as 12.1 min for K = 3 and 8.3 min for K = 2.
6.4. Protocol overheads

We next present protocol overheads in the churn
experiments as a function of k for n = 2000. (Anal-
yses of protocol overheads as a function of K are
presented in Section 7 of [4] and Section 4 of [3],
and are omitted herein due to space limitation.)
Fig. 8 presents cumulative distributions of the num-
ber of three types of join protocol messages sent by
joining nodes whose join processes terminated. We
are interested in these messages (as well as their
replies) because each such message (or reply) may
include a copy of a neighbor table and thus can be
large in size. Fig. 8(a) shows that a large fraction
of joining nodes sent a small number of Join-

NotiMsg (e.g., for k = 1, more than 98% of nodes
sent less than 20 JoinNotiMsg). However, as k
becomes larger, the tail of its distribution becomes
longer. Fig. 8(b) shows that the number of
CPRstMsg and JoinWaitMsg (combined) sent by
each joining node is very small.

Fig. 9 presents cumulative distributions of the
number of queries for repairing a hole (for holes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120 140 160 180

noitubirtsid evitalu
mu

C

Number of JoinNotiMsg

lambda=1
lambda=0.5

lambda=0.25
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 3 4 5 6 7 8

noitubirtsid e vitalu
mu

C

Number of CPRstMsg and JoinWaitMsg

lambda=1
lambda=0.5

lambda=0.25

a b

Fig. 8. Cumulative distribution of join protocol messages sent by joining nodes, K = 3, timeout = 10 s. (a) JoinNotiMsg and
(b) CpRstMsg + JoinWaitMsg.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Number of query messages

lambda=0.25
lambda=0.5

lambda=1

Fig. 9. Cumulative distribution of query messages sent for
recovering a hole, K = 3, timeout = 10 s.

11 Since we generate node churn according to a Poisson process,
for a given churn rate, k, the corresponding median node lifetime
can be calculated as n(ln2)/k, where n is the average number of
nodes in the system [9].
12 T-nodes did not generate routing tests, since their neighbor

tables are still under construction. Failed nodes did not generate
routing tests.

3100 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
that were repaired as well as holes declared as irre-
coverable by their recovery processes). Similar to
results in Section 3.2, most holes were repaired by
steps (a) and (b) (for the distributions shown in
Fig. 9, more than 86% of holes were repaired by
the end of step (b)). Recall that holes repaired in
step (a) incur no communication cost, while holes
repaired in step (b) require up to 2(K � 1) messages.
As k increases, the percentage of holes repaired by
step (a) decreases: the percentage is 56%, 48% and
42% for k = 0.25, k = 0.5 and k = 1, respectively.
The long tails of the distributions are due to holes
found by failure recovery to be irrecoverable.

7. Routing performance under churn

Experiment results in Section 6 show that our
protocols, by striving to maintain K-consistency,
were able to provide pairwise connectivity better
than 99.9995% (between S-nodes) at a churn rate
of two joins and two failures per second for
n = 2000 and K = 3 (see Tables 6 and 7). This sug-
gests that for each source–destination node pair, it
is almost always the case that there exists a path
of average length O(logb n) hops, so long as both
nodes are still in the system. Thus, even at a high
churn rate, if the rate can be sustained by the sys-
tem, then the average routing performance should
not degrade much.

To validate the above conjecture, we conducted
more experiments to study routing performance
under node churn. In particular, we are interested
in the follow performance criteria: When the churn
rate increases, how often will routing succeed? Also,
how much will average routing delay increase?

7.1. Experiment setup

We used the same method to generate node joins
and failures and the same underlying topology
as the ones used in Section 6.1. Each experiment
in this section began with 2000 S-nodes and ran
for 3600 simulation seconds, for K = 3 and time-
out = 2 s. We ran experiments for a range of churn
rates, from k = 0.125, k = 0.25, and up to k = 8,
with corresponding median node lifetime equal to
184.84 min, 92.4 min, and down to 2.888 min,
respectively.11

In these experiments, each S-node generated
routing tests once every 10 s.12 For each routing
test, another S-node was chosen randomly to be
the destination. If the destination was eventually
reached, the test was recorded as successful; other-
wise, it was recorded as unsuccessful. For each suc-
cessful routing test, we also recorded the number of
hops along the path from its source to destination,
as well as the routing delay. For each median node
lifetime, we calculated the percentage of successful
routing tests, as well as the average number of hops

 99.8

 99.85

 99.9

 99.95

 100

 2 4 8 16 32 64 128 256

R
ou

tin
g

su
cc

es
s

pe
rc

en
ta

ge

Median node life time (minutes)

source-duplication + backtracking, K=3
backtracking only, K=3

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 4 8 16 32 64 128 256

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

A
ve

ra
ge

 r
ou

tin
g

la
te

nc
y

Median node life time (minutes)

backtracking only, K=3
source-duplication + backtracking, K=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 8 16 32 64 128 256

Median node life time (minutes)

backtracking only, K=3
source-duplication + backtracking, K=3

a b c

Fig. 10. Routing experiment results, n = 2000, b = 16, timeout = 2 s. (a) Percentage of successful routing, (b) avg. number of hops,
(c) avg. delay.

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3101
and the average routing delay over all successful
routing tests.

We experimented with two different routing
strategies. A straightforward approach is to let the
source create one routing message for each test.
Each node along the path, say x, forwards the mes-
sage to the closest neighbor following the hypercube
routing scheme. That is, if x is the ith node along the
path (the source is the 0th node), then it forwards
the message to the closest neighbor among all neigh-
bors in its (i,u[i])-entry, where u is the destination
node. If the forwarding request times out (because
the neighbor has failed), x backtracks and forwards
the message to another neighbor. We refer to this
approach as backtracking.

We also evaluated another routing strategy that
exploits routing redundancy provided by K-consis-
tent neighbor tables. In this approach, the source
sends duplicates of the routing message, one to each
of the two closest neighbors for the destination fol-
lowing the hypercube routing scheme. Each node
that receives such a message simply forwards the
message without further duplication, and back-
tracks if necessary. We refer to this approach as
source-duplication and backtracking.

7.2. Results

Fig. 10 summarizes our results, which are plotted
versus median node lifetime along the horizontal
axis. A smaller median node lifetime corresponds
to a higher churn rate. Hence, in each figure, churn
rate increases from right to left.13

Fig. 10(a) shows the percentage of successful
routing tests. Fig. 10(b) shows the average number
of hops from source to destination over successful
13 These results are plotted such that they can be compared with
similar churn experiment results presented in [9]. Node lifetime
herein corresponds to session time in [9].
routing tests. In the source-duplication and back-
tracking approach, for each routing test, we used
the number of hops traveled by the message that
arrived at the destination first. Fig. 10(c) shows
the average delay over successful routing tests.

Observe from Fig. 10(a) that with backtracking
only, the percentage of successful routing is already
very close to 100%. With the addition of source-
duplication, the success percentage becomes even
closer to 100% (the percentage was in fact 100%
for all median lifetimes greater than or equal to
46.2 min).

Also observe from Figs 10(b) and (c), when the
median node lifetime decreases (from right to left),
the average number of hops and average routing
delay increase very slightly. Each such increase is
due to a small increase in backtracking occurrences
when node failures become more frequent. In par-
ticular, the average number of hops for all lifetimes
of both curves in Fig. 10(b) is within the range of
2.275 to 2.496, and actually less than log16(2000),
which is 2.74. This confirms our conjecture that by
striving to maintain K-consistency in neighbor
tables, our protocols preserve scalable routing in
the hypercube routing scheme even in the presence
of heavy churn.

Lastly, from Figs. 10(b) and (c), observe that the
addition of source-duplication to backtracking
provides only a small improvement in the average
number of hops and routing delay.

8. Related work

Among related work, both Pastry [10] and Tapes-
try [14] make use of hypercube routing. Pastry’s
approach for failure recovery is very different from
the one in this paper. In addition to a neighbor table
for hypercube routing, each Pastry node maintains a
leaf set of 32 nearest nodes on the ID ring to
improve resilience. Leaf set membership is actively

3102 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
maintained. Pointers for hypercube routing, on the
other hand, are used as shortcuts and repaired
lazily. Tapestry’s basic approach for failure recov-
ery is similar to ours in that it also stores multiple
nodes in a neighbor table entry. However, the prop-
erty of K-consistency is not defined and thus not
enforced in Tapestry. Furthermore, Tapestry’s join
and failure recovery protocols are based upon use
of a lower-layer Acknowledged Multicast protocol
supported by all nodes [2]. Our protocols do not
require such reliable multicast support and are very
different from the Tapestry protocols.

Recently, two other papers also addressing the
problem of churn in structured p2p networks were
published. Li et al. [6] used a single workload to
compare the performance of four routing algo-
rithms under churn. In their experiments, the churn
rate was fixed with the corresponding average node
lifetime equal to 60 min. Their goal was to study the
impact of algorithm parameter values on system
performance, more specifically, the tradeoff between
routing latency and bandwidth overhead.

Rhea et al. [9] identified and evaluated three fac-
tors affecting DHT performance under churn,
namely: reactive versus periodic failure recovery,
algorithm for calculating timeout values, and prox-
imity neighbor selection. They have also investi-
gated the impact of a wide range of churn rates on
average routing delay (called lookup latency in their
paper) as the performance measure for several
DHTs.

We have a different set of objectives in this paper.
Our first objective was the design of a failure recov-
ery protocol based upon local information for
hypercube routing and its integration with a join
protocol to maintain K-consistency of neighbor
tables. We use a stronger definition of consistency
(for neighbor tables) than the consistency definition
(for lookups) used in [9]. In addition to the impact of
churn rate on average routing delay, we also evalu-
ated the impact of churn rate on neighbor table con-
sistency and pairwise node connectivity provided by
the neighbor tables. Furthermore, we explored the
notion of a sustainable churn rate and found that it
is upper bounded by the rate at which new nodes
can join the network successfully. We refer to this
upper bound as the join capacity of a network. We
found two ways to improve a network’s join capac-
ity, namely, by using the smallest possible timeout
value and choosing a smaller K value.

Fig. 10(c) in this paper for 3-consistent hyper-
cube routing can be compared to Figs. 7 and 9 in
[9] for Bamboo and Chord. In each figure, average
routing delay is plotted versus median node lifetime
(same as median session time in [9]). Consider and
compare the shapes of the average routing delay
graphs (ignore the absolute delay values since differ-
ent topologies and link delays were used in different
experiments). Observe that when the median node
lifetime decreases, the average routing delay
increases much more significantly for Chord and
also Bamboo than for 3-consistent hypercube rout-
ing. Such performance degradation is due to the dif-
ferent failure recovery strategies used in Bamboo
and Chord. In Bamboo, which follows Pastry,
neighbors in a node’s leaf set are actively main-
tained while neighbors in the node’s hypercube
routing table are repaired lazily. As stated in [9],
‘‘the leaf set allows forward progress (in exchange
for potentially longer paths) in the case that the
routing table is incomplete.’’ Thus, when failures
happen more and more frequently during periods
of high churn, the average routing delay of Bamboo
increases much more than in a hypercube routing
scheme that strives to maintain K-consistency of
its routing tables. Fig. 10(b) shows that in our
experiments the average number of hops remained
at approximately logb n for the entire range of churn
rates (node lifetimes).

9. Conclusions

For structured p2p networks that use hypercube
routing, we introduced the property of K-consis-
tency and designed a failure recovery protocol for
K-consistent networks. The protocol was evaluated
with extensive simulations and found to be efficient
and effective for networks of up to 8000 nodes in
size. Since our protocol uses local information, we
believe that it is scalable to networks larger than
8000 nodes.

The failure recovery protocol was integrated with
a join protocol that has been proved to construct K-
consistent networks for concurrent joins and shown
analytically to be scalable to a large n [3]. From
extensive simulations, in which massive joins and
failures occurred at the same time, the integrated
protocols maintained K-consistent neighbor tables
after the joins and failures in every experiment for
K P 2.

From a set of long-duration churn experiments,
our protocols were found to be effective, efficient,
and stable up to a churn rate of four joins and four
failures per second for 2000-node networks (with

S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104 3103
K = 2 and 5-s timeout). By Little’s Law, the average
node lifetime was 8.3 min. We discovered that each
network has a join capacity that upper bounds its
join rate. The join capacity decreases as the failure
rate increases. For a given failure rate, the join
capacity can be increased by using the smallest time-
out value possible in failure recovery or by choosing
a smaller K value.

We also observed from simulations that our pro-
tocols’ stability improves as the number of S-nodes
increases. More specifically, for 500 6 n 6 2000, we
found that a network’s maximum sustainable churn
rate increases at least linearly with network size n.
The trend in our simulation results suggests that
as network size increases beyond 2000 nodes, the
average node lifetime can be less than 12.1 min for
K = 3 and 8.3 min for K = 2. Furthermore, the
average number of routing hops remains at logb n

for networks under heavy churn.
The storage and communication costs of our pro-

tocols were found to increase approximately linearly
with K (see Section 7 in [4]). The results in this paper
show that the network robustness improvement is
dramatic when K is increased from 1 to 2. We
believe that p2p networks using hypercube routing
should be designed with K P 2. However, a bigger
K value results in higher storage and communica-
tion overhead; and as shown in the churn experi-
ments, a large K also reduces the join capacity of
a network. Thus, for p2p networks with a high
churn rate, we recommend a K value of 2 or at most
3. For p2p networks with a low churn rate, K may
be 3 or higher (say 4 or 5) if additional route redun-
dancy is desired.

Our integrated protocols for join and failure
recovery in this paper have been implemented in a
prototype system named Silk [3].

References

[1] C. Blake, R. Rodrigues, High availability, scalable storage,
dynamic peer networks: pick two, in: Proc. of Ninth
Workshop on Hot Topics in Operating Systems (HotOS-
IX), May 2003.

[2] K. Hildrum, J.D. Kubiatowicz, S. Rao, B.Y. Zhao, Distri-
buted object location in a dynamic network, in: Proc. of
ACM Symposium on Parallel Algorithms and Architectures,
August 2002.

[3] S.S. Lam, H. Liu, Silk: a resilient routing fabric for peer-to-
peer networks, Technical Report TR-03-13, Department of
CS, University of Texas at Austin, May 2003.

[4] S.S. Lam, H. Liu, Failure recovery for structured p2p
networks: protocol design and performance evaluation,
in: Proc. of ACM SIGMETRICS, June 2004.
[5] S.S. Lam, A.U. Shankar, A theory of interfaces and modules
I—composition theorem, IEEE Transactions on Software
Engineering January (1994).

[6] J. Li, J. Stribling, T.M. Gil, R. Morris, F. Kaashoek,
Comparing the performance of distributed hash tables under
churn, in: Proc. of International Workshop on Peer-to-Peer
Systems, March 2004.

[7] H. Liu, S.S. Lam, Neighbor table construction and update in
a dynamic peer-to-peer network, in: Proc. of IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS), May 2003.

[8] C.G. Plaxton, R. Rajaraman, A.W. Richa, Accessing nearby
copies of replicated objects in a distributed environment, in:
Proc. of ACM Symposium on Parallel Algorithms and
Architectures, June 1997.

[9] S. Rhea, D. Geels, T. Roscoe, J. Kubiatowicz, Handling
churn in a DHT, in: Proceedings of the USENIX Annual
Technical Conference, June 2004.

[10] A. Rowstron, P. Druschel, Pastry: scalable, distributed
object location and routing for large-scale peer-to-peer
systems, in: Proc. of IFIP/ACM International Conference
on Distributed Systems Platforms, November 2001.

[11] S. Sariou, P.K. Gummadi, S.D. Gribble, A measurement
study of peer-to-peer file sharing systems, in: Proc. of
Multimedia Computing and Networking, January 2002.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrish-
nan, Chord: a scalable peer-to-peer lookup service for
internet applications, in: Proc. of ACM SIGCOMM, August
2001.

[13] E.W. Zegura, K. Calvert, S. Bhattacharjee, How to model an
internetwork, in: Proc. of IEEE Infocom, March 1996.

[14] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph,
J.D. Kubiatowicz, Tapestry: a resilient global-scale overlay
for service deployment, IEEE Journal on Selected Areas in
Communications 22 (1) (2004).

Simon S. Lam is Regents Chair in
Computer Sciences at the University of
Texas at Austin. He received the BSEE
degree with Distinction from Washing-
ton State University, Pullman, in 1969,
and the M.S. and Ph.D. degrees in
Engineering from UCLA in 1970 and
1974, respectively.

From 1971 to 1974, he was a Post-
graduate Research Engineer at the
ARPA Network Measurement Center,

UCLA, where he worked on packet switching techniques for
satellite and radio channels. From 1974 to 1977, he was a

Research Staff Member at the IBM T.J. Watson Research Center,
Yorktown Heights, New York. Since 1977, he has been on the
faculty of the University of Texas at Austin. He served as
Department Chair from 1992 to 1994. His current research
interests are in network protocol design and analysis, Internet
security services, and distributed multimedia.

He served on the editorial boards of IEEE/ACM Transactions

on Networking, IEEE Transactions on Software Engineering,

IEEE Transactions on Communications, Proceedings of the IEEE,
and Performance Evaluation. He was Editor-in-Chief of IEEE/

ACM Transactions on Networking from 1995 to 1999. He cur-
rently serves on the editorial board of Computer Networks. He

3104 S.S. Lam, H. Liu / Computer Networks 50 (2006) 3083–3104
co-founded the ACM SIGCOMM conference in 1983 and the
IEEE International Conference on Network Protocols in 1993.

He is a co-recipient of the 2004 ACM Software System Award
with the citation, ‘‘For inventing secure sockets and prototyping
the first secure sockets layer (named SNP—Secure Network
Programming) as a high-level abstraction suitable for securing
Internet applications.’’ He received the 2004 ACM SIGCOMM
Award for lifetime contribution to the field of communications
networks, and the 2004 W. Wallace McDowell Award from IEEE
Computer Society. He is a co-recipient of the 1975 Leonard G.
Abraham Prize in the field of communications systems and the
2001 William R. Bennett Prize in the field of communications
circuits and techniques, both from IEEE Communications
Society. He is an IEEE Fellow (elected 1985) and an ACM
Fellow (elected 1998).
Huaiyu Liu received the B.E. degree in
Computer Science and Engineering from
Northwestern Polytechnic University,
Xi’an, PR China, in 1996, the M.E.
degree in computer science and engi-
neering from Beijing University of
Aeronautics and Astronautics, Beijing,
PR China, in 1999, and the Ph.D. degree
in computer sciences from the University
of Texas at Austin in 2005.

She is now a research scientist at the
Wireless Networking Lab, Intel Corporation, Hillsboro, Oregon.
Her research interests include wireless networks, peer-to-peer

networks, and network security.

	Failure recovery for structured p2p networks: Protocol design and performance under churn
	Introduction
	Foundation
	Hypercube routing scheme
	K-consistent networks

	Basic failure recovery
	Protocol design
	Simulation experiments
	Methodology
	Results

	Voluntary leaves

	Join protocol for K-consistency
	Protocol design for concurrent joins and failures
	Protocol extensions
	Simulation results

	Churn experiments
	Experiment setup
	Results
	Maximum sustainable churn rate
	Protocol overheads

	Routing performance under churn
	Experiment setup
	Results

	Related work
	Conclusions
	References

