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Abstract

We investigate the fairness, smoothness, responsiveness, and aggressiveness of TCP and three representative TCP-

friendly congestion control protocols: GAIMD, TFRC, and TEAR. The properties are evaluated both analytically and

via simulation by studying protocol responses to three network environment changes. The first environment change is

the inherent fluctuations in a stationary network environment. Under this scenario, we consider three types of sending

rate variations: smoothness, short-term fairness, and long-term fairness. For a stationary environment, we observe that

smoothness and fairness are positively correlated. We derive an analytical expression for the sending rate coefficient of

variation for each of the four protocols. These analytical results match well with experimental results. The other two

environment changes we study are a step increase of network congestion and a step increase of available bandwidth.

Protocol responses to these changes reflect their responsiveness and aggressiveness, respectively.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a shared network such as the Internet, end

systems should react to congestion by adapting

their transmission rates to share bandwidth fairly,

to avoid congestion collapse, and to keep network
utilization high [1]; the robustness of the Internet is

due in large part to the end-to-end congestion

control mechanisms of TCP [2]. However, while

TCP congestion control is appropriate for appli-

cations such as bulk data transfer, other appli-

cations such as streaming multimedia would find

halving the sending rate of a flow to be too severe a

response to a congestion indication as it can no-
ticeably reduce the flow�s user-perceived quality

[3].

In the last few years, many unicast congestion

control protocols have been proposed and inves-

tigated [3–13]. Since the dominant Internet traffic

is TCP-based [14], it is important that new con-

gestion control protocols be TCP-friendly. By this,

we mean that the sending rate of a non-TCP flow
should be approximately the same as that of a
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TCP flow under the same conditions of round-trip

time (RTT) and packet loss rate [4,15].

Evaluations of these protocols, however, have

been focused mainly on protocol fairness in sta-

tionary environments. Two methods were pro-

posed to establish the fairness of a protocol. The
first is Chiu and Jain�s phase space method [16],
which can be used to show that a protocol will

converge asymptotically to a fair state, ignoring

such operational factors as randomness of the loss

process and timeouts. The second method is to

show that the long-term mean sending rate of a

protocol is approximately the same as that of TCP.

However, it has been observed in experiments
[11,12,17] that flows with TCP-friendly long-term

mean sending rates can still have large rate varia-

tions when loss rate is high.

Furthermore, fairness is only one of several

desirable properties of a congestion control pro-

tocol. We identify four desired properties: (1)

fairness: small variations over the sending rates of

competing flows; (2) smoothness: small sending
rate variations over time for a particular flow in a

stationary environment; (3) responsiveness: fast

deceleration of protocol sending rate when there is

a step increase of network congestion; and (4)

aggressiveness: fast acceleration of protocol send-

ing rate to improve network utilization when there

is a step increase of available bandwidth.

The objective of this paper is to evaluate these
properties by studying the transient behaviors of

several congestion control protocols under three

network environment changes. Proposed conges-

tion control protocols in the literature fall into two

major categories: AIMD-based [6–8,12,13] and

formula-based [3–5,9,11]. For our study, we select

TCP [2] and GAIMD [12] as representatives of the

first category. GAIMD generalizes TCP by para-
meterizing the congestion window increase value

and decrease ratio. That is, in the congestion

avoidance state, the window size is increased by a
per window of packets acknowledged and it is

decreased to b of the current value whenever there
is a triple-duplicate congestion indication. In our

evaluation, we choose b ¼ 7=8 because it reduces
a flow�s sending rate less rapidly than TCP does.
For b ¼ 7=8, we choose a ¼ 0:31 so that the flow
is TCP-friendly [12]. In what follows, we use

GAIMD to refer to GAIMD with these parameter

values. We select TFRC [13] as a representative of

the formula-based protocols. In addition to these

three protocols, we select TEAR [13] which uses a

sliding window to smooth sending rates.

The first environment change we study is the
inherent network fluctuations in a stationary en-

vironment. We evaluate three types of sending rate

variations: smoothness, short-term fairness, and

long-term fairness. For a stationary environment,

we observe that smoothness and fairness are pos-

itively correlated. To quantify the smoothness of a

flow, we derived an analytical expression for the

sending rate coefficient of variation (CoV) for each
of the four protocols. We found that our analytical

results match experimental results very well. We

observe that with increasing loss rate, smoothness

and fairness become worse for all four protocols.

However, their deteriorating speeds are differ-

ent. In particular, at 20% loss rate, TFRC CoV

increases to be the highest. TEAR maintains a

relatively stable smoothness and fairness perfor-
mance, but it scores the lowest in experiments on

responsiveness and aggressiveness (see below).

Also, while TFRC and TEAR have smoother

sending rates than those of TCP and GAIMD,

they have undesirable fairness behaviors at high

loss rate, i.e., TFRC sending rate dropping to al-

most zero and TEAR sending rate being too high

compared with TCP.
The second environment change we study is

a step increase of network congestion. Protocol

responses to this change reflect their responsive-

ness. In our experiments, TCP is the most re-

sponsive of the four protocols. However, TCP

overshoots and has to recover from its overshot

state. We also found an undesirable behavior of

TEAR. This shows that our evaluation framework
can be a valuable tool for evaluating congestion

control protocols and detecting undesirable pro-

tocol behaviors.

The third environment change we study is a

step increase of available bandwidth. Protocol re-

sponses to this change reflect their aggressiveness.

In our experiments, we found that TCP is the

most aggressive of the four protocols to use newly
available bandwidth. Again TCP overshoots.

TFRC with history discounting and GAIMD have
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similar aggressiveness. TEAR is the least aggres-

sive to utilize newly available bandwidth.

The balance of this paper is organized as fol-

lows. In Section 2 we discuss our evaluation

methodology. In Section 3 we evaluate protocol

responses in stationary environments. In Section 4,
we evaluate protocol responses to a step increase

of network congestion. Protocol responses to a

step increase in available bandwidth are shown in

Section 5. Our conclusion and future work are in

Section 6.

2. Evaluation methodology

2.1. Loss models

Network loss process is a major factor in de-
termining the performance of a congestion control

protocol. In our simulations, we use four simple

and representative loss models. We distinguish

between loss models for high multiplexing envi-

ronments and low multiplexing environments. By

high multiplexing environment, we mean that loss

is relatively insensitive to the sending rate of the

flow under study. This is intended to be a model
for backbone routers. By low multiplexing envi-

ronment, we mean that loss is somewhat sensitive

to the sending rate of a flow.

Our first loss model is deterministic periodic

loss. Though this model may be unrealistic, it is

simple and protocol responses for this model are

representative and clear.

The second loss model is Bernoulli loss. In this
model, each packet is lost with probability p,
which is independent and identically distributed

(i.i.d.) for all packets. We consider this model as

one representative for high multiplexing environ-

ments. For example, in today�s Internet, packets
are dropped by routers without regard to which

flows they belong to when buffers overflow.

Though packet losses can be correlated, a number
of studies [18–20] show that loss bursts in the In-

ternet are short and any loss correlation does not

span long, typically less than one RTT.

The third loss model for high multiplexing

environments is the loss process when background

traffic consists of ON/OFF sources, which can

generate web-like traffic (short TCP connections

and some UDP flows). In our experiments, we set

the mean ON time to be 1 s, and the mean OFF

time to be 2 s. During ON time each source sends

at 500 Kbps. The shape parameter of the Pareto

distribution is set to be 1.5. The number of ON/
OFF sources in our experiments is 5.

The fourth loss model is the loss process when

N flows are competing with each other. We con-

sider this loss model as a representative for low

multiplexing environments.

2.2. Simulation configurations

Our network topology is the well-known single

bottleneck (‘‘dumbbell’’) as shown in Fig. 1. In this

topology, all access links have a delay of 10 ms,

and they are sufficiently provisioned to ensure that

packet drops due to congestion occur only at the

bottleneck link from R1 to R2. The bottleneck link

is configured to have a bandwidth of 2.5 Mbps

and a propagation delay of 30 ms. We repeat each
simulation twice by configuring the bottleneck link

as either a drop-tail or a RED link. For drop-tail

link, we set a buffer size of 50 packets with packet

size 1000 bytes. The parameters of RED link are

scaled as in [11]. For most cases, the results for

drop-tail and RED are similar. Therefore, the re-

ported results are for drop-tail link unless we state

otherwise.
We use GAIMD based on TCP/Reno. Most of

our reported results on TCP are based on TCP/

Reno unless we explicitly point out. TFRC is

based on the code from ns June 12th, 2000 snap-

shot. In our initial set of TEAR experiments, we

used the code from the authors� web site. However,
we found that the timeout mechanism described in

their paper [13] was not implemented. Therefore,
we modified their code to implement timeout.

For most of the experiments, differences between

Source 1

Source N Sink N

Sink 1

10ms

2.5Mbps/30ms

R1 R2

Fig. 1. Network topology.
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the modified and unmodified versions are small.

However, there are big differences in some experi-

ments; in those cases, we will point them out.

To avoid phase effects [21] that mask underlying

dynamics of the protocols, we introduce random-

izations by setting the overhead parameter of TCP,
GAIMD, and TFRC to a small non-zero value.

3. Responses to stationary fluctuations

We first investigate protocol responses in sta-

tionary environments. The properties we study in

this section are smoothness and fairness.

3.1. Performance metrics

We use CoV to measure protocol smoothness

and fairness. First, we clarify three types of CoV.

3.1.1. Three types of coefficient of variation

The definition of CoV depends on measurement
timescale: the longer the timescale, the smaller the

CoV is. For our purpose, we measure smoothness

and short-term fairness at a timescale of RTT; we

define long-term fairness at a timescale of multiple

RTTs.

(1) Smoothness CoVtime. Consider any solid dot in

Fig. 2(a), which represents the sending rate

during a RTT of a specific flow. We define

CoVtime as the CoV of this time series. We ob-

serve that CoVtime measures the smoothness of

a flow.

(2) Short-term fairness CoVsf . Consider the solid
dots in Fig. 2(b), which are samples of the

sending rates of several competing flows dur-

ing the same RTT. The coefficient of variation

CoVsf of this data series measures short-term

fairness among competing flows.

(3) Long-term fairness CoVlf . Instead of measur-

ing the sending rates of competing flows dur-

ing the same RTT, we can measure their
sending rates during multiple RTTs. There-

fore, we define long-term fairness CoVlf as

the CoV over the sending rates of competing

flows in a longer time period.

With the definitions above, next we discuss their

relationships. First consider the relationship be-

tween smoothness and fairness at a given time-
scale. Assuming competing flows are i.i.d. (the

flows will then have the same mean sending rate if

the measurement interval is infinity) and ergodic,

we know that time distribution and population

distribution are equal, that is,

CoVtime samples ¼ CoVpopulation samples: ð1Þ

Thus we observe that generating smoother traffic

(measured by time samples) improves fairness
(measured by population samples).

Next, consider the relationship between short-

term and long-term CoV. It is intuitive that long-

term CoV will be smaller than short-term CoV.

Define an epoch as a time interval long enough

such that the sending processes of a flow between

epochs are independent and identically distributed.

Let Sj denote the flow�s average sending rate dur-
ing the jth epoch, and define RðnÞ ¼

Pn
j¼1 Sj=n as

its average sending rate in n epochs. Since we as-
sume the random variables fSjgnj¼1 are i.i.d., by the
central limit theorem, we know that the distribu-

tion of RðnÞ can be approximated by normal dis-
tribution when n is large:

CoV½RðnÞ� �
CoV½fSjgnj¼1�ffiffiffi

n
p : ð2Þ

Rate

(a)

(b)

  Time fluctuation
Time

Rate

t
Short term fairness

Time

Fig. 2. CoVtime and CoVsf .
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3.1.2. Metrics

In our evaluations, instead of using CoVsf to

measure short-term fairness, we follow [22] and

use fairness index F , defined as ð
P

xiÞ2=ðK
P

x2i Þ,
where fxigKi¼1 are the sending rates of competing
flows. Let X denote the underlying random vari-

able of samples fxigKi¼1. We observe that F �
E½X �2=E½X 2�. Rearranging, we have

F ðX Þ � 1

1þ CoVðX Þ2
: ð3Þ

In summary, the performance metrics we use in

this section are CoVtime, which measures smooth-

ness; F , which measures short-term fairness; and

CoVlf , which measures long-term fairness. How-

ever, the detailed behavior of a flow cannot be
fully characterized by these metrics. Moreover, our

analytical results are derived for specific loss

models. Therefore, to gain intuition, we will also

show sending rate traces and the fluctuations of

the bottleneck queue length for some simulations.

3.2. Analytical results

We present our analytical results on CoVtime for

TCP, GAIMD, TFRC, and TEAR. The deriva-

tions of these results are presented in the appendix.

3.2.1. AIMD

At low loss rate, assuming Poisson loss arrival,

we derive CoVtime for AIMD (including GAIMD

and TCP Reno as special cases) to be (see Ap-
pendix A):

CoVAIMD
time ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� b
1þ b

s
ð4Þ

where b is the reduction ratio of congestion win-
dow size when there is a congestion indication.

Plugging b ¼ 1=2 for TCP into Eq. (4), we have

CoVTCP
time ¼

ffiffiffi
1

3

r
� 0:58: ð5Þ

Plugging b ¼ 7=8 for GAIMD into Eq. (4), we

have

CoVGAIMD
time ¼

ffiffiffiffiffi
1

15

r
� 0:26: ð6Þ

When loss rate is high, both GAIMD and TCP

Reno will be in timeout states most of the time.

Modeling timeout as a Markovian process, we

derive CoVtime to be (see Appendix B):

CoVAIMD
time

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64ðt� 1Þ þ 32pþ 16p2þ 8p3 þ 4p4 þ 2p5 þ p6

64� 32p� 16p2� 8p3� 4p4� 2p5� p6

s

ð7Þ
where p is packet loss rate, and t is the ratio of
timeout interval to RTT.

Plugging p ¼ 20% and t ¼ 4 into the expression

above, for GAIMD and TCP Reno, we have

CoVAIMD
time � 1:7: ð8Þ

3.2.2. TFRC

At low loss rate, assuming Bernoulli loss, we

derive CoVtime for TFRC to be (see Appendix C):

CoVTFRC
time � 0:22: ð9Þ

At high loss rate (about 20%), we derive in the

appendix that CoVtime for TFRC will be between
0.8 and 2.4.

3.2.3. TEAR

At low loss rate, assuming Poisson loss, we

derive CoVtime for TEAR to be (see Appendix D):

CoVTEAR
time � 0:21: ð10Þ

3.3. Simulation results

3.3.1. High multiplexing environments

We start our simulation with periodic loss. Fig.
3 shows flow sending rate traces when the loss rate

is 5%. For this figure, the horizontal axis is mea-

sured in the number of RTTs, and the vertical axis

is the flow sending rate during a RTT. This simple

experiment shows that the sending rates of TFRC

and TEAR are smoother than those of TCP and

GAIMD at low loss rate. Fig. 4 shows flow

sending rate traces under Bernoulli loss model at
the same loss rate. Comparing Fig. 3 with Fig. 4,

we observe that because of the randomness of

Bernoulli loss, all four protocols exhibit much

Y.R. Yang et al. / Computer Networks 41 (2003) 193–210 197



larger fluctuations even at this relatively low loss

rate.

The result for 20% Bernoulli loss is even worse.

We observe from Fig. 5 that at 20% loss, the

sending rate of TFRC drops to almost 0 and the

average sending rate of TEAR is much higher than

those of TCP and GAIMD. Therefore, at high loss
rate, the behaviors of neither TFRC nor TEAR

are desirable.

Fig. 6 summarizes CoVtime from simulations for

all four protocols when Bernoulli loss rates are

varied from 0.5% to 20%. We make the following

observations:

• For all protocols, the overall trend is that

CoVtime increases with increasing loss rates. In

other words, the smoothness of the protocols

reduces with increasing loss rate.
• At the low loss rate of 1%, TCP has the larg-

est CoVtime of 0.51, which indicates that TCP

smoothness at low loss rate is the worst.

GAIMD CoVtime at this loss rate is the second

largest with a value of 0.3. TFRC and TEAR

have similar CoVtime at this loss rate with values

of 0.23 and 0.22, respectively. We observe that

these experimental values, 0.51, 0.3, 0.23 and
0.22, are close to the analytical predictions of

0.58 from Eq. (5), 0.26 from Eq. (6), 0.22 from

Eq. (9), and 0.21 from Eq. (10), respectively.

• At 8% loss rate, GAIMD CoVtime increases to

be the same as that of TCP. This is not surpris-

ing since at high loss rate, timeout dominates

AIMD approaches. From Eq. (8), we anticipate

a CoVtime of 1.73 at 20% loss rate. We observe
that this analytical prediction is close to the

measured value of 1.6.

• TFRC CoVtime stays low for up to 4% loss rate.

Then it increases very fast and exceeds TCP and

GAIMD at 15% loss rate. At 20% loss rate,

CoVtime of TFRC increases to 2, which is in

the analytical prediction range of 0.8–2.4. Since

TFRC has the highest CoVtime at high loss rate,
it indicates that TFRC smoothness and fairness

become the worst at high loss rate.

• TEAR keeps a low CoVtime of 0.2–0.4 across the

range of measured loss rates. These experimental

values agree with the analytical prediction of

0.21. These results show that TEAR can main-

tain a relatively stable smoothness and fairness

performance over a wide range of loss rates.
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Besides Bernoulli loss model, for high multiplexing

environments, we have also conducted experi-

ments with the ON/OFF loss model. We found

that under ON/OFF loss the smoothness of a

protocol is slightly worse than that under Ber-
noulli loss. To understand the reason for the

higher fluctuations, we investigated the bottleneck

queue length. We found that ON/OFF back-

ground traffic causes large fluctuations of bottle-

neck queue length. Therefore, we can expect large

fluctuations in sending rates of responsive com-

peting traffic.

3.3.2. Low multiplexing environments

We again start from the simplest environ-

ment. Fig. 7 shows flow sending rate traces when a

single flow is sending across the bottleneck link.

From simulation configuration, we know that the

bandwidth delay product is about 30 packets and

the bottleneck link has a buffer size of 50 packets,

therefore, there can be only 80 outstanding pack-
ets. When the congestion window size of a TCP/

GAIMD flow exceeds 80 packets, a packet will be

dropped and the flow�s window size will be re-

duced. However, since most of the time the con-

gestion window allows sending at a rate that is

higher than the bottleneck link speed, the achieved

sending rate is limited by ACK arrivals. Therefore,

TCP/GAIMD sending rates are stable at the bot-
tleneck link speed until they experience packet loss

and the window size drops below 30 packets.

As in the previous ON/OFF case, to understand

the reason for sending rate fluctuations, we plot in

Fig. 8 the fluctuations of the bottleneck queue

length. We make the following observations: (1)

The queue length under TCP exhibits large varia-

tions. TCP builds up the queue very quickly; when

the queue is full and a packet is dropped, TCP
backs off, and the queue drains to be empty very

quickly. (2) GAIMD behavior is similar, but the

fluctuations of queue length are much smaller than

those of TCP. (3) TEAR queue behavior is similar

to TCP––fast ramp up to the peak and quickly

drain out, but the cycle of TEAR queue fluctua-

tion is about two times of TCP. We notice that

during half of the cycle TEAR queue is almost
empty. The reason, as we will see in Section 5, is

that TEAR is very slow in accelerating its sending

rate. (4) Similar to GAIMD, TFRC does not drain

the queue to be empty, and its queue length fluc-

tuations are smaller. Similar to TEAR, the cycle of

TFRC queue length fluctuation is much longer

than those of TCP and GAIMD.

Following the simplest low multiplexing envi-
ronment, we next consider an environment with

several competing congestion avoidance flows.

Fig. 9 shows flow sending rate traces when 7 TCP

flows are competing with the flow under study. We

observe that TFRC and TEAR can maintain rel-

atively smooth sending rates, while the sending

rates of TCP and GAIMD fluctuate.
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Since in this environment 8 TCP-friendly flows

are competing against each other, we investigate

the fluctuations of short-term fairness index. Fig.

10 plots fairness index at each RTT. As we stated

in Section 3.1.1, short-term fairness is correlated to

sending rate smoothness. We know that TCP
smoothness metric CoVTCP

time is 0.58, and the 7 TCP

flows dominate in this experiment. Therefore,

plugging CoV ¼ 0:58 into Eq. (3), we predict a

short-term fairness index of F ¼ 1=ð1þ 0:582Þ ¼
0:7. From Fig. 10, we see that the simulation re-

sults fluctuate around the analytical value. We

have also repeated this simulation with RED link,

which has a different loss model; the result is
similar.

Fig. 11 presents this experiment from another

perspective: the fluctuations of the bottleneck

queue length. Comparing Fig. 11 with Fig. 8, we

observe that the queue behavior in this experiment

is similar to the queue behavior of a single TCP

flow, but the fluctuations have shorter cycles.

Therefore, we get higher fluctuations in sending
rates.

Protocol behaviors are different in an environ-

ment consisting of flows that belong to the same

protocol. Fig. 12 shows flow sending rate traces

when the 7 competing flows belong to the same

protocol as the flow under study. Comparing with

Fig. 9, we observe that in single protocol envi-

ronment the smoothness of GAIMD, TFRC, and

TEAR improves.
Fig. 13 investigates the fluctuations of short-

term fairness. It is particularly interesting to notice

that the short-term fairness indices of TFRC and

TEAR are close to 1, and the indices do not exhibit

large variations. Therefore, it shows that TFRC

and TEAR have better short-term fairness per-

formance than that of TCP.

We next compare our analytical results of short-
term fairness index with those from simulations.

First consider TFRC and TEAR. We know that

their CoVtime are about 0.21. Plugging this value

into Eq. (3), we have F ¼ 1=ð1þ 0:212Þ ¼ 0:96,
which is close to 1. As for GAIMD, we know its

CoVtime is 0.26. Plugging this value into Eq. (3), we

have F ¼ 1=ð1þ 0:262Þ ¼ 0:93, which is slightly

higher than the experimental result in Fig. 13.
Fig. 14 investigates the fluctuations of the bot-

tleneck queue length for this experiment. The
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Fig. 11. Queue length (1 flowþ 7 TCP).
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Fig. 12. Sending rates (same protocol, 8 flows).

0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 350 400 450 500 550 600 650 700

F
ai

rn
es

s 
in

de
x

RTT

TCP
GAIMD

TFR C
TEAR

Fig. 13. Fairness index (same protocol, 8 flows).
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queue behaviors are different between Figs. 11 and

14. In particular, when all flows belong to TFRC

or TEAR, they can maintain a high and stable

queue length. The queue length of GAIMD is also

relatively high and stable. Therefore, for these

three protocols, we can expect smaller delay jitter

and smoother sending rates than those of TCP.

In the last experiments in stationary environ-
ments, we evaluate the long-term fairness CoVlf .

Fig. 15 shows the simulation results for CoVlf of

32 flows belonging to the same protocol when

Bernoulli loss rates are varied from 0.5% to 17%.

In this simulation, TCP is based on TCP/SACK,

and the measurement interval is 15 s. We observe

that this figure is very similar to Fig. 6 in terms of

trend and relative orders among the four proto-
cols. This is not surprising given the relationship

we observed from Eq. (2). In another experiment,

we have also evaluated CoVlf when the measure-

ment interval is 60 s, which is four times longer.

We observed that, at low loss rate, CoVlf with 60 s

measurement interval is about half of that with 15

s measurement interval. These results validate the

relationship in Eq. (2).

4. Responses to step increase of congestion

In this section, we evaluate protocol respon-

siveness. In the terminology of control theory,

what we study are protocol responses to a step
increase function.

We first define the metric. Our metric to mea-

sure protocol responsiveness is the number of

RTTs D for a protocol to decrease its sending rate

to half under a persistent congestion, i.e., one loss

indication for each RTT. This metric has also been

used in [11,17].

4.1. Analytical results

Since TCP takes only one RTT to reduce its

sending rate to half, its responsiveness DTCP ¼ 1.

For GAIMD, DGAIMD ¼ log7=8 0:5 � 5. As for

TFRC, from [11], we have DTFRC ¼ 5. For TEAR,

denote W as the steady state window size just be-

fore persistent congestion. We know that TEAR
sending rate is 3W =4 per RTT before persistent

congestion, and that all of the eight entries in its

history window are 3W =4. After five consecutive
congestion indications, the eight entries in its his-

tory window become W =32;W =16;W =8;W =4;f
W =2; 3W =4; 3W =4; 3W =4g. Therefore, TEAR

sending rate after five loss indications will be re-

duced to half, and we have DTEAR ¼ 5.

4.2. Simulation results

We start our simulation with periodic loss

model. Fig. 16 shows protocol responses when loss

rate is increased from 1% to 4% at RTT 1000,

which is indicated as a vertical line in the figure.

Clearly, TCP is the fastest of the four protocols to
respond to loss rate increase; GAIMD follows;

TFRC, and TEAR have similar responding speed

and are obviously slower than TCP and GAIMD.

However, we observe that TCP over-reacts and

drops its sending rate to almost 0. Due to this

behavior, TCP takes as long to reach its new stable

state as the other three protocols.

Next we consider protocol responses to Ber-
noulli loss rate change. Fig. 17 shows protocol

responses when at RTT 1000 Bernoulli loss rate is

increased from 0.5% to 100%, i.e., all data packets
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are dropped at the bottleneck link from the sender

to the receiver. Since no data packet can go

through, we expect that a responsive protocol

would reduce its sending rate to almost 0. Among
the four protocols, TCP responds at the highest

speed and reduces its sending rate to almost 0.

GAIMD is the second; it also reduces its rate to

almost 0. TFRC is the third with a reasonable

responding speed. The responding speed of TEAR

is very slow. Furthermore, what we show here is

the behavior of TEAR with timeout mechanism

added. In our initial experiments, where TEAR
timeout mechanism is not implemented, TEAR

does not reduce its sending rate at all. Another

potential problem with TEAR is that TEAR puts

all control functionality in the receiver. Therefore,

if the feedback channel from the receiver to the

sender is totally congested, the sender will keep on

sending at previous rate. To rectify this potential

problem, we suggest that TEAR sender should
reduce its sending rate if no feedback has arrived

for a certain amount of time.

Protocol responses in the previous experiment

are mainly determined by their timeout and self-

clocking mechanisms (either at the sender or at the

receiver); they show different responses when data

packets can still go through the bottleneck link.

Fig. 18 tests the protocols when Bernoulli loss rate

is increased from 1% to 4% at RTT 1000. Since

these loss rates are relatively low, we expect a
TCP-friendly protocol to reduce its sending rate to

half. From Fig. 18 we observe that TCP is the

fastest to respond, and GAIMD follows. However,

TCP drops below the new target state and recovers

slowly from its over-reaction. On the other hand,

GAIMD, TFRC, and TEAR have slower response

speed than that of TCP, but none of them has

over-reaction.
Instead of controlling loss rate directly, next we

test the protocols by introducing new flows into a

steady environment. We first consider the case

when eight new TCP flows start at time 1000 when

one flow of the protocol under study and seven

competing TCP flows are in steady state.

In this experiment, we find the queue behavior

is particularly interesting. Fig. 19 shows queue
length traces at the bottleneck link. At about RTT

1025, the queue lengths for all four protocols ex-

hibit large dips. This suggests that the old flows

back off due to the introduction of new flows.

Thus, the bottleneck queue length decreases.

Next, we study protocol responses in a single

protocol environment. Fig. 20 shows the response

of a flow as eight new flows start at time 1000
when the flow and the seven competing flows are in

steady state. It is clear from this figure that TCP

and GAIMD respond very fast, but both protocols

overshoot to 0. TFRC and TEAR reduce their

speeds slower. However, they do manage to reduce

gradually to the new states.
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We next study the behavior of the bottleneck

queue. We expect that the queue will be in over-

load state for a longer period of time for a less

responsive protocol. Fig. 21 investigates queue

lengths before and after we increase the number of

flows. In this figure, increasing the number of flows

generates a large dip of queue length for TEAR
around RTT 1050. This dip indicates that the re-

sponses of TEAR flows are much longer delayed.

As another measure of protocol transient be-

haviors when network congestion is increased, we

consider fairness indices before and after the dis-

turbance. Fig. 22 shows the fluctuations of fairness

indices when the number of flows belonging to the

same protocol is doubled. The fairness indices of
TFRC and TEAR reduce from near to 1 to 0.5

right after the increase. Afterwards, their short-

term fairness indices gradually increase to 1 and

become stable at a value close to 1. The slow in-

crease of TEAR�s index indicates that the new

TEAR flows are slow in increasing their sending

rates, which is also observed in Fig. 21. As we have

already observed in Section 3, the fairness indices
fluctuate for both TCP and GAIMD. We also

notice that their fairness indices reduce after the

number of flows is doubled. This decrease of

fairness index is a result of increased loss rate.

5. Responses to step increase of bandwidth

We evaluate protocol aggressiveness in this

section. In the terminology of control theory, what

we will study are protocol responses to a step in-

crease function of available bandwidth.

As in the previous section, we first define

our metric. Our single-number-of-merit metric

to measure protocol aggressiveness is a protocol�s
increasing speed I per RTT. Since protocol in-
creasing speed depends on other factors such as

feedback interval, what we derive is an upper

bound. However, we notice that the metric I can
be used to optimize application performance.

5.1. Analytical results

TCP increases its rate by 1 per RTT in con-
gestion avoidance state. Thus its aggressiveness

metric ITCP equals to 1; likewise IGAIMD ¼ a ¼ 0:31.
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As for TFRC, from [11], we have ITFRC ¼ 0:12
without history discounting and ITFRC ¼ 0:22 with
history discounting. For TEAR, we know that,

when there is no loss, the receiver increases its

estimation of the sending rate from
Pt

i¼0 ðWþ
iÞ=ðt þ 1Þ ¼ W þ ðt=2Þ at RTT t to W þ ððt þ 1Þ=2Þ
at RTT t þ 1. Since the weight of the most recent

epoch is 1=6, the upper bound of ITEAR is 1=12.

5.2. Simulation results

We again start with periodic loss. Fig. 23 shows

protocol responses when loss rate is decreased

from 4% to 1% at RTT 1000. It is obvious from
this figure that TCP is the fastest to utilize new

bandwidth. GAIMD and TFRC with history

discounting have similar increasing speed but

GAIMD is slightly faster. TEAR is the slowest to

increase its sending rate. For this experiment, we

observe that the relative order of the protocols to

increase their sending rates conforms to our ana-

lytical result.
Fig. 24 shows another experiment where peri-

odic loss rate is decreased from 3% to 2%. In this

experiment, the history discounting mechanism of

TFRC is not activated, and we observe that TEAR

and TFRC become similar.

Next, we consider Bernoulli loss model. In Fig.

25, we reduce Bernoulli loss rate from 10% to 0%

at t ¼ 1000. Since no loss event occurs when p ¼ 0,
TFRC uses history discounting and increases its

sending rate faster than usual. We observe that

TCP is the fastest, and GAIMD is faster than

TFRC. TEAR is very slow compared with the

other three protocols.

Instead of testing the extreme case when there is

no loss at all, Fig. 26 shows protocol responses

when we reduce Bernoulli loss rate from 4% to 1%.

As is shown in the interval ð1000; 1050Þ, TCP is the
fastest in increasing its sending rate. GAIMD,

TFRC, and TEAR follow it.

Instead of controlling the loss rate directly, next

we test the protocols by stopping some flows in a

steady environment to increase available band-

width to remaining flows.

We first consider the case when 8 of the 15 TCP

flows stop at time 1000 in Fig. 27. Since we de-
crease the total number of flows from 16 to 8, the
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Fig. 26. Sending rates (Bernoulli loss, p ¼ 4%! 1%).
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sending rates of remaining flows should be dou-

bled. In this figure, TCP and GAIMD respond

almost instantaneously, while TFRC and TEAR
take much longer to utilize the newly available

bandwidth. From a control theory perspective, it

appears TEAR is over-damped.

Next we study protocol responses in a single

protocol environment. In this experiment, 8 of the

16 flows stop at time 1000. Fig. 28 shows the ad-

aptation of fairness indices. While fairness indices

of TFRC and TEAR do not change when the

number of flows decreases, those of TCP and

GAIMD increase almost instantaneously. This

conforms to the behaviors in Fig. 22, where TCP

and GAIMD fairness indices decrease when the
number of flows is increased.

Another point to notice is how fast each pro-

tocol occupies newly available bandwidth. Fig. 29

shows queue length traces for this experiment. For

all four protocols, queue lengths drop to zero

when the 8 flows stop. TCP takes only 20 RTTs to

fill the queue again. GAIMD and TFRC takes 42

and 45 RTTs, respectively. TEAR takes more than
200 RTTs because its sending rate increasing speed

is very slow.

6. Conclusion and future work

We studied analytically and via simulation the

transient behaviors of TCP, GAIMD, TFRC, and
TEAR. Table 1 summarizes our quantitative re-

sults. The first row shows fairness measured by the

short-term fairness index F discussed in Section 3.

From this metric, we infer that TFRC and TEAR
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Table 1

Summary of quantitative results

TCP GAIMD TFRC TEAR

Fairness F ¼ 0:7 at low loss F ¼ 0:9 at low loss F � 1 at low loss; sending

rate drops to 0 at high loss

F � 1 at low loss; sending

rate too high at high loss

Smoothness

(CoVtime)

0.58 at 2% loss,

1.7 at 20% loss

0.26 at 2% loss,

1.7 at 20% loss

0.22 at 2% loss, 2 at 20%

loss

0.2 at 2% loss, 0.4 at 20%

loss

Responsiveness

(D)
1 RTT 5 RTTs 5–6 RTTs 5–6 RTTs, slower if no

feedback

Aggressiveness (I) 1.0/RTT 0.31/RTT 0.12/RTT w/o history dis-

counting; 0.22/RTT w/

history discounting

0.08/RTT; slower with

delayed feedback
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have better fairness performance at low loss rate

than TCP and GAIMD. However, they have un-

desirable behaviors at high loss rate, i.e., TFRC

sending rate dropping to almost zero and TEAR

sending rate being too high compared to TCP.

The second row summarizes protocol smoothness
measured by CoVtime. From this metric, we ob-

serve that TFRC and TEAR have better

smoothness performance at low loss rate. While

TEAR can maintain a stable smoothness perfor-

mance up to 20% loss rate, TFRC becomes the

worst of the four protocols at 20% loss rate. The

third row summarizes protocol responsiveness

measured by D defined in Section 4. From this
metric, we see that TCP is the most responsive

among the four protocols. The other three have

similar responsive speed. The last row summarizes

protocol aggressiveness measured by I defined in
Section 5. This metric shows that TCP is the

fastest protocol in utilizing extra bandwidth.

TFRC, with history discounting, is slightly slower

than GAIMD. TEAR is the slowest to increase
sending rate.

Some issues that we have not studied include

the impact of different RTTs, and the transient

behaviors of congestion control protocols in diff-

serv environments. Also, it will be interesting to

investigate the impact of variations of sending

rates (especially for TCP and GAIMD) on pro-

tocol responsiveness and aggressiveness. We defer
these issues to a future study.
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Appendix A. AIMD mean and CoV when loss rate

is small

Consider the window size Wn just after a packet
loss. We can express the congestion window up-

date rule as

Wnþ1 ¼ bWn þ aXn: ðA:1Þ

Notice that we use a instead of a=RTT for ease of
typing.
From [23–25], we know that the above sto-

chastic difference equation has a stationary solu-

tion,

W 

n ¼ a

X1
k¼0

bkXn�1�k: ðA:2Þ

Moreover, even if W0 starts from an arbitrary
value, it will converge almost surely to the above

stationary distribution, i.e.,

lim
n!1

jWn � W 

n j ¼ 0: ðA:3Þ

Now, we can evaluate the mean and variance of

Wn. Follow the convention, denote m1 ¼ E½Xi�,
m2 ¼ E½X 2

i � and RðkÞ ¼ E½XnXnþk�, then

E½W 

n � ¼ m1

a
1� b

: ðA:4Þ

As for variance, we have

E½ðW 

n Þ

2� ¼ a2

1� b2
Rð0Þ

 
þ 2

X1
k¼1

bkRðkÞ
!
: ðA:5Þ

However, the above expectations are event aver-

age, we are more interested in time average.

Through Palm inverse formula [26], we have

E½gðW ðtÞÞ� ¼ 1

m1

E0
Z X0

0

gðW ðtÞÞdt
	 


: ðA:6Þ

First we consider E½W ðtÞ�, and we have

E½W ðtÞ� ¼ 1

m1

E0
Z X0

0

ðbW0

	
þ atÞdt



ðA:7Þ

¼ 1

m1

E0 bW0X0
h

þ a
2
X 2
0

i
ðA:8Þ

¼ 1

m1

E0 ab
X1
k¼0

bkX�1�kX0

" #

þ a
2m1

E0½X 2
0 � ðA:9Þ

¼ a
m1

1

2
Rð0Þ

"
þ
X1
k¼1

bkRðkÞ
#
: ðA:10Þ

Next, we consider E½W ðtÞ2�, we have
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E½W ðtÞ2� ¼ 1

m1

E0
Z X0

0

ðbW0

	
þ atÞ2 dt



ðA:11Þ

¼ 1

m1

E0
	
b2W 2

0 X0 þ abW0X 2
0

þ a2

3
X 3
0



ðA:12Þ

¼ 1

m1

E0 a2b2
X1
k¼0

bkX�1�k

 !2

X0

2
4 þ a2b

�
X1
k¼0

bkX�1�k

 !
X 2
0 þ a2

3
X 3
0

#
:

ðA:13Þ

Next, we consider a special case where the fXig are
i.i.d. In this case, we assume the loss interval fol-

low an exponential arrival with parameter k.

E½ðW 

n Þ� ¼

am1

1� b
; ðA:14Þ

E½ðW 

n Þ

2� ¼ a2

1� b2
m2

	
þ 2bm2

1

1� b



; ðA:15Þ

CoV½W 

n � ¼

1� b
1þ b

; ðA:16Þ

E½W ðtÞ� ¼ a
m1

m2

2

	
þ bm2

1

1� b



ðA:17Þ

¼ a
k

1

1� b
ðA:18Þ

and the average sending rate is

T ¼ E½W ðtÞ�
RTT

ðA:19Þ

¼ a
kRTT

1

1� b
: ðA:20Þ

Next, we consider E½W ðtÞ2�. From the above, we

know that

E½W ðtÞ2� ¼ a2b2
m2

1� b2

�
þ 2b

1� b2
m2
1

1� b

�
ðA:21Þ

þ a2b
m2

1� b
ðA:22Þ

þ a2

3

m3

m1

: ðA:23Þ

Plug in the parameters, and we have

Var½W ðtÞ� ¼ a2

ð1� b2Þk2
ðA:24Þ

and

CoV½W ðtÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� b
1þ b

s
: ðA:25Þ

Appendix B. AIMD CoV in timeout states

In this section, we derive the CoV formula for

AIMD when timeout loss indications dominate.
From [12], we can see that this will happen when

loss rate is above 20%.

Fig. B.1 shows a Markovian state transition

diagram. Each state represents one back-off factor.

We have also analyzed a model considering slow-

start effect, but the result is similar. Finding the

steady state distribution for this Markovian chain,

we have

p2i ¼ ð1� pÞpi; where 06 i6 5;

p64 ¼ p6:
ðB:1Þ

Denote t as the ratio of the timeout value and

RTT. We know that in state 1, the sender will send

Fig. B.1. Timeout state transition diagram.
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one packet in t RTTs, in state 2, the sender will
send one packet in one of the 2t RTTs, etc.
Therefore, the probability of sending a packet in a

RTT will be p1 ¼
Pk¼6

k¼0 p2k ð1=ð2ktÞÞ.
Therefore, the CoV will be

CoV

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64ðt � 1Þ þ 32p þ 16p2 þ 8p3 þ 4p4 þ 2p5 þ p6

64� 32p � 16p2 � 8p3 � 4p4 � 2p5 � p6

s
:

ðB:2Þ

Appendix C. TFRC CoV

At low loss rate, the sending rate of TFRC per

RTT becomes

RðtÞ ¼
ffiffiffiffiffi
3s
2

r
ðC:1Þ

where s is the weighted average of 8 loss intervals
fsig8i¼1,

s ¼
X8
k¼1

wisi: ðC:2Þ

First, without considering the smooth effect, we

consider the CoV of the sending process

R0ðtÞ ¼
ffiffiffiffiffiffi
3si
2

r
: ðC:3Þ

Denote p as the per packet loss probability, and
q ¼ 1� p. Consider the Markovian model in Fig.
C.1. The reason that the departure rate at state i is
proportional to

ffiffi
i

p
is that we assume Bernoulli loss

model, therefore, the higher the sending rate is, the
faster the rate to leave the state.

Solve the local balance equation:

Pik
ffiffi
i

p
pqi�1 ¼ Pjk

ffiffi
j

p
qj�1: ðC:4Þ

We have that the probability in each state is given

by

Pi ¼ c
qiffiffi
i

p ðC:5Þ

where c is the normalizing factor so that the

summation of Pi is 1.
With the distribution, we can find E½R0� as

E½R0� ¼
X1
k¼1

k
ffiffi
i

p
c
qiffiffi
i

p ; ðC:6Þ

E½ðR0Þ2� ¼
X1
k¼1

k2ic
qiffiffi
i

p : ðC:7Þ

From the above two expressions, we can derive the
expression for CoV½R0�. Numerically calculating the
value, we have CoV½R0� have values between 0.66
and 0.54 when the loss rate varies from 0.5% to 9%.

Approximate the smoothed version of TFRC

CoV by

CoV½R� ¼
X8
k¼1

w2
i

 !
CoV½R0�: ðC:8Þ

We know that CoV½R� varies between 0.25 and 0.21.
Under high loss rate, as a first approximation,

the sending rate will be proportional to the inverse
of p3=2. Similar to the above approach, we can

calculate the CoV½R0� at about 2.2 when loss rate is
about 20%, and the smoothed version will have

CoV of about 0.8.

As another approximation, we consider the case

when the sending rate is proportional to the in-

verse of p5=2 (which is the middle of 3=2 and 7=2),
we can calculate the CoV½R0� at about 6.4 when
loss rate is about 20%, and the smoothed version

will have CoV of about 2.4.

Appendix D. TEAR CoV

TEAR is based on TCP with a sliding window

to smooth sending rate. Be specific, the per RTT
sending rate of TEAR will be

i

21 j

λ i p
λ i p q i-1

i p qλ

Fig. C.1. TFRC low loss rate state model.
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TTEAR ¼
X8
i¼1

wi

PWi�Wi�1=2
k¼0

1
2
Wi�1 þ k

� �
Wi � 1

2
Wi�1 þ 1

: ðD:1Þ

Consider any term in the above summation:

Yi ¼
PWi�Wi�1=2

k¼0
1
2
Wi�1 þ k

� �
Wi � 1

2
Wi�1 þ 1

ðD:2Þ

¼ 1
2
Wi þ 1

4
Wi�1: ðD:3Þ

Therefore,

Vartime½TTEAR� ¼
X8
i¼1

wiYi ðD:4Þ

¼ 0:07708Var½Wi � ðD:5Þ

where Var½Wi� is the variance of the window sizes

just before a loss indication arrives.

Therefore,

CoVtime½TTEAR� ¼ 0:37CoV½Wi �: ðD:6Þ
From Eq. (A.16), we have

CoVtime½TTEAR� ¼ 0:37� 0:58 ¼ 0:21: ðD:7Þ
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