
Computer Networks 44 (2004) 855–870

www.elsevier.com/locate/comnet
Group rekeying with limited unicast recovery q

X. Brian Zhang, Simon S. Lam *, Dong-Young Lee

Department of Computer Sciences, The University of Texas at Austin, 1 University Station C0500, Austin, TX 78712-1188, USA

Received 11 March 2003; received in revised form 2 December 2003; accepted 2 December 2003

Responsible Editor: S. Foley
Abstract

In secure group communications, a key server can deliver a ‘‘group-oriented’’ rekey message [C.K. Wong, M.G.

Gouda, S.S. Lam, Secure group communications using key graphs, in: Proceedings of ACM SIGCOMM �98, Sep-
tember 1998, pp. 68–79] to a large number of users efficiently using multicast. For reliable delivery, Keystone [C.K.

Wong, S.S. Lam, Keystone: a group key management system, in: Proceedings of International Conference on Tele-

communications, Acapulco, Mexico, May 2000] proposed the use of forward error correction (FEC) in an initial

multicast, followed by the use of unicast delivery for users that cannot recover their new keys from the multicast. In this

paper, we investigate how to limit unicast recovery to a small fraction r of the user population. By specifying a very

small r, almost all users in the group will receive their new keys within a single multicast round.

We present analytic models for deriving r as a function of the amount of FEC redundant information (denoted by h)
and the rekeying interval duration (denoted by T) for both Bernoulli and two-state Markov Chain loss models. From

our analyses, we conclude that r decreases roughly at an exponential rate as h increases. We then present a protocol

designed to adaptively adjust ðh; T Þ to achieve a specified r. In particular, our protocol chooses from among all feasible

ðh; T Þ pairs one with h and T values close to their feasible minima. Our protocol also adapts to an increase in network

traffic. Simulation results using ns-2 show that with network congestion our adaptive FEC protocol can still achieve a

specified r by adjusting values of h and T .
� 2003 Elsevier B.V. All rights reserved.
qResearch sponsored by NSF grants ANI-9977267 and

ANI-0319168, and Texas Advanced Research Program 003658-

0439-2001. An abbreviated version of this paper appeared in

Proceedings of ICC 2003 Symposium on Next Generation

Internet, Anchorage, AK, May 2003.
* Corresponding author. Tel.: +1-512-4719531; fax: +1-512-

4718885.

E-mail addresses: zxc@cs.utexas.edu (X.B. Zhang), lam@cs.

utexas.edu (S.S. Lam), dylee@cs.utexas.edu (D.-Y. Lee).

1389-1286/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/j.comnet.2003.12.012
1. Introduction

Many emerging Internet applications, such as
pay-per-view distribution of digital media, re-

stricted teleconferences, multi-party games, and

virtual private networks, will benefit from using a

secure group communications model [22]. In this

model, members of a group share a symmetric key,

called group key, which is known only to group

users and the key server. The group key can be

used for encrypting data traffic between group
members or restricting access to resources in-

tended for group members only. The group key is
ed.

mail to: zxc@cs.utexas.edu

856 X.B. Zhang et al. / Computer Networks 44 (2004) 855–870
distributed by a group key management system,

which changes the group key from time to time

(called group rekeying).

The design of a group key management system

has had extensive research in recent years

[4,6,8,11,20,22,25,26]. In particular, the key tree
approach [20,22] reduces the server processing

time complexity of group rekeying from OðNÞ to
Oðlogd ðNÞÞ where N is group size and d the key

tree degree. This approach was shown to be opti-

mal in [19]. A key tree is a rooted tree with the

group key as root [22]. There are two types of

nodes: u-nodes containing users� individual keys,
and k-nodes containing the group key and auxil-
iary keys. A user�s individual key is shared only

between the user and key server. Each user is given

its individual key as well as keys contained in

k-nodes on the path from its u-node to the root

node. When a user joins or leaves the group, all

keys on the path from the user�s u-node to the root

node should be changed. Rekeying after every join

or leave request, however, can incur a large server
processing overhead. Thus periodic batch rekeying

was proposed to further reduce server processing

overhead [10,17,25].

The key tree approach requires reliable delivery

of new keys to users for group rekeying. This is

because the key server uses keys for one rekeying

interval to encrypt new keys for the next rekeying

interval. Each user however does not have to re-
ceive the entire rekey message because it needs

only those new keys that are located on the path

from the user�s u-node to the root node (a very

small subset of all new keys).

For reliable delivery, [23,25,26] proposed the

use of forward error correction (FEC) in an initial

multicast [16], followed by the use of unicast

delivery for users that cannot receive or recover
their new keys from the multicast.

Each unicast packet contains encrypted keys for

only one particular user. Thus, the size of a unicast

packet is much smaller than that of the rekey

message for the group. As a result, unicast recov-

ery will not cause a problem at the server if the

number of users who need unicast recovery is

small.
In this paper we investigate how to limit unicast

recovery to a small fraction r of the user popula-
tion. To achieve low delay, our protocol runs only

one multicast round.

With a very small r, we can achieve the fol-

lowing benefits. First we can significantly reduce

the unicast traffic. Second, a small r can achieve

low delivery latency for most users who receive or
recover their new keys in a single multicast round.

Last, a small r can reduce the data buffering

overhead at the user side. This is because when a

sending user (or the data server) uses the newly

received group key to encrypt outgoing data, the

users who have not yet received the new group key

will have to buffer incoming encrypted data before

the arrival of the new group key. If r is small, we
expect that most users will receive the new group

key at roughly the same time, and thus they incur

only a very small buffering overhead.

To achieve a small r, we may need to increase

the rekeying interval duration T . More specifically,

to make r smaller, we need to increase h (the

amount of FEC redundant information) and thus

the number of packets in rekey traffic. To keep the
sending rate of rekey traffic constant, we may have

to increase T ; otherwise, the sending rate of rekey

traffic will increase and it may hurt the perfor-

mance of other flows in the Internet [2,3].

On the other hand, as a measure of the granu-

larity of group access control, a small T is prefer-

able. This is because all join and leave requests

issued in the same rekeying interval are processed
in a batch. Thus a new group key will not be

generated and used until the end of each rekeying

interval. As a result, a departed user can still read

future data for up to T time units after it has left

the group. Hence, a small T is desirable to achieve

tight access control.

In this paper, we investigate the tradeoffs be-

tween r, T , and h. We present analytic models for
deriving r as a function of T and h. We then design

an adaptive FEC protocol to achieve a target value

of r under dynamic network conditions. Our pro-

tocol chooses from among all feasible ðh; T Þ pairs
one with h and T values close to their feasible

minima. Simulation results from ns-2 show that

our protocol can achieve fairly smooth traces of r
when group rekeying is subjected to statistical
fluctuations of a fixed set of competing flows. We

also investigated the dynamic behavior of our

Table 1

Notation

Symbol Description

BWm Amount of multicast traffic (in bytes per rekey

message)

BWu Amount of unicast traffic (in bytes per rekey

message)

h Number of parity packets for each FEC block

hl A lower bound of h
k FEC block size (number of rekey packets per

block)

n Number of existing users

r Fraction of users that require unicast recovery

r� Target value of r
T Rekeying interval (in seconds)

u� Target number of NACKs

ðh�; T �Þ Smallest feasible ðh; T Þ pair for a specified r�

ðh0; T 0Þ A ðh; T Þ pair that is close to ðh�; T �Þ

X.B. Zhang et al. / Computer Networks 44 (2004) 855–870 857
protocol when the set of competing flows is in-
creased. We found that with the onset of network

congestion our adaptive FEC protocol can still

achieve the target r by adjusting values of h and T .
The balance of the paper is organized as fol-

lows. In Section 2, we present the basic group re-

keying protocol. In Section 3, we analyze the

tradeoffs between r, T , and h. In Section 4, we

design and evaluate our adaptive FEC protocol.
Our conclusions are in Section 6. Notation used in

this paper is defined in Table 1.
2. An overview of group rekeying protocol

In this section, we give an overview of our

group rekeying protocol, which is a variation of
the protocol proposed in [26]. 1 The key server

protocol for one rekey message is as follows:
1 The protocol presented in this paper is the latest version of

group rekeying protocols designed by our research group. The

first was Keystone [23], which was extended in [26] to include a

key identification scheme, key assignment algorithm, block ID

estimation algorithm, and adaptive FEC. In this paper, the

protocol in [26] has been modified as follows: There is only one

multicast round and T is adaptive. A new algorithm has been

designed to minimize h and T for a target r under a rekeying

bandwidth constraint.
• At the end of each rekeying interval, the key ser-

ver uses group-oriented rekeying strategy [22] to

generate a rekey message. Each item in the mes-

sage is an encrypted new key, called encryption.

In the key tree approach, a user needs a partic-
ular encryption only if the encryption contains a

key that is on the path from the user�s u-node to
the root node.

• The key server divides the rekey message into re-

key packets. Our packet generation algorithm

guarantees that all of the encryptions needed

by any user will be contained in a single packet.

We refer the interested readers to [26] for a de-
tailed discussion of our packet generation algo-

rithm.

• The key server partitions the packets into multi-

ple blocks. Each block contains k packets. 2 We

call k the block size. The key server then gener-

ates h parity packets for each block using a

Reed–Solomon Erasure (RSE) coder [14].

• The key server multicasts k rekey packets and h
parity packets for each block within the next re-

keying interval.

• The key server collects NACKs from users, and

adjusts the values of h and T for the next rekey

message according to the number of NACKs re-

ceived.

• The key server switches to unicast recovery for

users that sent NACKs. For each such user,
the key server sends a single unicast packet con-

taining encryptions needed by the user. Since it

takes time for the key server to receive NACKs,

unicast recovery for a rekey message has to be

executed in later rekeying intervals, concurrently

with the multicast of subsequent rekey messages.

At the user side, following a timeout, a user
checks whether it has received or can recover its

required encryptions. A user can recover its re-

quired encryptions in any one of the following

three cases: (1) the user receives the specific rekey

packet that contains the user�s encryptions; (2) the
user receives at least k packets from the block that

contains its specific rekey packet, and thus the user
2 The key server may need to duplicate some packets so that

there are exactly k packets for each block.

858 X.B. Zhang et al. / Computer Networks 44 (2004) 855–870
can recover the k original rekey packets; (3) the

user receives a unicast packet during subsequent

unicast recovery. The unicast packet contains all

of the encryptions needed by the user.

If the user cannot recover its required encryp-

tions, it will report a NACK to the key server. The
NACK specifies the number of packets needed by

this user to recover its block. By the property of

Reed-Solomon encoding, this value equals k minus

the number of packets received in the block con-

taining its specific rekey packet. This information

is needed by the key server�s adaptive FEC scheme.
3. Analyses

In our group rekeying protocol, we care about

two performance metrics: r and T .
Metric r measures the fraction of users who

cannot receive the new group key on time. Our

protocol uses an FEC scheme to send k þ h
packets for each block within rekeying interval T ,
such that most users can receive or recover their

required encryptions within a single multicast

round. We call the (expected) fraction of users who

cannot receive or recover their required encryp-

tions during multicast as residual error rate r. For
these users, the key server will use unicast to de-

liver their required encryptions to them. These

users, however, have to buffer incoming data
packets that are encrypted by the new group key

until they receive the new keys. Hence, a small r is
preferable in terms of reducing the buffering

overhead at the user side as well as reducing the

key server�s unicast traffic.

Metric T is a performance measure of the group

access control granularity. In periodic batch re-

keying a new group key will not be generated and
used until the end of a rekeying interval. As a result,

a departed user can still read future data for up to T
time units after it has left the group. Hence, a small

T is desirable to achieve tight access control.

Ideally we want to achieve both small r and

small T ; however, these two goals conflict with

each other. More specifically, in order to achieve a

smaller r, the key server needs to increase h. To
send all of the k þ h packets for each block within

rekeying interval T , the key server may have to
increase T . Otherwise, the increased rekey traffic

may hurt the performance of other flows in the

Internet [2,3].

In this section, we will investigate the tradeoffs

between r, T , and h. To do this, we will first ana-

lyze r as a function of h and T , and then investigate
the impact of rekeying bandwidth constraint on

the relationships among h, T , and r.
3.1. Analytic models

In this subsection, we will analyze r as a func-

tion of h and T , denoted by r ¼ f ðh; T Þ. Both

Bernoulli and Markov loss models are considered.
For simplicity of analyses, we assume that users

experience independent and homogeneous (same

loss parameters) losses. Under this assumption, r
equals the probability that a user cannot receive or

recover its required encryptions during multicast.

For simplicity, we still call this probability residual

error rate.
3.1.1. Bernoulli model for independent loss

We now derive the expression of r ¼ f ðh; T Þ for
the case that T is large, that is f ðh;1Þ. In this case,

packets sent consecutively can be spaced widely

enough such that they will likely experience inde-

pendent losses. Temporally independent losses can

be simulated by the Bernoulli loss model. In par-

ticular, letting p denote the packet loss rate seen by
each user, we have

r ¼ f ðh;1Þ ð1Þ

¼ p �
Xk�1
i¼0

k þ h� 1

i

� �
ð1� pÞipkþh�1�i ð2Þ

¼ pkþh �
Xk�1
i¼0

k þ h� 1

i

� �
1

p

�
� 1

�i

; ð3Þ

where k is the block size. Intuitively, r equals the

probability that the user does not receive its spe-

cific rekey packet, and it receives less than k
packets from the block that contains its specific

rekey packet.
From Eq. (3), we observe that for fixed k and p,Pk�1
i¼0

�
k þ h� 1

i

�
1
p � 1

� �i
is a polynomial of h

X.B. Zhang et al. / Computer Networks 44 (2004) 855–870 859
with a degree of k � 1. Letting Pk�1ðhÞ denote this
polynomial, we have

r ¼ pkþh �Pk�1ðhÞ: ð4Þ
From this expression, we see that the effect of

h on r comes from the product of two terms:

pkþh and Pk�1ðhÞ. When h increases, the first term

pkþh decreases exponentially, while the second

term Pk�1ðhÞ increases as a polynomial of h. Since
the first term changes at a faster rate than the

second, we expect that increasing h will sharply
reduce r.

3.1.2. Markov model for burst loss

In the subsection above, we consider the case

that T is large, and thus derive r ¼ f ðh;1Þ based
on the Bernoulli loss model. If T is small, however,

packets sent within interval T will likely experience

temporally dependent losses. To analyze r ¼
f ðh; T Þ for a small T , we apply a Markov loss

model used in [5,12] to investigate correlated losses

between consecutive packets.

In the Markov loss model, a two-state contin-

uous time Markov chain fXtg 2 f0; 1g is used to

describe the packet losses. In particular, a packet

transmitted at time t is lost if fXtg ¼ 1 and not lost

if fXtg ¼ 0. The generation matrix of this Markov
chain is

Q ¼ �l0 l0

l1 �l1

� �
:

Its rate transition diagram is shown in Fig. 1.

Let pi, i ¼ 0; 1, be the stationary distribution of

this Markov chain. Let pi;jðsÞ denote the proba-

bility that the process is in state j at time t þ s
given that it was in state i at time t. That is

pi;jðsÞ ¼ P ðXtþs ¼ jjXt ¼ iÞ. Then we have p0 ¼ l1=
ðl0 þ l1Þ, p1 ¼ l0=ðl0 þ l1Þ, and
µ 0

µ 1

0
(no loss)

1
(loss)

Fig. 1. Transition diagram of the two state Markov chain.
pð1;1ÞðsÞ ¼
l0 þ l1 � expð�ðl0 þ l1ÞsÞ

l0 þ l1

ð5Þ

¼ p1 þ p0 � expð�ðl0 þ l1ÞsÞ: ð6Þ

Before analyzing r ¼ f ðh; T Þ, we first need to
figure out how to space packets when they are sent

out within rekeying interval T . It is well known

that residual error rate is sensitive to the packet

spacing under burst losses [12]. Therefore, we

are concerned with how to space packets so as

to minimize r while they are sent out within

interval T . 3

To answer this question, we observe that in our
group rekeying protocol, a particular user needs

packets only from the block to which its specific

rekey packet belongs. Therefore, we consider the

case that the key server sends only k þ h packets

within interval T to a particular user. We are

concerned with how to space the k þ h packets so

as to minimize the residual error rate for this user.

Let si denote the interval between the times at
which the ith and ðiþ 1Þth packets are sent,

i ¼ 1; . . . ; k þ h� 1. Those packets tend to expe-

rience burst losses when T is small. We assume

that the probability of more than one burst loss

duration happening within a small interval T is

low. Suppose that the specific rekey packet that

this user requires is at the mth position,

m ¼ 1; . . . ; k. Given that the loss duration starts
from the jth packet, where j ¼ 1; . . . ;m and

jþ hPm, we can derive the conditioned residual

error rate for this user as

rm;j ¼ p1 �
Yjþh�1
i¼j

p1;1ðsiÞ ð7Þ

¼ p1 �
Yjþh�1
i¼j
ðp1 þ p0 � expð�ðl0 þ l1ÞsiÞÞ; ð8Þ
3 Bolot et al. [5] investigated another case of this problem in

a similar way. The optimization problem in [5] was presented

for a unicast telephony application, and the paper maximized

the probability that at least one packet out of k packets is

received. In our multicast based group rekeying protocol,

however, each user needs to receive its specific rekey packet, or

receive at least k packets out of the k þ h packets from the block

to which its specific rekey packet belongs.

Fig. 2. Spacing between packets.

0.001

0.01

r

T=0.5 sec
T=1 sec
T=3 sec

860 X.B. Zhang et al. / Computer Networks 44 (2004) 855–870
where the right side expression represents the

probability that the jth packet and the following h
packets are lost.

From Eq. (8) we observe that condition proba-

bility rm;j is a decreasing function of si for j6
i6 jþ h� 1. To minimize rm;j, we should have

si ¼ 0 for i < j or i > jþ h� 1 since
Pkþh�1

i¼1 si ¼ T .
Then the desired values of fsijj6 i6 jþ h� 1g
should be the solution to the following optimiza-

tion problem:

minimize p1 �
Yjþh�1
i¼j
ðp1 þ p0 � expð�ðl0 þ l1ÞsiÞÞ

subject to
Xjþh�1
i¼j

si ¼ T :

Solving it using the standard Lagrange multi-

pliers method, we get sj ¼ sjþ1 ¼ � � � ¼ sjþh�1.
Therefore, to minimize rm;j for a particular user,

the packets should be equally spaced.

Our eventual goal is to minimize the residual

error rate for each user without conditioning on
the start point of the loss duration. We observe

that different users may need different specific re-

key packets, and the loss duration may start from

different packets. That is, m and j may vary from

user to user. 4 To minimize the sum of residual

error rates for all users, we argue that we should

have si ¼ sj 8i; j ¼ 1; . . . ; k þ h� 1.

Thus we get our packet spacing strategy as
follows. If the rekey message consists of only one

block of packets, all the packets should be equally

spaced in rekeying interval ½t; t þ T � including both

endpoints. If the key server has multiple blocks to

send, the packets belonging to the same block

should be equally spaced. The packets from dif-

ferent blocks, however, should be sent in an

interleaved fashion. That is, the ith packets from
each blocks should be sent together without

spacing. Though these packets will likely experi-

ence burst losses, it is harmless since each partic-

ular user needs packets only from one specific

block. Fig. 2 illustrates how the key server should
4 In our packet generation algorithm presented in [26], each

rekey packet contains encryptions for roughly equal number of

users.
space packets when a rekey message is divided into

three blocks, and each block contains k þ h ¼ 4

rekey and parity packets.

With equal spacing between packets, we can

derive a lower bound of r by assuming that at most

one loss duration happens during rekeying interval
T , as follows:

r ¼ f ðh; T Þ ð9Þ
P p1 � expð�l1 � h � sÞ ð10Þ

� p1 � exp
�
� l1 � h � T
hþ k � 1

�
; ð11Þ

where expð�l1 � h � sÞ is the probability that the

loss duration lasts for at least h � s time interval.

Factor s here is the spacing interval between two

consecutive packets of the same block. Roughly

speaking, s equals T =ðhþ k � 1Þ if we ignore
packet transmission time.

3.1.3. Illustration

We now illustrate the function r ¼ f ðh; T Þ with
numerical and simulation results. We set p ¼ 0:06
for the Bernoulli loss model, and l0 ¼ 0:75 and

l1 ¼ 11:75 (thus p1 ¼ 0:06) for the two-state

Markov model. Fig. 3 shows the value of r as a
0.0001
0 2 4 6 8 10

h

T=5 sec
Bernoulli

Fig. 3. r as a function of h.

5 nb is in fact a function of rekeying interval T ; however, it
can be treated as a given value while the rekeying bandwidth

constraint is formulated. In particular, at the end of one

rekeying interval Ti, the key server generates a rekey message

that has nb (a function of Ti) blocks. This rekey message will be

sent out within the next rekeying interval Tiþ1. As far as the

rekeying interval Tiþ1 is concerned, nb is a given value.
6 Since it takes time for the key server to receive NACKs,

unicast recovery for one rekey message has to be executed later.

However, as long as inequality (14) holds for each rekeying

interval, the rekey traffic will not exceed allocated bandwidth

over a long term.

X.B. Zhang et al. / Computer Networks 44 (2004) 855–870 861
function of h. The figure contains five curves. One

is based on the Bernoulli loss formula (Eq. (3)),

and the remaining four are based on the Markov

loss model for different values of T , that is,

T ¼ 0:5, 1, 3, and 5 second(s). For the Markov loss

model, we use simulations to compute the value of
r for various h and T values. Each point in the four

curves is the average value based on 100 trials. As

can be seen from the figure, as h increases, r de-

creases roughly linearly on a logarithmic scale. We

also observe that when T is small, packets sent

consecutively will likely experience burst losses,

and thus the Markov model gives larger r than the

Bernoulli model. When T increases, the curve of r
produced by the Markov model will gradually

approach that of the Bernoulli model.

From now on, given ðh; T Þ, we use the larger

value produced by Eq. (3) and (9) to approximate

the actual r. The value we choose is still a lower

bound. For the evaluation in this section, however,

the conclusions we draw based on the lower bound

will usually hold for the actual r. Furthermore, we
expect the value we choose will be close to the

actual r if T is not very small.

3.2. Rekeying bandwidth constraint

In the previous subsections, we analyze

r ¼ f ðh; T Þ under the Bernoulli and Markov loss

models. In our derivations, we assume that h and T
are independent variables. The relationship be-

tween h and T , however, should be constrained

because the available rekeying bandwidth is usu-

ally limited.

Rekeying bandwidth constraint requires that

rekey traffic should not exceed a given sending rate

at any time. This constraint arises from the fact

that rekey traffic has to share bandwidth with data
traffic, while the total available bandwidth is

determined by network conditions and users�
receiving capacities. For example, in secure group

communication applications such as pay-per-view

distribution of digital media, restricted telecon-

ferences, and multi-party games, there typically

exists a considerable amount of data traffic among

group users. The data traffic competes for band-
width with rekey traffic. Therefore, usually only a

small percentage of total available bandwidth can
be allocated for group rekeying. Let bðtÞ denote
the allowed sending rate (in bytes per second) for

rekey messages at time t. In the literature, there are

extensive research results on how to determine the

unicast or multicast sending rate in dynamic net-

work situation. We refer interested readers to re-
lated papers such as [9,15,21,24]. In this paper, we

assume that bðtÞ is a given system parameter.

We claim that bðtÞ will not sharply change with

time t. The total available bandwidth shared by

data and rekey traffic is a dynamic function of

time. But we can adjust the rate of data traffic to

keep bðtÞ smooth. From now on, we assume that

bðtÞ is constant for the duration of a rekeying
interval.

Before formulating the rekeying bandwidth

constraint, we introduce some notation. Let n be

the number of users in the system, sm be the length

of a multicast packet (in bytes), su be the unicast

packet length (in bytes), nb be the number of

blocks in a rekey message, 5 and w be the expected

number of unicast transmissions (or retransmis-
sions) in order to deliver a unicast packet to a user.

Then at the key server side, the amount of

multicast traffic (in bytes per rekey message) is

BWmðhÞ ¼ ðk þ hÞ � nb � sm: ð12Þ
After multicast, there are about n � r users who

cannot receive or recover their required encryp-

tions. The key server sends unicast packets to them

to provide eventual reliability. The key server�s
unicast traffic (in bytes per rekey message) is

BWuðrÞ ¼ n � r � w � su: ð13Þ
In summary, our rekeying bandwidth constraint
can be formulated as 6

862 X.B. Zhang et al. / Computer Networks 44 (2004) 855–870
BWmðhÞ þ BWuðrÞ6 T � bðtÞ: ð14Þ
We now evaluate how h and T affect the amount

of rekey traffic, which equals BWmðhÞ þ BWuðrÞ.
As a concrete example, suppose that at the

beginning of each rekeying interval the key tree

(with degree 4) is balanced with 768 users. During

each rekeying interval, 192 join and 192 leave

requests are processed. We further assume that the

leave requests are uniformly distributed over the

users. We set the length of a multicast packet as

1005 bytes (including UDP and IP header sizes).
The length of a unicast packet is 132 bytes. This is

determined by the height of the key tree. We set

block size k ¼ 14 and unicast retransmission factor

w ¼ 1:3. We refer interested readers to [26] for a

detailed discussion on how to determine packet

length and block size.

Fig. 4 illustrates the rekey traffic (in bytes per

rekey message) as a function of h for various values
of T (in seconds). As can be seen, as a function of h,
rekey traffic first decreases and then increases lin-

early when h increases. This is because when h is

small, unicast traffic produced by large r will

dominate the overall rekey traffic. When h in-

creases, unicast traffic will sharply decrease and

eventually diminish. And then multicast traffic will

begin to dominate and increase as a linear function
of h. On the other hand, as a function of T , rekey
traffic is large for small T , and then it decreases and

keeps unchanged as T increases. This is explained

by the fact that burst losses produce large r when T
is small. Large r requires large unicast traffic.
30000

35000

40000

45000

50000

0 2 4 6 8 10

re
ke

y
tr

af
fic

h

T=0.5
T=1
T=2
T=4
T=6

Fig. 4. Rekey traffic (bytes per rekey message) as a function of

h for various values of T (seconds).
We next investigate the impact of the rekeying

bandwidth constraint on the relationship between

h and T . As a concrete example, we set bðtÞ ¼ 100

kbps. Because of the rekeying bandwidth con-

straint, we expect that some ðh; T Þ pairs will violate
the constraint. Fig. 5 shows ðh; T Þ pairs that satisfy
the rekeying bandwidth constraint. We observe

that when T or h is small, the bandwidth constraint

will not be satisfied because of high unicast traffic,

as implied by Fig. 4. Furthermore, large h is not

allowed since it produces high multicast traffic.

From Fig. 5 we can draw another important

conclusion. That is, T has to be in the order of

seconds to satisfy the rekeying bandwidth con-
straint given the configuration of this example.

Based on this observation, we predict that our

FEC scheme will be very effective for our group

rekeying protocol because packets of the same

block tend to experience independent losses. To

see this, we first notice that T cannot be very small

because of the rekeying bandwidth constraint, as

implied by Fig. 5. Second, each particular user
needs packets only from one specific block.

Therefore, when k þ h packets of the same block

are equally spaced within interval T , we expect

that each user has a high probability to recover the

block that it requires.

3.3. Tradeoffs between r, T , and h

Up to now, we have analyzed r ¼ f ðh; T Þ under
the Bernoulli and Markov loss models, and also

quantified the impact of rekeying bandwidth con-
0

1

2

3

4

5

0 5 10 15 20

T
 (

se
c)

h

Fig. 5. Feasible ðh; T Þ pairs for bðtÞ ¼ 100 kbps.

0

2

4

6

8

10

0.0001 0.001 0.01 0.1

h

r*

h*
h’

Fig. 7. h� and h0 as functions of r�.

2

2.5

3

3.5

4

0.0001 0.001 0.01 0.1

T
 (

se
c)

r*

T*
T’

Fig. 8. T � and T 0 as functions of r�.

X.B. Zhang et al. / Computer Networks 44 (2004) 855–870 863
straint on the relationship between h and T . We

are now ready to investigate the tradeoffs between

r, T , and h.
Recall that r is the fraction of users who cannot

receive their new keys during the initial multicast,

while T measures the group access control granu-
larity. Small values of r and T are preferable.

However, achieving a small r and a small T are

conflicting goals.

In practice, we would like to give higher priority

to r than to T . This is because r is directly related

to the performance seen by each user. For this

purpose, we specify a target residual error rate

(denoted by r�) as a system parameter. We aim to
make sure that current ðh; T Þ values satisfy

f ðh; T Þ6 r� as well as the rekeying bandwidth

constraint. As a concrete example, we set bðtÞ ¼
100 kbps and r� ¼ 5=n, where n ¼ 768. Fig. 6

shows feasible ðh; T Þ pairs that satisfy f ðh; T Þ6 r�

as well as the rekeying bandwidth constraint.

Among all feasible ðh; T Þ pairs for a given r�, the
one with the smallest T is preferred. Let ðT �; h�Þ be
such a pair, that is, T � ¼ minfT j9h; s:t: f ðh; T Þ6
r�; BWmðhÞþBWuðf ðh;T ÞÞ6T �bðtÞg, h� ¼ minfh j
f ðh; T �Þ 6 r�; BWmðhÞ þ BWuðf ðh; T �ÞÞ 6 T ��
bðtÞg. Figs. 7 and 8 illustrate the values of T � and h�

for various r�. (In Figs. 7 and 8, h0 and T 0 are
approximations of h� and T �. They can be com-

puted without knowledge of the mathematical

expression for r ¼ f ðh; T Þ. See Section 4.1.) First
consider h�. From Fig. 7 we observe that when r�

decreases from 0.1 to 0.0001 on a logarithmic scale,

h� increases roughly at a linear rate. This confirms
0

1

2

3

4

5

0 5 10 15 20

T
 (

se
c)

h

Fig. 6. Feasible ðh; T Þ pairs for r� ¼ 5=768 and bðtÞ ¼ 100 kbps.
that our FEC scheme is very effective in reducing r.
We next examine T � as a function of r�, as shown in

Fig. 8. Recall that when r� decreases from a large

value, unicast traffic will decrease significantly. The
decrease of unicast traffic will balance the increase

of multicast traffic. As a result, the curve of T �

keeps flat when r� decreases from 0.1 to 0.001.

When r� further decreases, unicast traffic dimin-

ishes and multicast traffic will dominate. Conse-

quently, T � will increase at a similar rate as h�. A
direct conclusion from Figs. 7 and 8 is that we can

achieve a very small r without significantly
increasing h and T .

3.4. Further discussions

In our previous analyses, we assume that loss

parameters p, l0, and l1 are independent of h and

T . Then from Eqs. (3) and (9), we conclude that r

864 X.B. Zhang et al. / Computer Networks 44 (2004) 855–870
can be made as small as possible by increasing h
and T .

This conclusion seems to conflict with previous

research results such as [2,3], which observed that

large FEC traffic may increase residual error rate

at receivers. A further investigation, however, will
resolve this discrepancy. In the FEC schemes

investigated in [2,3], the sender sends k þ h packets

for each block within fixed time interval T .
Therefore, the traffic rate will increase propor-

tionally if h is increased. When h is too large, FEC

traffic will eventually overflow router buffers, and

thus cause congestion. On the other hand, in our

group rekeying protocol, the rate of rekey traffic is
constrained by bðtÞ. In practice, the value of bðtÞ
can be updated over time and reflect up-to-date

network conditions. However, since rekey traffic is

usually much smaller than data traffic, we expect

that the rekey traffic will not hurt network per-

formance as long as bðtÞ is updated in a smooth

manner.
4. Adaptive FEC protocol

From our analyses in Section 3, we observe that

our FEC scheme is very effective in reducing r. As

a result, we can achieve a very small r without

significantly increasing h and T . In this section, we

will discuss how to determine ðh�; T �Þ for any
specified r� in a dynamic network environment.

4.1. Foundation

In practice, it seems hard to find the exact T �

and h� for a specified r�. This is because the general
form of f ðh; T Þ is usually unknown. In particular,

the expression of f ðh; T Þ depends on network loss
conditions as well as network topology. Therefore,

it is desirable to design a method to find a near-

optimal pair without knowledge of the mathe-

matical expression for r ¼ f ðh; T Þ.
Theorem 1 shows how to find a feasible pair

ðh0; T 0Þ that is close to ðh�; T �Þ.

Theorem 1. Given that f ðh; T Þ is a non-increasing
function of h and T , let ðh0; T 0Þ be a solution to the
following set of inequalities:
BWmðhÞ þ BWuðr�Þ ¼ T � bðtÞ; ð15Þ

f ðh; tÞ6 r�; ð16Þ

f ðh� 1; T Þ > r� for h > 0: ð17Þ
Then we have h06 h� and T 0 � T �6 ðBWuðr�Þ�
BWuðf ðh�; T �ÞÞÞ=bðtÞ.
Proof. We first prove h06 h�. Suppose h0 > h�.
Then we have h0 � 1P h�, and also T 0P T � by the

definition of T �. Thus we have f ðh0 � 1; T 0Þ6
f ðh�; T �Þ since f ðh; T Þ is a non-increasing function

of T and h. Therefore we have f ðh�; T �Þ > r� by

inequality (17). This contradicts the definitions of

h� and T �.
We next prove T 0 � T �6 ðBWuðr�Þ �BWuðf ðh�;

T �ÞÞÞ=bðtÞ. In our group rekeying protocol, mul-

ticast traffic is an increasing function of h. Hence

by Eq. (15) we have

T 0 � bðtÞ ¼ BWmðh0Þ þ BWuðr�Þ

6BWmðh�Þ þ BWuðr�Þ

¼ ðBWmðh�Þ þ BWuðf ðh�; T �ÞÞÞ

þ ðBWuðr�Þ � BWuðf ðh�; T �ÞÞÞ

6 T � � bðtÞ þ BWuðr�Þ � BWuðf ðh�; T �ÞÞ:

Therefore, we have T 0 � T �6 ðBWuðr�Þ � BWu

�ðf ðh�; T �ÞÞÞ=bðtÞ. h

We expect that the difference between T 0 and T �

is very small in practice. By Theorem 1, we know

that it is bounded by ðBWuðr�Þ � BWuðf ðh�;
T �ÞÞÞ=bðtÞ ¼ ðn � w � su� ðr� � f ðh�; T �ÞÞÞ=bðtÞ. This
bound will be close to 0 if r� is small enough. To

see this, we first notice that the length of a unicast

packet (denoted by su) is usually very small since
each unicast packet contains encryptions only for

one particular user. Second, we expect that

f ðh�; T �Þ will be close to r� when r� is small. Figs. 7

and 8 compare the values of h0 with h� and T 0 with
T � for various values of r�. The numerical results

are based on the loss models described in Section

3. From the figures, we observe that h0 is the same

as h� for a large range of r�, and the difference
between T 0 and T � is very small.

X.B. Zhang et al. / Computer Networks 44 (2004) 855–870 865
4.2. Adaptation scheme

4.2.1. Framework of our scheme

Based on Theorem 1, we design an iterative

algorithm to find ðh0; T 0Þ for any specified r�. Re-
call that r measures the fraction of users who send

NACKs. The number of users in the system

changes with time. Therefore, instead of specifying

a fixed r�, we define a target number of NACKs as

our system parameter. Let u� denote the target

number of NACKs.

In fact, the number of NACKs directly reflects

the residual error rate. Given an ðh; T Þ pair, the
number of NACKs returned to the key server is a

random variable. Let U denote this random vari-

able, and EðUÞ be its expectation. Assuming that

users have independent and homogeneous losses,

we have

PfU ¼ ug ¼ n
u

� �
ruð1� rÞn�u; ð18Þ

EðuÞ ¼ n � r: ð19Þ

Therefore, we have u� ¼ n � r� if n is a constant.

The framework of our adaptation scheme is as

follows:

• if EðUÞ > u�

then h hþ Dh

T BWmðhÞ þ BWuðu�=nÞ
bðtÞ• if EðUÞ6 u�

then h maxðh� 1; 0Þ

T BWmðhÞ þ BWuðu�=nÞ
bðtÞ

The beauty of this scheme lies in the fact that it

does not require knowledge of the mathematical

expression for r ¼ f ðh; T Þ.
This scheme works as follows. If EðUÞ > u�

(and thus r > r�), the key server increases h by a
certain value, denoted by Dh, so that hopefully

inequality (16) will hold for future rekey messages.

On the other hand, if EðUÞ6 u� (and thus r6 r�),
the key server will reduce h by 1 to make sure that

current h satisfies inequality (17). At any time,

whenever h is updated, T will be updated accord-

ing to Eq. (15). Finally the values of h and T will
be around h0 and T 0. Now the remaining issues are

how to determine Dh and how to tell whether

EðUÞ > u� or EðUÞ6 u�.
4.2.2. When to update h
We first consider when the key server should

increase h in our adaptive FEC scheme. From the

framework above, we know that the key server

should increase h if EðUÞ > u�. To estimate EðUÞ,
it seems that the key server should collect a large

number of sample values of U from consecutive

rekey messages. This however will significantly

slow down the system�s responsiveness to sudden

network congestion, and thus may cause poor
performance in terms of r metric. On the other

hand, a hasty estimation of EðUÞ may let the

key server increase h unnecessarily, and thus hurt

the system performance in terms of T metric.

(Recall that T will increase proportionally with h
in our framework above.) As a tradeoff, we

argue that r metric may be more important than

T metric. Therefore, it is desired for our protocol
to have quick responsiveness to network conges-

tion.

To achieve quick responsiveness to network

congestion, the key server will decide whether to

increase h by checking the number of NACKs

(denoted by u) for the latest rekey message. In

particular, the key server will increase h whenever

u > ua, where ua is defined as PfU > uag6 1� a
by assuming EðUÞ ¼ u�. Confidence level a can be

specified by the owner of the key server. In this

way, whenever event u > ua happens, we have a

confidence level of a to tell that EðUÞ 6¼ u� (and

thus EðUÞ < u� possibly). To derive ua, we notice

that random variable U follows the binomial dis-

tribution with parameters ðn; rÞ, as shown in Eq.

(18). The binomial distribution can be approxi-
mated as the normal distribution when n is large.

In particular, ðU � nrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nrð1� rÞ

p
can be

approximated as a standard normal random vari-

able. Then for any specified a, we can derive ua by
solving

P
U � nrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nrð1� rÞ

p
(

6
Ua � nrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nrð1� rÞ

p
)
¼ a

and n � r ¼ u�:

866 X.B. Zhang et al. / Computer Networks 44 (2004) 855–870
For example, letting a ¼ 99:9% and n ¼ 768, we

have ua ¼ 11:9, 19.7, and 33.6 for u� ¼ 5, 10, and

20 respectively.

We next consider when the key server should

decrease h. An inappropriate decrease of h may
significantly increase the number of NACKs.

Therefore, it is desired to measure EðUÞ based on

several rekey messages before the key server deci-

des to reduce h. We use exponentially weighted

average of u to approximate EðUÞ. Let �u be the

estimate value of EðUÞ. The key server executes
�u v � �uþ ð1� vÞu whenever a new sample value

u is available for current ðh; T Þ pair. In our simu-
lations, we use v ¼ 0:8 and the average value

should be based on at least three sample values for

each updated ðh; T Þ pair.
We further specify a lower bound (denoted by

hl) on h. That is, the value of h should be larger

than or equal to hl at any time. This prevents the

key server from reducing h to a very small value

due to inaccurate estimation of EðUÞ. In fact, as
can be seen from Fig. 7, it is possible for h0 to reach

0 while h� is 2. Given u�, the value of hl can be

determined by

hl ¼ min h p �
Xk�1
i¼0

k þ h� 1

i

� ������
(

� ð1� pÞipkþh�1�i 6 u�=n

)
;

where the value of p can be chosen based on

experience. Intuitively, hl is the minimum h that
makes the value of r computed by the Bernoulli

loss formula in Eq. (3) no less than r� ¼ u�=n. Here

we consider only the Bernoulli loss model since

packets of the same block will likely experience

independent losses, as observed in Section 3. The

Markov loss model can also be considered if T is

very small.

In our simulations, we set p ¼ 6%, and then
get hl ¼ 3, 3, and 2 for u� ¼ 5, 10, and 20 respec-

tively.

4.2.3. Determining Dh
From our previous discussions, we know that

the key server should increase h by Dh whenever

u > ua. We now investigate how to determine the

value of Dh.
We use a heuristic to determine Dh as follows.

After multicast, the key server collects NACKs

from users. Each NACK specifies the number of

parity packets needed by a user in order to recover

its required encryptions. Let ai be the ith (i starting
from 1) largest one among collected NACKs.
Then we let Dh ¼ au

�þ1.

To explain why we choose Dh ¼ au
�þ1, let us

consider a simple example. Assume that u� ¼ 2.

Suppose there are 10 users fu1; u2; . . . ; u10g who

send NACKs for the current rekey message. As-

sume user ui sends NACK ai, i ¼ 1; 2; . . . ; 10. For
illustration purposes, we also assume a1 P a2
P � � � P a10. According to our protocol, for the
next rekey message, the key server will multicast

au
�þ1 ¼ a3 additional packets for each block. As a

result, users fu3; u4; . . . ; u10g will have high prob-

abilities to receive a3 more packets. Then those

users can receive or recover their required

encryptions within a single multicast round.

4.2.4. Proposed A-FEC scheme

We propose our adaptation scheme named A-

FEC as follows:

• u the number of NACKs received

• au
�þ1 the ðu� þ 1Þth largest NACK

• counter counter þ 1

• if counter ¼ 1

then �u u
else �u v � �uþ ð1� vÞu

• if ðu > uaÞ or (counterP 3 and �u > u�)
then h hþ au

�þ1

T BWmðhÞ þ BWuðu�=nÞ
bðtÞcounter 0

• if counterP 3 and �u6 u� and h > hl
then h h� 1

T BWmðhÞ þ BWuðu�=nÞ
bðtÞcounter 0

Initially counter is 0. The key server runs the pro-

cedure after it collects NACKs from users.

4.3. Performance evaluation

We use simulations to evaluate the performance

of our A-FEC scheme. We run our simulations

using network simulator ns-2 [1]. To simulate the

0

20

40

60

80

100

0 5 10 15 20

#N
A

C
K

s

rekey msg ID

Heuristic 1
Heuristic 2

A-FEC

Fig. 9. Traces of the number of NACKs for u� ¼ 5.

0

20

40

60

80

100

0 5 10 15 20

#N
A

C
K

s

rekey msg ID

Heuristic 1
Heuristic 2

A-FEC

Fig. 10. Traces of the number of NACKs for u� ¼ 10.

20

40

60

80

100

#N
A

C
K

s

1
2

Heuristic
Heuristic

A-FEC

X.B. Zhang et al. / Computer Networks 44 (2004) 855–870 867
Internet topology, we use Georgia Tech Internet-

work Topology Models (GT-ITM) [7] to generate a

Transit-Stub graph with 10 Mbps of link band-

width. The graph contains 592 stub domains.We let

the key server reside in one stub domain, and then

create 591 edge networks in each of the remaining
stub domains. Each edge network has an access link

connected to the Internetwork. For simplicity, we

did not simulate data traffic for our group com-

munication application. Instead, we set the band-

width of each access link to a relatively small value.

More specifically, the bandwidth of each access link

is uniformly distributed between 0.1 and 1 Mbps.

To simulate the background traffic, we let each of
514 edge networks have 30 outgoing and 30

incoming FTP flows, and each of the remaining 77

edge networks have 40 outgoing and 40 incoming

FTP flows. For simplicity, we assume that when the

key server updates h during one rekeying interval,

the updated h will be applied for the next rekey

message. We assume that at the beginning of each

rekeying interval the key tree (with degree 4) is
balanced with 768 users. During each rekeying

interval, 192 join and 192 leave requests are pro-

cessed. We set block size as k ¼ 14. Our simulations

show that the average packet loss rate observed by

each user is about 6%. Therefore, we set ua ¼ 11:9,
19.7, and 33.6, and hl ¼ 3, 3, and 2 for u� ¼ 5, 10,

and 20 respectively, as calculated earlier.

For comparison, we define two additional
heuristics to compare with our A-FEC scheme:

• Heuristic 1. The key server increases h by au
�þ1

whenever u > u�, and decrease h whenever

u6 u�. No lower bound is specified for h.
• Heuristic 2. It is the same as Heuristic 1 except

that h should be larger than or equal to hl at
any time.
0
0 5 10 15 20

rekey msg ID

Fig. 11. Traces of the number of NACKs for u� ¼ 20.
Figs. 9–11 demonstrate traces of the number of

NACKs for Heuristic 1, 2, and our A-FEC

scheme. For Heuristic 1, the system starts with

h ¼ 0. For Heuristic 2 and A-FEC scheme, the

initial value of h is hl. From the figures, we have

the following observations:

• An increase of h by au
�þ1 upon u > ua (or u > u�)

can effectively control the number of NACKs.
In particular, whenever the number of NACKs

is larger than ua (or u�), it usually takes only

one rekey message for the key server to make

u6 ua (or u6 u�).

0

20

40

60

80

100

15 20 25 30

nu
m

be
r

of
 N

A
C

K
s

rekey message ID

u*=5
u*=10

Fig. 13. Traces of the number of NACKs when background

traffic is doubled.

0

2

4

6

8

10

12

14

40 45 50 55 60

h

rekey message ID

u*=5
u*=10

Fig. 14. Traces of h when background traffic is reduced.

60

80

100

of
 N

A
C

K
s

u*=5
u*=10

868 X.B. Zhang et al. / Computer Networks 44 (2004) 855–870
• With lower bound hl specified, we can effectively

prevent h being reduced to a very small value.

As a result, specifying hl can significantly reduce

the peak point values on the curves of the num-

ber of NACKs.
• A-FEC scheme can further reduce the fluctua-

tions of the number of NACKs by making the

conditions to update h more strict. This is

achieved by trading our protocol�s responsive-

ness to network traffic change.

• When u� is large, it is hard to control the fluctu-

ations of the number of NACKs, as seen in Fig.

11. Therefore, it is desired to specify a small u�

in practice.

We further evaluate the responsiveness of our

A-FEC scheme to network traffic change. To

simulate a changing network, we increase the

number of background FTP flows until the total

number is doubled. Each added FTP flow starts

randomly during the rekeying intervals of rekey
messages 13–23. Figs. 12 and 13 demonstrate the

traces of h and the number of NACKs. As can be

seen, when the network becomes loaded, shared

loss will cause a lot of users to send NACKs. Our

A-FEC scheme can quickly increase h upon net-

work congestion, thus significantly reducing the

number of NACKs for the next rekey message.

To simulate a network with decreasing traffic,
we let each added FTP flow stop randomly during

the rekeying intervals of rekey messages 38–48. As

seen from Figs. 14 and 15, our A-FEC scheme

gradually reduces h (and T) to adapt to the im-

proved network situation.
0

2

4

6

8

10

12

14

15 20 25 30

h

rekey message ID

u*=5
u*=10

Fig. 12. Traces of h when background traffic is doubled.

0

20

40

40 45 50 55 60

nu
m

be
r

rekey message ID

Fig. 15. Traces of the number of NACKs when background

traffic is reduced.
5. Related work

Following the key tree approach [20,22], several

other group key management systems have been

X.B. Zhang et al. / Computer Networks 44 (2004) 855–870 869
proposed [4,6,8,11,13]. Some of these [4,8] also

require reliable delivery of rekey messages; how-

ever, no reliable group rekeying protocols have

been designed for them. Other approaches, such as

MARKS [6], ELK [13], and Subset-Difference [11],

do not require reliable delivery of rekey messages.
Each of them, however, has its limitations. In

particular, MARKS assumes the lifetime of each

user to be pre-determined before it joins the sys-

tem. ELK introduces hint information into each

data packet to help users recover a new group key.

This approach incurs per-packet bandwidth over-

head and imposes significant computation over-

head on users. In the Subset-Difference approach,
each rekey message contains 2 � e keys, where e is

the total number of revoked users from the

beginning of a session until now. The value of e
may become very large as the session progresses.

Recently, the WKA-BKR protocol was pro-

posed [18] which tries to improve server bandwidth

overhead compared to our protocol. This proto-

col, however, does not provide real-time delivery
of rekey messages any more.
6. Conclusion

In our group rekeying protocol, we study two

performance metrics: r and T . Metric r measures

the fraction of users who cannot receive the new
group key during the initial multicast, while T is a

measure of group access control granularity. Ide-

ally, we want to achieve both small r and T . To
achieve a smaller r, however, the key server has to

increase h, and thus increase T to send more traffic.

Therefore, there are tradeoffs between r, T , and h.
To investigate the tradeoffs between r, T , and h,

we analyzed r ¼ f ðh; T Þ under the Bernoulli and
Markov loss models. We also examined the impact

of rekeying bandwidth constraint on the relation-

ship between h and T . The rekeying bandwidth

constraint arises since we do not want rekey traffic

to impact the performance of other flows in the

Internet. We observed that with a rekeying band-

width constraint of bðtÞ ¼ 100 kbps, the value of T
needs to be in the order of seconds. Then with our
packet spacing strategy, packets of the same block

will likely experience independent loss. As a result,
an increase of h can effectively reduce r; decreasing
r will not significantly increase h and T . In con-

clusion, we can achieve both small r and T .
We designed an adaptive FEC scheme to

determine ðh0; T 0Þ for any specified u�. We proved

and also demonstrated that ðh0; T 0Þ is close to the
optimal ðh�; T �Þ. Our scheme does not require

knowledge of the mathematical expression for

r ¼ f ðh; T Þ. Simulation results from ns-2 show

that our protocol can achieve fairly smooth traces

of the number of NACKs when group rekeying is

subjected to statistical fluctuations of a fixed set of

competing flows. We also found that with the

onset of network congestion our adaptive FEC
protocol can still achieve the target u� by adjusting

values of h and T .
References

[1] The Network Simulator––ns-2. Available from: <http://

www.isi.edu/nsnam/ns/>.

[2] O. Ait-Hellal, E. Altman, A. Jean-Marie, I.A. Kurkova,

On loss probabilities in presence of redundant packets and

several traffic sources, Performance Evaluation 36–37

(1999) 486–518.

[3] E. Altman, C. Barakat, V. Ramos, Queueing analysis of

simple fee schemes for ip telephony, in: Proceedings of

IEEE INFOCOM 2001, Anchorage, AK, April 2001, pp.

796–804.

[4] D. Balenson, D. McGrew, A. Sherman, Key management

for large dynamic groups: one-way function trees and

amortized initialization, Internet-Draft. URL: http://www.

securemulticast.org/smug-drafts.htm, September 2000.

[5] J.-C. Bolot, S. Fosse-Parisis, D. Towsley, Adaptive FEC-

based error control for Internet telephony, in: Proceed-

ings of IEEE INFOCOM �99, March 1999, pp. 1453–

1460.

[6] B. Briscoe, Marks: Zero side effect multicast key manage-

ment using arbitrarily revealed key sequences, in: Proceed-

ings of NGC 1999, Pisa, Italy, November 1999, pp. 301–

320.

[7] K. Calvert, M. Doar, E.W. Zegura, Modeling Internet

topology, IEEE Communications Magazine 35 (6) (1997)

160–163.

[8] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, D. Saha,

Key management for secure Internet multicast using

boolean function minimization techniques, in: Proceedings

of IEEE INFOCOM �99, vol. 2, March 1999, pp. 689–

698.

[9] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-

based congestion control for unicast applications, in:

Proceedings of ACM SIGCOMM 2000, August 2000, pp.

43–56.

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.securemulticast.org/smug-drafts.htm
http://www.securemulticast.org/smug-drafts.htm

870 X.B. Zhang et al. / Computer Networks 44 (2004) 855–870
[10] X.S. Li, Y.R. Yang, M.G. Gouda, S.S. Lam. Batch

rekeying for secure group communications, in: Proceedings

of Tenth International World Wide Web Conference

(WWW10), Hong Kong, China, May 2001, pp. 525–534.

[11] D. Naor, M. Naor, J. Lotspiech, Revocation and tracing

schemes for stateless receivers, in: J. Kilian (Ed.), Advances

in Cryptology (Crypto 2001), Lecture Notes in Computer

Science, vol. 2139, Springer, Berlin, 2001, pp. 41–62.

[12] J. Nonnenmacher, E. Biersack, D. Towsley, Parity-based

loss recovery for reliable multicast transmission, in: Pro-

ceedings of ACM SIGCOMM �97, September 1997, pp.

289–300.

[13] A. Perrig, D. Song, D. Tygar, Elk, a new protocol for

efficient large-group key distribution, in: Proceedings of

IEEE Symposium on Security and Privacy, May 2001, pp.

247–262.

[14] L. Rizzo, Effective erasure codes for reliable computer

communication protocols, Computer Communication Re-

view 27 (2) (1997) 24–36.

[15] L. Rizzo, pgmcc: A tcp-friendly single-rate multicast

congestion control scheme, in: Proceedings of ACM

SIGCOMM 2000, Stockholm, Sweden, August 2000, pp.

17–28.

[16] D. Rubenstein, J. Kurose, D. Towsley, Real-time reliable

multicast using proactive forward error correction, in:

Proceedings of NOSSDAV �98, July 1998, pp. 279–293.

[17] S. Setia, S. Koussih, S. Jajodia, E. Harder, Kronos: A

scalable group re-keying approach for secure multicast, in:

Proceedings of IEEE Symposium on Security and Privacy,

Berkeley, CA, May 2000, pp. 215–228.

[18] S. Setia, S. Zhu, S. Jajodia, A comparative performance

analysis of reliable group rekey transport protocols for

secure multicast, Performance Evaluation 49 (2002) 21–41.

[19] J. Snoeyink, S. Suri, G. Varghese, A lower bound for

multicast key distribution, in: Proceedings of IEEE IN-

FOCOM 2001, Anchorage, AK, April 2001, pp. 422–431.

[20] D. Wallner, E. Harder, R. Agee, Key management for

multicast: issues and architectures, RFC 2627, June 1999.

[21] J. Widmer, M. Handley, Extending equation-based con-

gestion control to multicast applications, in: Proceedings of

ACM SIGCOMM 2001, San Diego, CA, August 2001, pp.

275–285.

[22] C.K. Wong, M.G. Gouda, S.S. Lam, Secure group

communications using key graphs, in: Proceedings of

ACM SIGCOMM �98, September 1998, pp. 68–79.

[23] C.K. Wong, S.S. Lam, Keystone: a group key management

system, in: Proceedings of International Conference on

Telecommunications, Acapulco, Mexico, May 2000.

[24] Y.R. Yang, S.S. Lam, General AIMD congestion control,

in: Proceedings of the 8th International Conference on

Network Protocols �00, Osaka, Japan, November 2000, pp.

187–198.

[25] Y.R. Yang, X.S. Li, X.B. Zhang, S.S. Lam, Reliable group

rekeying: a performance analysis, in: Proceedings of

ACM SIGCOMM 2001, San Diego, CA, August 2001,

pp. 27–38.
[26] X.B. Zhang, S.S. Lam, D.-Y. Lee, Y.R. Yang, Protocol

design for scalable and reliable group rekeying, IEEE/

ACM Transactions on Networking 11 (6) (2003) 908–922.

X. Brian Zhang received his B.E. de-
gree in computer science and technol-
ogy from Tsinghua University, Beijing,
China, in 1996. He is currently pursu-
ing the Ph.D. degree in computer sci-
ence at the University of Texas at
Austin. His research interests are in the
area of network security, multicast,
and peer-to-peer systems.
Simon S. Lam received the BSEE de-
gree with Distinction from Washing-
ton State University, Pullman, in 1969,
and the M.S. and Ph.D. degrees in
engineering from the University of
California at Los Angeles (UCLA) in
1970 and 1974, respectively. From
1971 to 1974, he was a Postgraduate
Research Engineer at the ARPA Net-
work Measurement Center, UCLA,
where he worked on satellite and radio
packet switching networks. From 1974
to 1977, he was a Research Staff
Member at the IBM T.J. Watson Re-
search Center, Yorktown Heights, New York. Since 1977, he
has been on the faculty of the University of Texas at Austin,
where he is Professor and Regents Chair in Computer Sciences,
and served as Department Chair from 1992 to 1994. His current
research interests are in network protocol design and analysis,
distributed multimedia, and Internet security services. He
served on the editorial boards of IEEE/ACM Transactions on
Networking, IEEE Transactions on Software Engineering,
IEEE Transactions on Communications, Proceedings of the
IEEE, and Performance Evaluation. He was Editor-in-Chief of
IEEE/ACM Transactions on Networking from 1995 to 1999.
He currently serves on the editorial board of Computer Net-
works. He organized and was Program Chair of the inaugural
ACM SIGCOMM Symposium held at the University of Texas
at Austin in 1983. He is a founding Steering Committee member
of the IEEE International Conference on Network Protocols.
He received the 1975 Leonard G. Abraham Prize for the best
paper published in IEEE Transactions on Communications and
the 2001 William R. Bennett Prize for the best paper published
in IEEE/ACM Transactions on Networking, both from the
IEEE Communications Society. He is a Fellow of IEEE (elected
1985) and a Fellow of ACM (elected 1998).

Dong-Young Lee received his B.S. and
M.S. degrees in Computer Science
from Seoul National University,
Seoul, Korea, in 1998 and 2000
respectively. He is currently pursuing
the Ph.D. degree in computer science
at the University of Texas at Austin.
His research interests include peer-to-
peer networks and streaming media.

	Group rekeying with limited unicast recovery
	Introduction
	An overview of group rekeying protocol
	Analyses
	Analytic models
	Bernoulli model for independent loss
	Markov model for burst loss
	Illustration

	Rekeying bandwidth constraint
	Tradeoffs between r, T, and h
	Further discussions

	Adaptive FEC protocol
	Foundation
	Adaptation scheme
	Framework of our scheme
	When to update h
	Determining Deltah
	Proposed A-FEC scheme

	Performance evaluation

	Related work
	Conclusion
	References

