AN EXERCISE IN CONSTRUCTING
MULTI-PHASE COMMUNICATION PROTOCOLS

C. H. Chow!, M. G. Gouda and 8. 5. Lam?

Department of Computer Sciences
University of Texas at Austin

s

ABSTRACT

Many real-life protocols can be observed to go through different
We present a multi-phase model for such protocols.
with certain desirable correctness properties; these include

each phase.
work of communicating
proper termination,

finite state machines

and freedom from deadlocks and unspecified receptions.

phases performing a distinct function in
A phase is formally defined to be a net-

A multi-function protocol is

constructed by first constructing separate phases to perform its diffcrent functions. We discuss how to con-
nect these phases together to implement the multi-function protocol such that the resulting network of com-
municating finite state machines is also a phase (i.e. it possesses the desirable properties defined for phases).

A high-level session control
and constructed as a multi-phase protocol.

1. Introduction

A layered communications architecture facilitates
the construction of networking software in a modular
fashion. Nevertheless each protocol layer is a set of
complex parallel programs. Several distinct functions
can usually be identified among the tasks designated for
a protocol layer to perform. Of interest to us are
methods for reducing .the analysis/construction of a
multi-function protocol to the analyses/construction of
smaller single-function protocols. Given 2 multi-
function protocol, its analysis can be reduced to the
analyses of several smaller single-function protocols,
called image protocols, using the method of projections
[LAM 81, LAM 82, SHAN 83)].

This paper is concerned with the construction of a
multi-function protocol {rom a composition of single-
function protocols. In general, this is a difficult
problem. However, many real-life protocols can be ob-
served to go through different phases of behavior. In
particular, these protocols go through their phases one
at a time with a distinct function performed in cach
phase. For protocols characterized by this medel of
multi-phase behavior, the following three-step methodol-
ogy for constructing a multi-function protocol is
proposed:

tWork supported in part by National Science Foundation
Grants No. ECS78-01803 and No. ECS83-04734, and in part

by a research grant from IBM Corporation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-136-9/84/006/0042 $00.75

protocol modeled after one in

42

IBM's Systems Network Architecture is discussed,

i. Divide the protocol’s functionality into
separate functions.

ii. For each function, comstruct and verify a
phase to perform this function. A phase is a
network of communicating finite state
machines that satisfies certain desirable
general properties (including proper termina-
tion, and freedom from deadlocks and un-
specified receptions) to be defined.

iii. Connect individual phases together to form

the required protocol. The resulting
protocol should satisfy the same general
properties of proper termination, and

freedom from deadlocks and unspecified
receptions as the individual phases.

Step i of the above methadology is straightforward;
the protocol's functions can often be divided quite
paturally. For example, a half-duplex data link control
protocol such as IBM's BSC protocol can be divided into
three functions [IBM 70, LAM 83}: a call setup function,
a data transfer function, and a call clear function.

For step ii of the methodology, there are two basic
approaches. In the first approach, each phase is con-
structed based on the designer’s knowledge and ex-
perience. It is then verified using available verification
techniques, e.g. efficient reachability analysis [BOCH 78,
RUBI 82, YU 82, YU 83, GOUD 82c], program proving
methods [GOOD 77, HAIL 80, MISR 81, MISR 82}, or
symbolic execution [BRAN 78]. If an error is found in a
phase, the phase is modified and the verification
repeated, and so on until a provably correct phase is ob-
tained. In the second approach, each phase is com-
structed using some constructive design rules that
automatically result in correct phases. See for example
(BOCH 80, ZAFI 80, MERL 83, GOUD 81].

Step iii of the methodology has received little atten-
tion so far, although it is agreed in [RAZO 80, WEST
78] that many errors in a protocol are caused by im-
proper conmections between different phases of the
protocol.

In this paper, we formally characterize the concept
of a phase, and present a methodology to connect the
different phases of a protocol to yield a protocol that
satisfies the gencral correctness properties of proper ter-
mination, freedom from deadlocks and unspecified
receptions, and also boundedness. We demonstrate how
one realistic protocol can be constructed (and
understood) in this fashion. Details of our theory and
two other examples can be found in [CHOW 83],

This paper is organized as follows. In Section 2, the
model of communicating finite state machines is
presented. The concept of phases is formally defined in
Section 3. The construction of a protocol by connecting
phases together is discussed in Section 4; the construc-
tion method guarantees that the resulting multi-phase
protocol terminates properly and is free from deadlocks
and unspecified receptions. In Section 5, we present a
multi-phase protocol example, namely a high-level ses-
sion control protocol modeled after IBM’s SNA
specification for LU-LU session management [CYPS 78).
Concluding remarks are in Section 6.

2. Networks of Communicating Finite
State Machines

For the sake of conciseness, we present our theory
(Sections 2, 3 and 4) using networks of two com-
mupicating finite state machines. However, our results
can be extended in a straightforward manner to net-
works of n communicating finite state machines [CHOW
83].

A communicating finite stale machine M is a
directed labelled graph with two types of edges, namely
sending and receiving edges. A sending (or receiving)
edge is labelled -g (or +g, respectively) for some mes-
sage g in a finite set G of messages. A node in M whose
outgoing edges are all sending (or all receiving) edges is
called a sending (or receiving, respectively) node. A
node in M whose outgoing edges include both sending
and receiving edges is called a mized node, and a node
in M that has no outgoing edges is called a final node.
One of the nodes in M is identified as its snitial node,
and each node in M is reachable by a directed path
from the initial node.

Let M and N be two communicating finite state
machines with the same set G of messages; the pair
(M,N}) is called a network of M and N.

A state of network (M,N) is a four-tuple [v,w,x,y],
where v and w are two nodes in M and N respectively,
and x and y are two strings over the messages in
G. Informally, a state [v,w,x,y] means that the execu-
tions of M and N have reached nodes v and w respec-
tively, while the input channels of M and N store the
strings x and y respectively.

The initial state of metwork (M,N) is Voo E.E]
where v, and wq, are the initial nodes in M and N
respectively, and E is the empty string.

Let s=|v,wx,y] be a state of network (M,N); and let
e be an outgoing edge of node v or w. A state s’ is said
to follow & over ¢ iff one of the following four con-
ditions is satisfied:

i. e is a sending edge, labelled -g, from v to v’
in M, and s’=[v’,w,x,y.g], where "." is the
concatenation operator.

- ¢ is a sending edge, labelled -g, form w to w’
in N, and s'=[v,w’ x.g,y].

[~

iii. e is a receiving edge, labelled +g, from v to

v'in M, and s’=|v',w,x",y], where x=g.x'.

iv. e is a receiving edge, labelled +g, from w to
w'in N, and 8'={v,w’,x,y'], where y=gy'.

Let s and s’ be two states of network (M,N), s’ fol-
lows s iff there is a directed edge e in M or N such that
8’ follows s over e.

Let s and s’ be two states of (M,N), s’ is reachable
Sfrom s iff s==s' or there exist states 85--,8; such that

8==3;, s'=s, and 8; 4 follows s; for i=1,...,r-1.

A state s of network (M,N) is said to be reachable iff
it is reachable from the initial state of {M,N). Next, we
use the concept of reachable states to define what it
means for the communication of a network (M,N) to
terminate properly and to be free from deadlocks and
unspecified receptions, and to be bounded.

The communication of a network (M,N} is said to
terminate properly iff the following two conditions are
satisfied:

i. For any reachable state [v,w,x,y] of (M,N), if
v is a final node of M, then x must be the
empty string and there must be a directed
path of all receiving edges from node w to a
final node w' in N, where the string y is
received.

ii. For any reachable state [v,w,x,y] of (M,N), if
w is a final node of N, then y must be the
empty string and there must be a directed
path of all receiving edges from node v to a
final node v’ in M, where the string x is
received.

A reachable state [v,w,E,E] of (M,N) is called a proper
terminating state iff both node v and w are final nodes,

A reachable state [v,w,x,y] of a network (M,N) is a
deadlock state iff (i) both v and w are receiving nodes,
and (ii) x=y=E (the empty string). If no reachable
state of network (M,N) is a deadlock state, then the
communication of {(M,N) is said to be deadlock-free.

A reachable state [v,w,x,y] of a network (M,N) is an
unspeci fied reception state iff one of the following two

conditions is satisfied:

i. X=g18g. - g (k=>1), and v is a receiving
node and nome of its outgoing edges is
labelled +8;.

il ¥=81.83 - B (k>1), and w is a receiving
node and nome of its outgoing edges is
labelled +g;-

If no reachable state of (M,N}) is an unspecified recep-
tion state, then the communication of (M,N) is said to
be free from unspeci fied receptions.

The communication of a network (M,N) is said to be
bounded by K, where K is a nonnegative integer, iff for
every reachable state [v,wxy] of (M,N), |x|<K and
ly]<K where |x| is the number of messages in string
x. The communication is said to be bounded iff it is
bounded by some nonnegative integer K; otherwise it is
unbounded.

3. Phases

Let M and N be two communicating finite state
machines, The network (M,N} is called safe iff its com-
munication terminates properly and is free from dead-
locks and unspecified receptions.

Let (M,N) be a safe network, and let v and w be two
final nodes in machines M and N respectively. The
node pair (v,w) is called an ezit node pair of (M,N) iff
the state [v,w,E E] of (M,N) is reachable.

The ezit set of a safe network (M,N} is the set of all
exit node pairs of (M,N).

A safe network (M,N) is called a phase iff every final
node in M or N appears in exactly one exit node pair in
the exit set of (M,N).

Consider the following problem. Is it decidable
whether an arbitrary network is a phase? In general,
this problem is undecidable as discussed in [BRAN 83,
GOUD 82b). However, the problem can be decided in
some special cases: For instance, if the communication
of the given network (M,N) is bounded, then the
problem can be decided by generating and checking all
the reachable states of (M,N). In [CHOW 83], we dis-
cuss a technique, based on the concept of closed covers
in [GOUD 82a), to verify that a given network is a
phase even if the number of its reachable states is in-
finite.

4. Constructing Multi-Phase Networks

In this section we discuss a discipline to connect a
number of phases together to construct a multi-phase
network that is also a phase (thus guaranteeing that its
communication terminates properly and is free from
deadlocks and unspecified receptions). Phases are con-
nected by joining the exit node pairs of one phase to the
initial node pair of another phase, or the same phase.
The technique is discussed in detail next.

Let p;=(M{,N;} and py==(M,,Ny) be two phases,
with exit sets S, and S, respectively, and let C be a
subset of of §;. We define a composite network of py,
C, and p,, denoted by <p,,C,py>, to be the network
(M,N) where
i. M is the communicating finite state machine
constructed (from M;, C, and M,) by joining
all the final nodes of M; in C to the initial
node of My. The initial node of M, becomes
the initial node of M.

ii. N is the communicating finite state machine
constructed (from N,, C, and N,) by joining
all the final nodes of N; in C to the initial

4t

node of Ny. The initial node of Ny becomes
the initial node of N.

The two phases py=(M;N;) and p,=(My,N,) are
called the constituent phases of the composite network
<P1:CyP2>
called the constituent machines of M, and machines Ny

In this case, machines M; and M, are

and N, are called the constituent machines of N. It is
proved in [CHOW 83] that the composite network
<p;,C,py> is also a phase whose exit set is (S; U S,) -
C.

As an example, Figure la shows two phases
pp=(M,Ny) and py=(M,,Ny). In phase p;, the node

pair (1,1) is its initial node pair and {(2,2),(3,3)} is its
exit set. In phase p, the node pair (4,4) is its initial node
pair and {(5,5)} is its exit set. By joining the exit node
pair (2,2) of p; to the initial node pair (4,4), we have
the composite network py 9=<p;,{(2,2)},p,> shown in
Figure 1b.

So far we have discussed how to connect one phase
to another. Next, we discuss how to connect a phase to
itself.

Let p;==(M,N;) be a phase whose exit set is 5, and
let C be a subset of S;. The composite network of p,
and C, denoted <p1,C>, is a network (M,N) where

i. M is the communicating finite state machine
constructed (from M; and C) by joining all

the final nodes of M, in C to the initial node
of M;. The initial node of M; becomes the
initial node of M.

il. N is the communicating finite state machine
constructed (from N; and C) by joining all
the final nodes of N; in C to the initial node
of N,. The initial node of N; becomes the in-
itial node of N.

Phase py=(M,N;) is called the constituent phase of
the composite network <p;,C>=(M,N). In this casc,

machines M; and N; are called the constituent

machines of M and N respectively. It is proved in
[CHOW 83] that the composite network <p,C> is also
a phase whose exit set is S - C.

For example, consider phase P2 in Figure 1b, if we
join the exit node pair. (5,5) of Py to its initial node
pair, then we get the composite
<p1,2’{(5’5)}> shown in Figure 1c.

network

The construction process of the multi-phase network
p in Figure lc from the two phases p; and p, in Figure

la can be represented by the following sequence of equa-
tions:

P =(MpN1)

Po =(M2,N2)

p1y2 =<P1,{(2,2)},92>
*

P =<p1,2r{(5’5)}>

This equation sequence clearly provides all the infor-

*
mation needed to construct p from py and py;

moreover it is a more concise notation than the graphi-
cal representations in Figures 1b and lc.

5. A Session Protocol Example

The concept of phases can be extended in a
straightforward manner to networks with r (r>2) com-
municating finite state machines. As an example, we
construct in this section a high-level session control
protocol modeled after IBM's SNA specification for LU-
LU session management [CYPS 78]. It is a multi-phase
petwork of three communicating finite state machines.
We discuss next how to extend earlier definitions to the
case of networks with three communicating machines.

Consider_ a_network_of _three_communicating _finite.
state machines. Each machine in the network can com-
municate with each of the other machines by exchang-
ing messages over two, one-directional unbounded FIFO
channels. In order to uniquely specify which machine is
intended by each sending (receiving) operation, a send-
ing (receiving) edge is now labelled -g/M (+g/M), where
M is the machine to (from) which the message g is sent
(received).

Let My, My and My be three communicating finite

state machines with the same set G of messages; the
triple (MI,MQ,Mg) is called a network of the three

machines. A state of the network (M, My M,) is a 3x3

matrix Sij where the component 8; 15 a node in

M,i=1,2,3, and the component 8ij (i4)) is a string over
the messages in G representing the contents of the chan-
nel from machine M; to Mj. The definitions of reach-

able states, proper termination, freedom from deadlocks
and unspecified receptions, boundedness and phases can
now be extended in a straightforward manner to net-
works with three communicating finite state machines.

Next, we discuss the basic phases of the session
protocol, where each phase is a network of three
machines. Later, we discuss how to connect these phases
to comnstruct the protocol.

Session Establishment Phase

Consider the three communicating finite state
machines LI’MI and Nl in Figure 2; they model the
IBM LU-LU session establishment procedure in a single
domain [CYPS 78 L models the primary logical unit,
M; models the session controller, and N; models the

secondary logical unit. The exchanged messages have

the following meanings:

INIT denotes a “request to set up a session”
message.

RSP denotes a "positive response" message.
NRSP denotes a "negative response” message.
CINIT denotes a "control initiate" message.
BIND denotes a "bind session” message.
BINDF denotes a "bind failure" message.

SST denotes a "session started" message.
SDT denotes a “start data traffic" message.

Starting from node 1, if L; (or N;) wants to setup a
session with Ny (or L), it sends an INIT message to the

45

controller M;. M, may reject the request by sending
back an NRSP message, that contains the rejection
reasons.

If M; accepts the request, it sends back an
RSP message to the sender (L or N;), then sends a
CINIT message to the primary L;. On receiving CINIT,

the primary L; may reject the controller’s request by

sending an NRSP message back to M;. Or it may ac-
cept the request by sending an RSP message back to M,

followed by a BIND message, that contains the proposed
session parameters, to machine N;. There are two pos-
sibilities: \

i. Machine N, accepts the session
parameters proposed by L:
N, sends an RSP message to L;. Ly then

notifies M; about the success of the session

In this case,

setup by sending an SST message. After Ly
gets an RSP message from M, L, sends an
SDT message to N;. When Ny is ready for

the data transfer, it sends an RSP message
back to L, and the data transfer between Lq

and N; begins without the intervening of
M;.

il. Machine N, does not accept the session
parameters proposed by L,: In this case,
N, sends an NRSP message to Ll' L, then
notifies M; about the failure of the session
setup by sending a BINDF message, and L,
M; and N return to their initial nodes.

Using state exploration, it can be shown that net-
work (L;,M,N,) is a phase whose exit set is {(14,13,7)}.

Data Transfer Phase

Consider the three communicating finite state
machines Ly, My, and Ny in Figure 3; they model a

simplified half-duplex flip-flop data transfer procedure
in the IBM session protocol: L, models the primary

logical unit, My models the session controller, and N,

models the secondary logical unit. The exchanged mes-
sages have the following meanings:

D denotes a data message.
RSP denotes a "positive response” message.
SHUT denotes a "shutdown" message.

SHUTC denotes a "shutdown complete" message.

Since machine M, is not involved in the data trans-
fer procedure, it is modeled as a single node without any
outgoing edges, as shown in Figure 3.

Starting from their initial nodes, L, and N, take

turns to send data and wait for a response. When the
rimary Ly wants to terminate the data transfer, it can

send at node 1 a SHUT message to Ng. In this case Ny

completes its session processing, then sends a SHUTC
message to Ly and each of L, and N, reaches its final

node. It is straightforward to show that (Lg,Mg,Ny) is a
phase whose exit set is {(6,%,6)}.

Session Termination Phase

Consider the three communicating finite state
machines Lj, M3 and Nj in Figure 4; they model a

simplified version of the session termination procedure:
Ly models the primary logical unit, M; models the ses-
sion controller, and N3 models the secondary logical
unit. The exchanged messages have the following mean-
ings:

TERM denotes a “request to terminate a
session" message.

RSP denotes a " positive response” message.

CTERM denotes a "control terminate” message.
UNBIND denotes a "unbind session" message.
SE denotes a "session ended" message.

Starting from its initial node, if L, (or N,) wants to

terminate the current session, it sends a TERM message
to Ms. When My receives the TERM message, it first

responds with an RSP message, and then sends a
CTERM message to the primary logical unit Lg. Lg

responds with an RSP message and then sends an UN-
BIND message to notify N; to end the session. On

receiving the response to the UNBIND message from
Ny, Ly sends an SE message to notify the controller My
that the session between Li; and N3 has been ended .
My replies with an RSP message and the session ter-
mination procedure is then complete.

Note that the three small loops at nodes 4, 8 and 9
of My are dealing with the message collision situations
where both Ly and Nj concurrently send TERM mes-
sages to Mg.

It is straightforward to show that (L4,Mj,N3) is a
phase whose exit set is {(11,12,5)}.

Constructing a Multi-Phase Session

Protocol

The following equation sequence represents a multi-
phase session protocol that consists of the three phases
defined earlier (namely, one session establishment phase,
one data transfer phase and one session termination
phase).

Py =(L1,M1,N1)
Po =(L2,M2,N2)
P3 =(L3,M3,N3)

P12 =<py,Cp,Py>

P23 =<Py,2C2P3>

P =<p23C3>

where L;, M; and N; are defined in Figure 2
Ly, M, and Ny are defined in Figure 3
L3, M; and Ny are defined in Figure 4
C;={(14,13,7} in p;}
02'—‘{(6;1,6) in po}
Cq={(11,12,5) in pg}
where (i,j,k) in py= the node triple (i,j,k)

in phase pj.
The above multi-phase protocol is guaranteed to ter-

minate properly and be free from deadlocks and un-
specified receptions.

46

8. Concluding Remarks

We have proposed a construction methodology for
large multi-phase communication protocols, and
demonstrated that this methodology can be used to con-
struct (and explain) some realistic protocols. The
resulting protocols are guaranteed to terminate properly
and be free from deadlocks and umspecified receptions.
More results and examples about the construction of
multi-phase protocols can be found in [CHOW 83].

Although the phase concept and the proposed
methodology are discussed using communicating finite
state machines, it is straightforward to extend the
results to facilitate protocol comstruction using other
models such as the extended state transition model of
Bochmann et al [BOCH 82].

REFERENCES

[BOCH 78] Bochmann, G. V. "Finite state description
of communication protocols,” Computer Networks,
Vol. 2, 1978, pp. 361-371.

[BOCH 80] Bochmann, G. V. and C. Sunshine, “Formal
methods in communication protocol design," IEEE
Trans. on Commun., April 1980, pp.624-631.

[BOCH 82] Bochmann, G.V. et al, "Experience with
formal specifications using an extended state tran-
sition model," IEEE Trans. on Commun., Dec.
1982, pp. 2506-2513.

[BRAN 78] Brand, D.and W.H. Joyner, Jr.,
"Verification of protocols using symbolic execution,"
Comput. Networks, vol. 2, Oct. 1978, pp.351-380.

[BRAN 83| Brand, D.and P. Zafiropulo, "On com-
municating finite-state machines," JACM, Vol. 30,
No. 2, April 1983, pp. 323-342.

[CHOW 83] C. H. Chow, M. G. Gouda, and $. S. Lam,
"A discipline for constructing multiphase com-
munication protocols,” TR-233, Dept. of Computer
Sciences, Univ. of Texas at Austin, June 1983.
Revised Oct. 1983. Submitted for publication.

[CYPS 78] Cypser, R.J., "Communications architec-
ture for distributed systems," Reading, Mass.,
Addison-Wesley, 1978.

[GOOD 77| Good, D. I., "Constructing verified and reli-
able communications processing systems,* ACM
So ftware Eng. Notes, vol. 2, Oct. 1977, pp.8-13.

{GOUD 81] Gouda, M. G. and Y. T. Yu, "Synthesis of
communicating machines with guaranteed progress®,
TR-179, Dept. of Computer Sciences, Univ. of Texas
at Austin, June 1981. Revised Jan. 1983, Oct. 1983.
To appear in IEEE Trans. on Commun.

[GOUD 82a] Gouda, M. G., "Closed covers: to verify
progress for communicating finite state machines,”
TR-191, Dept. of Computer Sciences, Univ. of Texas
at Austin, Jan. 1982. Revised Jan. 1983. To appear
in IEEE Trans. on So ftware Engineering.

[GOUD 82b] Gouda, M. G., E. G. Manning, and Y. T.
Yu, "On the progress of communication between
two finite state machines," TR-200, Dept. of Com-
puter Sciences, Univ. of Texas at Austin, May 1982.
Revised Oct. 1983.

|GOUD 82c] Gouda, M. G. and Y. T. Yu, "Protocol
validation by maximal progress state exploration®,
TR-211, Dept. of Computer Sciences, Univ. of Texas
at Austin, July 1982. To appear in IEEE Trans. on
Commun. Jan. 1984,

[GOUD 83] Gouda, M. G., "An example for construct-
ing communicating machines by step-wise
refinement," Proc. 3rd IFIP Workshop on Protocol
Speci fication, Testing, and Veri fication, edited by
H. Rudin and C. H. West, North-Holland, 1983, pp.
63-74.

[HAIL 80] Hailpern, B. T. and S. S. Owicki, "Verifying
network protocols using temporal logic," In Proceed-
ings Trends and Applications 1980: Computer Net-
work Protocols, IEEE Computer Society, 1980, pp.
18-28.

[BM 70} IBM Corp., "General Information--Binary
Synchronous Communications,” Manual No.
GA2L7-3004-8, 3rd. ed., Oct. 1970.

[LAM 81] Lam, S.S. and A.U. Shankar, "“Protocol
projections: a method for analyzing communication
protocols,” Conf. Rec. National Telecommunica-
tions Con ference, Nov. 1981, New Orleans.

[LAM 82] Lam, S.S. and A.U. Shankar, "Protocol
verification via projections," TR-207, Dept. of Com-
puter Sciences, Univ. of Texas at Austin, August,
1982. To appear in IEEE Trans. on So ftware En-
gineering.)

[LAM 83] Lam, S. 8., "Data link control procedures,"
in Computer Communications, Vol. 1, ed.
W. Chou, Prentice-Hall, Englewood Cliffs, 1983, pp.
81-113.

[MERL 83] Merlin, P. M. and G.V. Bochmann, "On
the construction of submodule specifications and
communication protocols,” ACM TOPLAS, Vol. 5,
No. 1, Jan. 1983, pp. 1- 25.

[MISR 81] Misra, J. and K. M. Chandy, "Proof of net-
works of processes," IEEE Tran. on So ftware Eng.,
Vol. SE-7, No. 4, July 1981.

[MISR 82] Misra, J., K. M. Chandy and T. Smith,
“Proving safety and liveness of communicating
processes with examples," Proc ACM SIGACT-
SIGOPS Symposium on Principles of Distributed
Computing, Aug. 1982, pp. 18-20.

[RAZO 80] Razouk, R.R. and G. Estrin, "Modeling
and verification of communication protocols in
SARA: The X.21 interface,” IEEE Trans. on Com-
put., vol. C-29, No. 12, Dec. 1980, pp. 1038-1052.

47

[RUBI 82] Rubin, J. and C.H. West, "An improved
protocol validation technique," Computer Networks,
April 1982,

[SHAN 83] Shankar, A. U. and S. S. Lam, "An HDLC
protocol specification and its verification using image
protocols," ACM Trans. on Computer Systems,
Vol. 1, No. 4, November 1983, pp. 331-368.

[WEST 78} West, C. H. and P. Zafiropulo, "Automated
validation of a communications protocol: The
CCITT X.21 recommendations," IBM J. Res.
Develop., vol. 22, Jan. 1978, pp. 60-71.

[YU 82] Yu, Y. T. and M. G. Gouda, "Deadlock detec-
tion for a class of communicating finite state
machines," IEEE Trans. on Commun., Dec. 1982,
pp. 2514-2519.

[YU 83} Yu, Y. T. and M. G. Gouda, "Unboundedness
detection for a class of communicating finite-state
machines," Information Processing Letters, Vol.
17, Dec. 1983, pp. 235-240.

[ZAF1 80] Zafiropulo, P. et al, "Towards analyzing and
synthesizing protocols," IEEE Trans. on Commun.,
vol. COM-28, No. 4, April 1980, pp. 651-661.

+g) tgBy e 81 g =----- phase p,

g o d b

-8
M 1 N 1 “€3 +33
2

Ml,2 N

L2
l‘: ; (b) The composite network P12 = <P, {(2,2)},py>
'?3 E— 753 —- phase py ii
g3 85 18 +83 B &
" ” 5 ¥ b
(a) Two phases p, = (M;,N,) and p, = (M5,N,) @
M N*

(c) The composite network p* = <p, ,,{(5,5)}>

Figure 1. An example for constructing multi-phase networks.

AINIT/M,; +GINIT/M, +INIT/L, +INIT/N,
-NRSP/M, 3
+CINIT/M, +RSP/M, -RSP/L, -RSP/N,
-RSP/M, C‘:D -NRSP/N,
+CINIT/M, -CINIT/L,
-NRSP/N
M © | G
+INIT/N
-RSP/M, +RSP/L, +BSP/L, +NRSP/L, -RSP/L,
NDF /M, -BIND/N, +SDT/L,
+RSP/N1 (o)
+NRSP/N, -SST/M, -RSP/L, -RSP/L,
+RSP/M,
RSP/N1-®<-SDT/NI—®
Ly M, Ny

Figure 2. Establishment Phase of the Session Protocol.

48

J
®

-D/N,

+D/L,
-SHUT/N, +SHUT/L,
+RSP/N, -RSP/L,
+SHUTC/N, -SHUTC/L,
-RSP/N, i +RSP/L,
+D/N, o -D/L, o
L, M, N,

Figure 3. Data Transfer Phase of the Session Protocol.

o

-TERM/M, +GTERM/M, +TERM/L; +TERM/N, ~TERM/M,
+RSP/M; +CTERM/M, -RSP/L, -RSP/N, +RSP/M,
+UNBIND/L,
-RSP/M,
+CTERM/M, -CTERM/L; -CTERM/L, +UNBIND/L,
“RSP/N,
-RSP/M, +TERM/L,
) Oy /N OGil
-RSP/M, +RSP/Ly +RSP/L, -RSP/L,

-RSP/N3Q\
TERM/NS
-UNBIND/N,

+SE/L,
+RS! /N,

-RSP/L,
-SE/M3+RSP/M3.@
Ly

Mz N3
Figure 4. Termination Phase of the Session Protocol.

49

