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ABSTRACT

Many real-life protocols can be observed to go through different phases per-
forming a distinct function in each phase. We present a multi-phase model for
such protocols. A phase is formally defined to be a network of communicating
finite state machines with certain desirable correctness properties; these include
proper termination, and freedom from deadlocks and unspecified receptions. A
multi-function protocol is constructed by first constructing separate phases to
perform its different functions. We show how to connect these phases together
to implement the multi-function protocol such that the resulting network of
communicating finite state machines is also a phase (i.e. it possesses the
desirable properties defined for phases). We also present a sufficient condition
for the communication of a multi-phase protocol to be bounded given that its
constituent phases have bounded communications.

The modularity inherent in multi-phase protocols facilitates not only their
construction but also their understanding and modification. We found an
abundance of real-life protocols that can be constructed as multi-phase
protocols. Three fairly large examples are presented herein: (1) a version of
IBM’s BSC protocol for data link control, (2) a high-level session control
protocol modeled after one in IBM’s Systems Network Architecture, and (3) a
token ring network protocol.

1. Introduction

A layered communications architecture facilitates the construction of networking
software in a modular fashion. Nevertheless each protocol layer is a set of complex
parallel programs. Several distinct functions can usually be identified among the tasks
designated for a protocol layer to perform. For example, a full-duplex data link control
protocol may be thought of as having at least three functions: connection management
and simultaneous one-way data transfers in opposite directions. In both the analysis and
construction of protocols, however, it is preferable to think about the individual func-
tions of 'a multi-function protocol one at a time. In fact, most protocol analyses
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published in the literature have been illustrated with single-function protocols. For ex-
amples, both the alternating-bit protocol and Stenning’s protocol that have been exten-
sively analyzed in Bochmann [4], Stenning [30], and Hailpern and Owicki [16] are con-
cerned with a one-way data transfer function only. The protocol analyses in Kurose and
Yemini {18] and Razouk [26] are concerned with the connection management function
only. Of interest to us are methods for reducing the analysis/construction of a multi-
function protocol to the analyses/construction of smaller single-function protocols.

Suppose we are given a multi-function protocol to analyze. Lam and Shankar
[19,20] presented a method for constructing *image protocols® for each function of the
multi-function protocol. An image protocol is an abstraction of the original protocol but
is specified like any real protocol. It is constructed to preserve all safety and liveness
properties of the original protocol concerning one of its functions. Thus, their method
reduces the analysis of a multi-function protocol to the analyses of several smaller single-
function protocols. An application of their method to verify a version of the HDLC
protocol is presented in [28,29)].

This paper is concerned with the construction of a multi-function protocol from a
composition of single-function protocols. In general, this is a difficult problem.
However, many real-life protocols can be observed to go through different phases of be-
havior. In particular, these protocols go through their phases one at a time with a dis-
tinct function performed in each phase. For protocols characterized by this model of
multi-phase behavior, the following three-step methodology for constructing a multi-
function protocol is proposed:

i. Divide the protocol’s functionality into separate functions.

ii. For each function, construct and verify a phase to perform this function. A
phase is a network of communicating finite state machines that satisfies cer-
tain desirable general properties (including proper termination, and freedom
from deadlocks and unspecified receptions) to be defined.

iii. Connect individual phases together to form the required protocol. The
resulting protocol should satisfy the same general properties of proper ter-
mination, and freedom from deadlocks and unspecified receptions as the in-
dividual phases.

Step i of the above methodology is straightforward; the protocol’s functions can of-
ten be divided quite naturally. For example, a half-duplex data link control protocol
such as IBM’s BSC protocol can be divided into three functions [17,21]: a call setup func-
tion, a data transfer function, and a call clear function.

For step ii of the methodolgy, there are two basic approaches. In the first ap-
proach, each phase is constructed based on the designer’s knowledge and experience. It
is then verified using available verification techniques, e.g. efficient reachability analysis
in Bochmann [4], Rubin and West [27], Yu and Gouda [32,33], and Gouda and Yu [15],
program proving methods in Good {10], Hailpern and Owicki [16], and Misra and
Chandy [23,24], or symbolic execution in Brand and Joyner [2]. If an error is found in a
phase, the phase is modified and the verification repeated, and so on until a provably
correct phase is obtained. In the second approach, each phase is constructed using some
constructive design rules that automatically result in correct phases. See for example
Bochmann and Sunshine [5], Zafiropulo et al [34], Merlin and Bochmann [22], and Gouda
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and Yu [14].

Step iii of the methodology has received little attention so far, although it is agreed
in Razouk and Estrin [25] and West and Zafiropulo [31] that many errors in a protocol
are caused by improper connections between different phases of the protocol.

In this and other papers [7,8], we formally characterize the concept of a phase, and
present a methodology to connect the different phases of a protocol to yield a protocol
that satisfies the general correctness properties of proper termination, freedom from
deadlocks and unspecified receptions, and also boundedness. We demonstrate how some
realistic protocols can be constructed (and understood) in this fashion.

For simplicity, the discussion in this paper is carried out using the model of com-
municating finite state machines, although the results can be extended to other models as
well. (The model of communicating finite state machines has been used successfully to
model and analyze many existing protocols. See for instance Bochmann [4], West and
Zafiropulo {31}, Razouk and Estrin [25], and Gouda [12].)

This paper is organized as follows. In Section 2, the model of communicating finite
state machines is presented. The concept of phases is briefly defined in Seetion 3. The
construction of a protocol by connecting phases together is briefly discussed in Section 4;
the construction method guarantees that the resulting multi-phase protocol terminates
properly and is free from deadlocks and unspecified receptions. In Section 5, we outline
a sufficient condition for boundedness of multi-phase protocols. The advantages of our
construction methodology are discussed in Section 6. In Section 7, we list three multi-
phase communication protocols that can be constructed by our methodology.

2. Networks of Communicating Finite State Machines

A communicating finite state machine M is a directed labelled graph with two
types of edges, namely sending and receiving edges. A sending (or receiving) edge is
labelled -g (or +g, respectively) for some message g in a finite set G of messages. A node
in M whose outgoing edges are all sending (or all receiving) edges is called a sending (or
receiving, respectively) node. A node in M whose outgoing edges include both sending
and receiving edges is called a mized node, and a node in M that has no outgoing edges
is called a final node. One of the nodes in M is identified as its initial node, and each
node in M is reachable by a directed path from the initial node.

Let M and N be two communicating finite state machines with the same set G of
messages; the pair (M,N) is called a network of M and N.

A state of network (M,N) is a four-tuple [v,w,x,y], where v and w are two nodes in
M and N respectively, and x and y are two strings over the messages in G. Informally, a
state [v,w,x,y] means that the executions of M and N have reached nodes v and w respec-
tively, while the input channels of M and N store the strings x and y respectively.

The initial state of network (M,N) is [vy,wg,E,E] where v, and w,, are the initial
nodes in M and N respectively, and E is the empty string.

" Let s=[v,w,x,y] be a state of network (M,N); and let e be an outgoing edge of node
v or w. A state s’ is said to follow s over e iff one of the following four conditions is
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satisfied:

e e is a sending edge, labelled -g, from v to v’ in M, and s'=[v’,w,x,y.g|, where *.*
is the concatenation operator.

e e is a sending edge, labelled -g, form w to w' in N, and s'={v,w’ x.g,y].

e e is a receiving edge, labelled +g, from v to v' in M, and s'=[v’,wx’,y], where
x=g.x'".

e e is a receiving edge, labelled +g, from w to w’ in N, and s’=[v,w’x,y’], where
Y=gy

Let s and s’ be two states of network (M,N), s’ follows s iff there is a directed edge
e in M or N such that s’ follows s over e.

Let s and s’ be two states of (M,N), s is reachable from s iff s=s’ or there exist
states s,,...,s, such that s=s,, s"==sand s; 4 follows s; for i=1,...,r-1.

A state s of network (M,N) is said to be reachable iff it is reachable from the initial
state of (M,N). Next, we use the concept of reachable states to define what it means for
the communication of a network (M,N) to terminate properly and to be free from dead-
locks and unspecified receptions, and to be bounded.

The communication of a network (M,N) is said to terminate properly iff the follow-
ing two conditions are satisfied:

o TFor any reachable state [v,w,x,y] of (M,N), if v is a final node of M, then x must
be the empty string and there must be a directed path of all receiving edges from
node w to a final node w’ in N, where the string y is received.

o For any reachable state [v,wx,y] of (M,N), if w is a final node of N, then y must
be the empty string and there must be a directed path of all receiving edges from
node v to a final node v’ in M, where the string x is received.

A reachable state [v,w,E E] of (M,N} is called a proper terminating state iff both node v
and w are final nodes.

A reachable state [v,w,x,y] of a network (M,N) is a deadlock state iff (i) both v and
w are receiving nodes, and (ii) x==y=E (the empty string). If no reachable state of net-
work (M,N) is a deadlock state, then the communication of (M,N} is said to be deadlock-
free.

A reachable state [v,w,x,y] of a network (M,N) is an unspeci fied reception state iff
one of the following two conditions is satisfied:

®  x=g;.g. ... .& (k>1), and v is a receiving node and none of its outgoing edges is
labelled +g,.

®  y=g;.g. ... -8 (k>1), and w is a receiving node and none of its outgoing edges is
labelled +g,.

If no reachable state of (M,N) is an unspecified reception state, then the communication
of (M,N) is said to be free from unspeci fied receptions.
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The communication of a network (M,N) is said to be bounded by K, where K is a
nonnegative integer, iff for every reachable state [v,wx,y] of (M,N), |x|<K and [y|<K
where [x| is the number of messages in string x. The communication is said to be
bounded iff it is bounded by some nonnegative integer K; otherwise it is unbounded.

3. Phases

Let M and N be two communicating finite state machines. The network (M,N} is
called safe iff its communication terminates properly and is free from deadlocks and un-
specified receptions.

Let (M,N) be a safe network, and let v and w be two final nodes in machines M
and N respectively. The node pair (v,w) is called an ezit node pair of (M,N) iff the state
[v,w,E,E] of {M,N) is reachable.

The ezit set of a safe network (M,N) is the set of all exit node pairs of (M,N).

A safe network (M,N} is called a phase iff every final node in M or N appears in
exactly one exit node pair in the exit set of (M,N).

Consider the following problem. Is it decidable whether an arbitrary network is a
phase? In general, this problem is undecidable as discussed in Brand and Zafiropulo [3],
and in Gouda, Manning, and Yu {13]. However, the problem can be decided in some spe-
cial cases: For instance, if the communication of the given network (M,N) is bounded,
then the problem can be decided by generating and checking all the reachable states of
(M,N). In [7], we discuss a technique, based on the concept of closed covers in Gouda
[11], to verify that a given network is a phase even if the number of its reachable states
is infinite.

4. Constructing Multi-Phase Networks

In this section we discuss a discipline to connect a number of phases together to
construct a multi-phase network that is also a phase (thus guaranteeing that its com-
munication terminates properly and is free from deadlocks and unspecified receptions).
Phases are connected by joining the exit node pairs of one phase to the initial node pair
of another phase, or the same phase. The validation of this discipline is proved in [7].
The technique is discussed next.

Let p;==(M;,N;) and p,==(M,,N,) be two phases, with exit sets S; and S, respec-
tively, and let C be a subset of of S;. We define a composite network of p,, C, and p,,
denoted by <p;,C,py,>, to be the network (M,N) where

e M is the communicating finite state machine constructed {(from M;, C, and M,) by
joining all the final nodes of M; in C to the initial node of M,. The initial node of
M, becomes the initial node of M.

o N is the communicating finite state machine constructed (from N;, C, and N,) by
joining all the final nodes of N; in C to the initial node of N,. The initial node of
N, becomes the initial node of N.

The two phases p;=(M,N;) and p,=(M,,N,) are called the constituent phases of the
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composite network <p;,C,py>. In this case, machines M, and M, are called the con-
stituent machines of M, and machines N; and N, are called the constituent machines
of

As an example, Figure 1a shows two phases p;=(M;,N,) and p,—=(M,,N,). In
phase p;, the node pair (1,1) is its initial node pair and {(2,2),(3,3)} is its exit set. In
phase p, the node pair (4,4) is its initial node pair and {(5,5)} is its exit set. By joining
the exit node pair (2,2) of p; to the initial node pair {4,4)}, we have the composite net-
work pl,2=<pl,{(2,2)},p2> shown in Figure 1b.

So far we have discussed how to connect one phase to another. Next, we discuss
how to connect a phase to itself.

Let p;=(M;,N;) be a phase whose exit set is S, and let C be a subset of ;. The
composite network of p) and C, denoted <p,,C>, is a network (M,N) where

e M is the communicating finite state machine constructed (from M, and C) by
joining all the final nodes of M, in C to the initial node of M;,. The initial node of
M, becomes the initial node of M.

e Nis the communicating finite state machine constructed (from N; and C) by join-
ing all the final nodes of N| in C to the initial node of N;. The initial node of N;
becomes the initial node of N.

Phase p;=(M;,N;) is called the constituent phase of the composite network
<p;,C>=(M,N). In this case, machines M; and N; are called the constituent
machines of M and N respectively.

For example, conslder phase P12 in Figure 1b, if we join the exit node pair (5,5) of
Py 2 to its initial node pair, then we get the composte phase <p, 21(5,5)}> shown in
Flgure 1c.

The construction process of the multi-phase network p* in Figure 1c from the two
phases p; and p, in Figure 1a can be represented by the following sequence of equations:

P =(M1,N1)
Po =(M27N2)
P12 =<P1:{(2:2)}ypg>
*
P =<P1,2:{(5a5)}>
This equation sequence clearly provides all the information needed to construct p* from

p; and p,; moreover it is a more concise notation than the graphical representations in
Figures 1b and 1ec.

5. Boundedness of Multi-Phase Networks

In this section we present a sufficient condition for the communication of a com-
posite network to be bounded provided that all its constituent phases are bounded. In
order to state this sufficient condition, some definitions are in order.

Let (M,N) be a composite network, i.e. both M and N consist of a finite number of
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2 2

(a) Two phases Py = (Ml’Nl ) and p, = ( M2,N2 )

81 e, “8] "8y
‘Ta +gf3
M2 N,
(b) The composite phase p. , = <p , {(2,2)}, p. >
1,2 1 2
-g3 +gl +g, +g3 _gl -g.
i
N

*
M
(c) The composite phase p* = < Py o» {(5:5)1) »
.
Figure 1. An example for constructing multi-phase networks.

constituent machines. Two constituent machines in M, or N, are called disjoint iff they
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share no directed edges.

Let (M,N) be a composite network, and let M; be a~constituent machine in M. A
final node in M is called a plus node iff all its incoming edges are receiving deges. A
final node in M, is called a minus node iff all its incoming edges are sending edges. A
final node in M; is called a zero node iff its incoming edges include both sending and
receiving edges.

Let (M,N) be a composite network, and assume that machine M consists of r (r >

1) mutually disjoint constituent machines M;,M,,....M. An abstract machine M of M is
a directed labelled graph constructed from M as follows:

o . For each constituent machine M; in M, add a node, also called M, to M.

¢ If only plus nodes of a constituent machine M; are joined with the initial node of a
constituent machine Mj (Mj may be the same as M;), then add a directed edge,

labelled +, from node M; to node Mj in M.

¢ If only minus nodes of a constituent machine M; are joined with the initial node of
a constituent machine Mj (M,- may be the same as M), then add a directed edge,

labelled -, from node M; to node Mj in M.

o If the nodes of a constituent machine M, that are joined with the initial node of a
constituent machine Mj include one zero node or include both plus nodes and
minus nodes, then add two directed edges, one labelled -, the other labelled +,

from node M; to node Mj in M.

A directed edge labelled + (-) in M is called a plus (minus) edge.

As an example, Figure 2 shows the abstract machine of the communicating
machine M in Figure lc.

A
@

Figure 2. Abstract machine of machine M in Figure lec.

Let (M,N) be a composite network whose constituent phases are all bounded; and
let I:;I be the abstract machine of M. The sufficient condition for the communication of

(M,N} to be bounded is that each directed cycle in M must have at least one plus edge
and one minus edge.
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The abstract machine M in Figure 2 satisfies this condition, therefore the com-
munication of the protocol example is bounded.

A correctness proof for the above sufficient condition is shown in [7].

6. Achieving Modularity

This paper proposes the following construction methodology for multi-phase com-
munication protocols. First, construct the individual phases of the protocol indepen-
dently, and ensure that each phase satisfies the desirable properties of phases as defined
formally in section 3. Second, connect the resulting phases using the method discussed in
Section 4. The result is a protocol that is guaranteed to terminate properly and to be
free from deadlocks and unspecified receptions. Under some additional conditions, the
resulting protocol is also bounded.

Advantages of this construction methodology are as follows:

o Ease of Construction and Reasoning: The methodology allows one to focus on
only one phase of a complex protocol at a time. By ensuring that each phase
satisfies some desirable properties, one is guaranteed that the phases can be later
connected together to form a multi-phase protocol with the same desirable
properties.

o Parallel Construction and Verification: Construction and verification of the dif-
ferent phases of a protocol can proceed independently and hopefully in parallel.

o  Flexibility for Modifying a Phase: After constructing a protocol by connecting
a number of phases together, it is possible to modify one of the phases without af-
fecting the others. This is done by preserving the exit set in the modified phase.
An example is shown in [7].

o Flexibility for Rearranging Phases: After constructing a protocol by connecting
a number of phases together, it is possible to add more copies of the existing
phases and rearrange the connections between phases to make the protocol satisfy
some additional desirable properties such as fairness or robustness. An example is
shown in [7].

o Efficient Validation: Many copies of the same phase may be used in a compli-
cated protocol. (Examples are shown in [7].) The method of phases requires that
such a phase is validated only once regardless of how many copies of it are used in
the protocol. By constrast, validating the entire protocol will require validating
each employed copy of such a phase.

7. Examples
We have applied this discipline to construct three multi-phase communication
protocols [7,8]:

o A version of IBM’s BSC protocol for data link control [7]: This protocol can be
modeled as a network with five phases, a call setup phase, two data transfer
phases, and two call clear phases.
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A high-level session control protocol modeled after IBM'’s SNA speci fication for
LU-LU session management (8 9]: This example demonstrates that the concept of
phases can be extended in a straightforward manner to networks with more than
two communicating finite state machines. This protocol can be modeled as a net-
work of three phases (a session establishment phase, a data transfer phase, and a
session termination phase); each phase consists of three communicating finite state
machines.

A token ring network protocol [7]: This example demonstrates that the concept
of phases can be extended to parameterized networks; i.e. networks with n com-
municating finite state machines, where n can take any positive integer value.
This protocol can be modeled as a network with n identical phases; each phase
consists of n communicating finite state machines.
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