An Exercise in Deriving a Protocol Conversion*

Kenneth L. Calvert
Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

Abstract

This paper demonstrates formal techniques useful in solving
and reasoning about protocol conversion problems. A simple
example problem is solved and the resulting conversion system
is shown to have certain desired properties, using the projec-
tion paradigm. The example problem is representative of some
real-world problems in that the protocols involved are similar
in function, and even in structure, but have fundamental differ-
ences that render them incompatible in the absence of an active
translation entity (protocol converter). The use of mappings,
as well as images and inverse images of properties, in comparing
semantics of protocols is discussed and illustrated.

1 Introduction

A wide variety of formal methods for verifying and mod-
eling protocols have been developed [8]. However, these
methods generally are intended to deal with the correct-
ness of individual protocols, more or less in isolation. The
problem of enabling productive interoperation among en-
tities that were not designed to operate together, i.e., the
protocol conversion problem, has recently begun to receive
some attention. Several recent papers have dealt with pro-
tocol conversion from various perspectives [1,2,4,7]; there
is general agreement that protocol conversion is and will
remain an important problem, and that formal methods
for reasoning about the problem are a necessity.

In the general protocol conversion problem, two pro-
cesses, Ay and A,, perform some useful function in a net-
work environment by exchanging messages over channels
according to a protocol, A; while two other processes, B,
and B, have been designed to accomplish a similar func-

*work supported by the National Science Foundation under grant
no. ECS-8304734 and under grant no. NCR-8613338

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1988 ACM 0-89791-245-4/88/0001/0151 $1.50

tion using a different protocol, B (Figure 1). The classical
example of such a function is ensuring reliable transmis-
sion of data messages over unreliable channels.

Now, suppose we need to use A; and B; (or B; and
A;) to provide some or all of the service normally imple-
mented by protocols A and B. To accomplish this we must
consider what services are implemented by each protocol,
and how the processes interoperate in each case to provide
those services. In other words, we must understand the se-
mantics of each of the protocols. Then we must relate the
semantics of the two in order to understand what service
can reasonably be provided by the conversion system, and
use that relationship to specify a transformation between
the syntazes of the protocols. We can then implement this
transformation via an intermediary, a protocol converter
(Figure 3). The converter maps messages or sequences of
messages from one protocol into messages or sequences of
messages in the other protocol.

We consider the processes in isolation, as they are de-
picted in Figure 2. This is an abstraction from the general
case, in which A and B may be part of some layered archi-
tecture; the channels connecting A; and B; in the figure
imply the existence of any conversion necessary at lower
levels to be able to provide a transmission path between
the processes.

In this paper, we illustrate the approach described in
[4,5] for reasoning about conversion systems and their cor-
rectness. The approach makes use of protocol projection
[3], an abstraction technique for verifying properties of
complex protocols. The basis of the projection paradigm
is the idea that a property of a complex system can be
proved by finding a property-preserving transformation
to a simpler system, and then proving the property of
the simpler system. The rest of the paper is organized as
follows. The next section explains the model of protocol
systems used for the examples, and briefly describes proto-
col projection. Then we introduce our example problem,
a conversion between the Alternating Bit protocol and a
version of the Bisync protocol. A converter is constructed,
and the use of protocol projection to prove that the con-
version system has certain properties is demonstrated. We
conclude with some discussion about the general applica-
bility of these ideas.

[T —
4..—_._
—_—
‘————

Figure 1: Protocols A and B

—_————
q—.___.

Figure 2: Conversion Configuration

OO)

Figure 3: Conversion between A and B

2 Background

We have stated that we wish to use A; and B, to provide
“some or all” of the function of the original protocols, and
that the conversion system is to be proved correct some-
how. Intuitively, we want the conversion system involving
A,, B,, and possibly a converter process, to have certain
properties, somehow related to those of the protocols A
and B. In order to reason formally about the conversion,
we must have a formalism for expressing such properties.
In this section, we describe a simple model for protocol
systems and its semantics. Then we discuss methods of
relating the semantics of one protocol to those of another,
including the method of protocol projection.

The Model

The protocols of our example problem are modelled us-
ing a simple communicating finite-state machines (cfsm)
model. In this model a protocol consists of a set of pro-
cesses connected by channels. Each process is defined by
a finite process state space, a finite set of events, and an
initial state, and may be represented conceptually as a di-
rected graph with nodes corresponding to process states
and labeled arcs corresponding to events. The processes
of the protocols for the example are depicted using this
representation in Figures 4 and 5. A channel is a means
of transmission of messages from one process to another,
and is represented by an infinite-capacity FIFO queue, to
which one process may add messages while another pro-
cess may remove enqueued messages from the other end.
Thus communication in this model is completely asyn-
chronous.

The events represent activity, or change in the state of
the system. In our model, every event involves exactly one
process, and directly affects only the state of that process

152

‘and/or the channels connected to it. Events are consid-

ered to be indivisible: only one event may occur at a time,
and events considered concurrent may occur in any order.
A process event may be one of three types: a send event
(represented by a label “—m”), involving the addition of
the message m to the tail of a channel and a change in the
state of the process; a receive event, (label “+n”), involv-
ing removal of a particular message n from the head of a
channel and a state change, or an internal event, which in-
volves a process state change but no messages; an internal
event can be an abstraction of interactions with other en-
tities that are not modeled. In the text, we denote events
by triples: an event that changes the state of the process
from a to b, and removes the message m from a channel
coming from process P, is denoted (a,b,+m/P). When
there is only one incoming and outgoing channel per pro-
cess, the channel designation is omitted: (a, b, +m).

The state of a channel is the ordered sequence of mes-
sages sent on the channel but not yet received on it. The
set of possible states of a channel is determined by the
set of all messages that may be sent on it, and is the set
of all finite sequences of messages in that set. If the set
of messages that may be sent on a channel is M, the set
of all finite sequences of messages in M (i.e., the channel
state space) is denoted by M*.

The global state of the protocol is defined by the states
of all the processes and channels; the global state space
of protocol A is denoted A and is the cartesian product
of the state spaces of all the processes and channels. For
example, if protocol A has two processes with state spaces
S1 and S, and two channels with message sets M; and
M,, its global state space is defined by:

Sl X Sg X M; X M;
and a global state g € A may be specified by a 4-tuple:
g = [51,82,U1, V2],

where
81 € 51,82 € Sz,U] € M;,Ug € M;

The initial global state is defined as the global state in
which all processes are in their initial process states and
the channels are empty.

A receive event (a, b, +m/P) of a process is said to be
enabled in any global state in which the state of the pro-
cess is g and the head message of the channel from P is m.
An internal or send event (a,b,€) of a process is enabled
in any global state in which the state of that process is a.
Thus, an event defines a set of transitions between global
states; we say an event e takes the system from global
state g to global state h, and write g > A, if e is enabled
in g and the state changes associated with e change g to h.
For example, the event (a, ,-m) of process 1 in protocol
A takes the state [a, z,U, V] to state [b,z,Um, V] (where
“Um” represents the appending of message m to sequence
U), for any z, U, and V.

Sender (Sa) -Do,

accept -Ls,-err

+Al,
+err,+tm

-Ls,-err
4]
+A0,
+tm,+err

accept

Figure 4: Alternating-Bit Protocol

Sender (Sg) -data, +tm
accept -Ls-err terr
12 L | 6 l
-enq
+ack0
+ackl

-data,
-Ls,-err

-enq

+ackl

Receiver (Ra)
+Ls

+D0 m
J |
+err _gg
deliver l_'|4
L=
Receiver (Rp)
+Ls
+data e
L]
tena | | 26K0
+err -tm
deliver [TL
L=

Figure 5: A version of Bisync Protocol

The behavior of the protocol over time is represented
by a sequence of global states go, g1, g2, . . ., such that each
pair of successive states in the sequence are related by
some event; that is, there exist e, e;,... such that

902’915‘1*923---

We call such a (finite or infinite) sequence of states (which
may also be considered a sequence of events) a path. We
say a path is a computation if and only if (i) go is the
initial global state and (ii) either the path is infinite or no
event is enabled in its terminal state. Note that at any
state in a sequence there may be several events enabled,
while only one occurs to take the system to the next state.

We say a path is fair if and only if no event that is
enabled infinitely many times in the path occurs only a fi-
nite number of times. (This definition is sometimes called
“strong fairness,” and reflects one criterion for deciding
whether an infinite behavior is in some sense “realistic.”
There are others — fairness is a topic of study in itself.)
Note that all finite paths are fair. It can be shown that
any finite path from the initial state can be eztended to o
fair computation. That is, if there is a sequence of states

and events go =3 ... 5! g, where go is the initial state,

then there is a fair computation, the first k + 1 states of
which are g, ...,gz. This fair computation may be finite
if and only if no event is enabled in its final state. (The
proof, which we omit in the interest of brevity, involves
showing that there is a path from any global state in which
the number of times any event may be enabled between
occurrences is bounded.)

153

The set of all fair computations of a protocol is denoted
R. (When we refer to a particular protocol A we write
R4.) The set R embodies the semantics of the protocol
in the following sense: any possible behavior of the system
is represented by some computation in R.

Properties of Protocols

In the model we have just described, the semantics of a
protocol is defined operationally, by specifying a set of
transitions in the global state space that determine the
set R of fair computations. The behavior of a system may
also be described functionally by characterizing the set R
by means of logical assertions. We now introduce a lan-
guage for simple logical assertions about the set R; such
assertions can be used to specify certain basic properties
of a protocol. A full system for stating and proving asser-
tions about the set R is beyond the scope of this paper; we
define just what is necessary to specify the properties rel-
evant to our example protocols and the conversion. (The.
language introduced here is essentially a small piece of
temporal logic; for a full treatment, see [6].) Our approach
to the example will allow us to avoid proving properties
of the conversion system from its operational definition.
Instead, we find a relation between the conversion sys-
tem and the original protocols such that it has properties
corresponding to their (known) properties.

For any protocol A, a global state predicate is a map-
ping of the global state space A into the set {true, false}.

We say “p holds at ¢” or “p is true for ¢”, if and only if
p(g) = true. A predicate may be considered equivalent to
a particular subset of 4, namely the set of all states g for
which p(g¢) = true. Conversely, any set of states in A may
be considered as a predicate; the predicate is true for a
state if and only if the state is in the set. In what follows,
we use the concepts “subset of A” and “predicate on A”
interchangeably.

The expression “P at s,” where P is a process of pro-
tocol A and s is a process state of P, denotes a predicate
that is true for all global states in which the state of P is s.
For example, if we represent a global state of protocol A
(as in Figure 1) by [ay, ag, Uy, U;], then the set of states de-
noted by “A; at s” contains exactly those states in which
a; = s. If S is a set of process states of P, “P at S”
denotes the set of global states in which process P is at
one of the process states in 5. Because the process P is
at ezactly one process state in every global state, if S is
the entire process state space of P, then P at S = true.

If the expressions p and g denote sets on A, then pAgq
denotes their intersection, and p V ¢ denotes their union.
The expression —p denotes the set complement of the set
denoted by p, so —p(g) = true if and only if p(g) = false.
Thus, a boolean combination of at expressions defines a
predicate. Two such expressions are equivalent if and only
if they define the same predicate. From the above defini-
tions, it follows that “P at z V P at y” is equivalent to
“P at {z,y}.”

We define two types of properties of protocols. A safety
property expresses the fact that “the system is always in
a good state,” where “goodness” is defined by a predi-
cate. If p is an expression defining a state predicate, we
define the assertion “p is a safety property of A” to be
equivalent to “for every state g in every computation in
R4, p(g) = true.” In other words, every state of every
fair computation of A is in the set denoted by p. Since
every fair computation is a path from the initial state, if
p holds at every state of every path from the initial state
of A, then p is a safety property. Also, since any finite
path from the initial state can be extended to a fair com-
putation, if -p holds at some state on some path from the
initial state, then p cannot be a safety property. Thus, “p
is a safety property of A” is also equivalent to “p holds at
every state of every path from the initial state of A.”

A liveness property is an assertion that “something
good will eventually happen” in any possible behavior of
the system. If p and ¢ are predicates, then “p ~» g (read ‘p
leads to ¢’) is a liveness property of A” is equivalent to “in
any fair computation in Ry, every state at which p holds is
followed by some state at which ¢ holds.” This expresses
the characteristic that, at any point in a computation, if
p is true, ¢ will eventually become true.

Mappings and Images

In this section, we consider how the properties of one pro-
tocol may be related to those of another by relating the
global state spaces of the two protocols through a func-

154

tional mapping; such a mapping associates each global
state of one protocol with a unique global state of the
other. Such a mapping may be considered to define a se-
mantic equivalence between a global state and the state
to which it maps.

Suppose we have two protocol systems, A and B, de-
fined operationally as described above. Let A represent
the global state space of A, and B the global state space
of B. Now consider any functional mapping, F : A — B.
For any global state g in A, F(g) is a (unique) global
state in B, called the image of g under the mapping F.
(Note that F may be many-to-one, so that we may have
F(g) = F(h) for some g # h.) The image of a subset
p € A under the mapping is the set of all the F(g)’s such

that ¢ € p. In what follows, the image of a quantity z un-
der the mapping F will be denoted by z’. So for example
9'=F(g) and p' = {¢g': g € p}.

If t is a state in B, the inverse image of t is the set of
states g in A such that F(g) = t. We denote the inverse
image of a quantity z by . The inverse image of a subset
g of B is a subset § = {z : 2’ € ¢}. From these definitions
and the fact that each ¢ € A has a unique image, it follows
that the inverse image of the intersection of two sets in B
is the same as the intersection of their inverse images:

(»Nq)

{9:9'€pngq}
{9:9€pAg eq}
= {9:d€pin{g:g' €q}
= (N
Similar properties hold for union and complementation:
the inverse image of pU ¢ is pU §, and <p = —p.

The image of a computation go =5 ¢; = ... is defined
to be the sequence of image states g§, g}, . . ., with adjacent
occurrences of the same image state consolidated into one
image state, so that the same state does not occur twice in
succession. Thus the image of an infinite computation of
protocol A might be a finite sequence of states in B, if all
states beyond a certain point in the computation have the
same image under the mapping F. Note that the image of
a computation of A is a sequence that is not necessarily o
computation of B, because there might be some point in
the image sequence where for no event e of B is it the case
that g, - g},y; or, the image of the computation might
be finite, with some event enabled in the terminal state.

The inverse image of a computation of B (or any se-
quence of global states in B) is the set of sequences of
states having that computation as image. That is, if «
is any sequence of global states of B, @ = ay, ay,..., the
inverse image of a, denoted by &, is the set of sequences

I

of states, given by (with “x” denoting cartesian product)
d=dyxd x...={c:0 =al.

A sequence of states of A in the inverse image of a com-
putation of B is not necessarily a computation.

Now, suppose we want to relate the properties of some
protocol B to another protocol A; we would like to find

assertions about A that correspond to the assertions of
properties of B. In our simple assertion language, prop-
erties are defined by at expressions relating the states of
the processes in the protocol. If we want to obtain asser-
tions about A from assertions about B, we must define a
correspondence between the process states of A and those
of B. Protocol projection is one way of defining such a
correspondence.

Protocol Projection

Protocol projection [3] is an abstraction technique that
can be used to prove properties of a complex protocol
by mapping it onto a simpler image protocol. The image
protocol and the mapping are both derived from the given
protocol. While projection is applicable to distributed
systems with more general strueture, we shall describe it
in terms of the simple cfsm model used for the example.
The following discussion is necessarily brief; for a complete
discussion the reader is referred to [3].

Given a protocol A, a protocol projection is defined by
partitioning the state spaces of each of A’s processes. The
idea is that process states which are to be functionally in-
distinguishable in the image protocol are aggregated into
the same partition, and map to the same image process
state. The (unique) image of any process state a is de-
fined by this state aggregation, and is denoted by a’. The
set of process states corresponding to the image process
state b is denoted by b. Because of the structure of a pro-
tocol, a partitioning of the process state spaces defines a
corresponding partitioning of the message and event sets
of the protocol. Every message (and event) maps to a
message (event) in the image protocol or has a null im-
age. The messages and events of the image protocol are
exactly those that are the image of some message or event
in the original protocol.

The image of a message is determined by the effect of
its reception in the image of the receiving process’ state
space: messages that cause the same state changes have
the same image, while any message that does not cause
any state change in its receiver is said to have a null image.
For example, suppose a, b, ¢ and d are process states of
some process, and m and n are messages that may be
received by the process. If (a,b,4+m) and (¢,d, +m) are
the only receive events involving the message m, and o’ =
b and ¢/ = d’, then the message m has a null image. If o’ =
¢ and ¥’ = d' for any two events (a, b, +m) and (c,d, +n),
then m and n have the same image. In the former case, the
projection has abstracted away completely the function
served by the message m, while in the latter case, the
functional distinction between m and n has been removed.

The image of a process event (a, b, e) is determined by
the images of a, b, and any messages involved in e. If
a' =V, and e is the label of an internal event or involves
a message with a null image, then the event has a null
image; otherwise its image is the event (a’,¥,¢’).

Thus, a projection yields a specification of image pro-
cesses, which define the image protocol. The image pro-

155

tocol has a process and channel corresponding to each
process and channel of the original protocol. The image
process corresponding to P is denoted P’. Because the
partitioning of the process state space defines an image
for every process state and message, the projection also
defines a mapping from the global state space of A to the
global state space of of the image protocol: the image of
a global state g = [a1,a, Uy, Uy is ¢ = [a)/, a0’ UL/, UY');
the image of a sequence of messages U is the sequence of
(non-null) images of the messages in U. The initial global
state of the image is the image of the initial global state.

For any event e and global states ¢ and & in A such
that g = h, either ¢’ = h', or there is some image event
e/, such that ¢’ < B in the image protocol. From this it
follows ([3]) that the image of any computation of A is a
path of the image protocol beginning at the initial global
state. If the projection meets some additional structural
conditions, then the image is said to be well-formed, and
the image of any fair computation is a fair computation
of the image protocol.

Now suppose B is an image protocol of A, and let F :
A + B be the functional mapping of global states defined
by the projection. Then F has the following characteristic:
any global state of A in which the state of process P is
z maps to a global state in which the state of process P’
is z’.. Conversely, the only global states with images in
which the state of P’ is y, are those in which the state of
P is one of the process states whose image is y, i.e., those
in the set denoted by P at §. Thus, the inverse image of
the predicate defined by P’ at y is defined by P at 4.

From the correspondence between boolean combina-
tions of at expressions and set operations described ear-
lier, and the fact that pfig = pN g, pUqg = pU §, and
=p = —p, it follows that the inverse image of any predi-
cate defined by a boolean combination of at expressions
is defined by the same boolean combination of at expres-
sions with each process P’ replaced by P, and each pro-
cess state y replaced by §. For example, suppose protocol
B in Figure 1 is an image of protocol A, and processes
A; and A correspond to processes B; and B, respec-
tively. Then the inverse image of the predicate on B de-
fined by B; at z = B, at y is defined by the predicate
A, at £ = A, at §. From now on we use p to represent
the expression defining the inverse image of the predicate
defined by p.

Now we can relate properties of one protocol to those
of another. Suppose B is an image protocol of A, and pis a
safety property of protocol B. Then p holds for every state
in any path from the initial state of B. As noted above,
the image of any computation a of A under the mapping
defined by the projection is-a path o/ from the initial state
of B. Since p holds at every state of ¢/, it follows that p
holds at every state of @. (Suppose not. Then for some
a, o is a path from the initial state of B, and there is a
state g in a for which p(g) = false. But by the definition
of p, we have p(g’) = false. Since g’ is a state in a path
from the initial state of B, p cannot be a safety property
of B, a contradiction.) Thus, p is a safety property of A.

If the image protocol B is well-formed, then the image
of any fair computation a of A is ¢/, a fair computation
of B. If p ~» ¢ is a property of B, then every state in o/ at
which p holds is followed by some state at which ¢ holds.
But this means that every state in @ at which p holds is
followed by a state where § holds, so p ~+ § is a property
of A.

If two protocols can be projected onto the same image
protocol, then they share the inverse images of the safety
properties of that image. Furthermore, if the images are
well-formed, then they have its safety and liveness prop-
erties in common. This suggests the following approach
to solving a conversion problem such as that described in
the first section. We first specify the properties required
of the conversion; then we look for a projection of the two
protocols onto a common image with the properties we
desire. If one is found, we are done, for the two projec-
tions define a correspondence between the messages of the
two protocols: those with the same image are semantically
equivalent.

If the protocols do not have a common image with the
desired properties, a protocol converter must be obtained
by considering the properties required and the structure
of the processes involved in the conversion. Given a candi-
date converter, if the conversion system can be projected
onto each of the two original protocols, the inverse images
of their properties are properties of the conversion system.
We illustrate these concepts in the next section with our
example.

3 The Example Problem

The protocols in our example problem are the venerable
Alternating-Bit (AB) protocol and a simplified version of
the data transfer portion of the Bisync protocol. Each
protocol provides reliable, sequenced transmission of data
messages from the Sender to the Receiver over unreliable
channels that may lose or corrupt messages. The proto-
cols are represented in Figures 4 and 5. In those figures,
the transitions labeled “accept” and “deliver” are inter-
nal events denoting interaction with some (higher-level)
user entity. They represent acceptance of a message (e.g.,
higher-level protocol data) for transmission, and the de-
livery of a correctly received message to the receiver-side
user, respectively. We are not concerned with the con-
tents of the data messages themselves, as the service pro-
vided is a “transparent” transmission service. Thus we
consider all data messages to be equivalent; in AB, the
“D0” and “D1” messages represent the presence of a one-
bit sequence number attached to the data message.

Modeling Lossy Channels

The example protocols are designed to function with un-
reliable channels; each Sender detects lost messages by
means of a timeout mechanism. However, the channels in
‘our cfsm model are perfectly reliable. To model channels
that may lose or corrupt messages using ideal channels, we

156

use “pseudo-messages” that represent loss, timeout, and
corruption events. Receipt of a “m” message represents
a timeout event at the process receiving the message; re-
ceipt of an “err” message represents reception of a message
corrupted in transit. “Ls” represents a message lost on its
way to the receiver.

The pseudo-messages model losses as follows: each
send event has two parallel “error” events, one represent-
ing the loss and one the corruption of the message sent.
For example, in Figure 4, whenever the “-D0” event is
enabled at the Sender, the “-Ls” and “—err” events are
enabled as well. If a message is being sent to the process
where a timeout may occur, the “tm” message may (non-
deterministically) be sent instead of the intended message.
If the timeout is located at the sending process, the “Ls”
message may be sent instead of the intended message.
Whenever a “Ls” message is received by a process, a “tm”
message is returned to the sender. Thus, receipt of a “tm”
message indicates loss of either a message or its acknowl-
edgement. This mechanism models only non-premature
timeouts, so that a timeout pseudo-message is received if
and only if a loss has occurred.

The “err” pseudo-message carries no information other
than that some message was sent and corrupted. It is not
hard to see that if there is a path to a global state g, in
which a message m is in some channel, then there is a
path to a state h, identical to ¢ except for the “loss” or
“corruption” of m, represented by the presence of “Ls”
or “err” in the channel in place of m. For example, if
[s,7,U, V] is a global state in some computation, where U
is a sequence of messages containing m, then there is a
computation in which [s,r,UZ, V] is a state, where U™
is U with err substituted for m. Our fairness requirement
ensures that in any fair computation, no message may
be lost or corrupted infinitely many times without being
correctly sent.

Properties of the Protocols

Our problem is to enable reliable transmission of data
messages from the Sender of one protocol to the Receiver
of the other. There are actually two different problems:
enabling S and Rp to interoperate, and enabling Sg and
R4 to interoperate. In general these problems must be
solved separately; if an active intermediary (converter) is
required it may be different for the two cases. However,
if the two protocols have a well-formed common image
protocol, the characteristics of either converter may be
determined from the two projections. In the exposition
that follows, we focus on the Sg-Ra conversion, the con-
verter for which we denote by Co. The Sp-Rp problem
(with converter C,) has an analogous solution.

Before constructing any converter, we must specify the
properties required of the conversion system. Before con-
sidering those required properties, we first state the prop-
erties of the AB and Bisync protocols. The properties
that we give can be proved by any of several means; we
shall simply accept them as given.

Each of the following is a safety property of both AB
and Bisync. (“S” represents the Sender process of either
protocol, “R” the Receiver):

Sat0
S at 3
Ratl
R at 4

Rato
R at 3
S at 2
Sath

=
=
=
=

These safety properties together assert that the protocol
maintains synchronization; in particular, together they
imply that no message is accepted for transmission un-
less the previous message has been delivered and acknowl-
edged.

The following liveness properties are common to both
protocols:

(S at 1V S at 2) ~ (S at 3)
(S at 4V S at 5) ~ (S at 0)

These properties indicate that every message accepted
for transmission will eventually be delivered and acknowl-
edged.

The above properties may be considered to specify the
“service” provided by the protocol. Since the same asser-
tions are used to express the properties of both protocols,
it is clear that state 0 of Sy corresponds (with respect
to these properties) to state 0 of Sp, state 1 of Ry cor-
responds to state 3 of Rp, etc. Therefore it makes sense
to consider the above properties to specify the service of
the conversion system. We shall require that the above
(with “S” representing “Sp” and “R” representing “R,”)
be safety and liveness properties of the Sg-R,conversion
system.

Deriving the Conversion

The obvious and essential difference between the proto-
cols is that AB includes a sequence number attached to
each data message, while the Bisync protocol does not.
This means that the AB Sender may safely transmit a
data message to the Receiver after the Receiver has al-
ready delivered that message to the user; the sequence
number attached to the message ensures that the dupli-
cate is detected, and prevents the Receiver from delivering
multiple copies of the same message. The Bisync Sender,
however, may not retransmit a message unless the state
of the Receiver is known; this is because the Receiver has
no means to distinguish between old and new messages,
and would otherwise deliver the retransmitted message as
a new message. Thus, in AB, the responsibility for main-
taining synchronization and ensuring correctly-sequenced
delivery is essentially the Receiver’s; in Bisync it resides
with the Sender.

Since these two protocols seem to be so similar in struc-
ture, we first consider whether it might be possible to
project one onto the other, or both onto a common image.
We have already noted that the state spaces are substan-
tially equivalent. By aggregating Sg’s states 1 and 6 into

157

a state equivalent to S,’s state 1, and similarly with 4 and
7, we can pr(')ject the Bisync protocol onto an image pro-
tocol identical to AB, ezcept for its messages. The image
thus obtained still has only one “data” message, while AB
has two semantically different ones, “D0” and “D1.” In
other words, the AB message set has a higher resolution

‘than Bisync’s.

On the other hand if we try to project AB onto Bisync,
Ra can be projected onto Rg by a simple mapping of
messages, but we cannot project S4 onto Sg, because Se
has a larger state space. That is, Bisync’s state space has
a higher resolution than AB’s. So neither protocol is an
image of the other. Although it is always possible to come
up with a common image for any two protocols, it is not
hard to see that in this case the common image (obtained
by projecting out the semantic difference between the data
messages in AB, i.e., by “folding” the state space in half)
does not have the properties desired of the conversion.

When the protocols do not have a common image with
the desired properties, an active converter (a finite state
machine) is required. We therefore consider the necessary
characteristics of such a converter. Now, we would like to
be able to use the properties of the original protocols to
prove that the conversion system involving our converter
has the desired properties. We may do this using projec-
tion as described in [5] by making the combined function
of the converter and Sp correspond to the behavior of S A
(with respect to communications with R,), while simi-
larly the interactions of Cy with Sg correspond to what
Rp would do. Figure 6 illustrates half of the idea: the
communications between Cy and Ry are projected onto
the AB system.

So Cq should “emulate” Rg when interacting with Sg,
and S, when interacting with R,; the question is how to
relate those two behaviors in a single machine. Obviously,
data messages received from Sp will have a sequence num-
ber attached and be forwarded to R,. But when should
an acknowledgement be sent to Sg? How should retrans-
missions be handled?

Observe that a message may be lost or corrupted after
being correctly received by Cy but before being received by
Ra. In this case it must be retransmitted. But if the com-
munications between Sg and Cy are to be projected onto
those of Bisync, Co must send a positive acknowledge-
ment after correctly receiving a data message; therefore,
if a data message must be retransmitted to Ry, it must
be retransmitted by Co without interaction with Sg. In
other words, Co must “accept responsibility” for delivery
of a message to Ry, once it is received from Sg. So Cy’s
behavior should repeat the pattern:

emulate Rp until receiving a message correctly; then

emulate S5 until the message is acknowledged by
Ra; then

resume emulation of Rp by acknowledging message

The stop-and-wait nature of our two protocols makes
it a simple matter to construct a converter with the above

Figure 6: Projection of 3-process system onto 2-process
system

structure; it is illustrated in Figure 7. In order to emulate
S4a, it is necessary for Cy to have a timeout mechanism of
its own. To distinguish the pseudo-messages for the two
timeout events, Sp’s is designated “tm0” and Cy’s “tm1.”
Note also that receipt of a correct data message from Sp
corresponds to the “accept” event of S,, while receipt of
a positive ack from R, corresponds to the “deliver” event
of Re. The converter for the S,-Rp system is similar and
is shown in Figure 8.

Correctness of the Conversion System

We have constructed Co so that AB and Bisync will be
images of the conversion system. We now show that this
is so, and also that the Bisync projection has well-formed
events. If no message can remain in a channel forever
in the original system (as is the case for the conversion
system), then the well-formedness of the events in a pro-
jection is a sufficient condition for the image of any fair
computation of the original system to be a fair computa-
tion of the image system.

We project the three-process system (Sp,Co,Ra) onto
each of the two-process original systems by considering
two processes, and the channels between them, as a sin-
gle machine, as shown in Figure 6. In order to project
(SB,Co,Ra) onto (Sg,Rp), we define an aggregation of the
states of the subsystem (Cy,Ra). Then we show that the
image machine defined by the aggregation is Rp, so that
the image of (Sg,(Co,R4)) is (Sg,Rg). A similar approach
applies to AB: we project states of (Sp,Cs) onto those of
Sa, and the image system is (Sa,Ra).

In what follows, we represent an arbitrary global state
of the conversion system by g = [s,U,V, ¢, X,Y, r], where
s, ¢, and r are the states of Sg, Cg, and Rp respectively,
and U, V, X, and Y are the states of the channels. Thus
when we mention ¢, we refer to the state of the converter,
r refers to the state of Ra, etc. In the projection onto

Bisync, the image of g is a global state ¢ = [s,U, V7],

where ' is a state of Rg, the image of the subsystem state
[¢, X,Y,r]. The image of g under the projection onto AB
is g% = [¢, X, Y,r], where s’ is the image of [s, U, V, c].

To define the projection, we define the correspondence
between the subsystem states [s,U,V,c] and the process
states of Sa, and between [¢, X, Y, r] and the states of Rg.
These subsystem states are to be aggregated according to
the state of Cp. The image of [s,U,V,c| in the Bisync
projection (or [¢,X,Y,r] in the AB projection) will be a
function of ¢, and all subsystem states with the same value
of c are aggregated together and have the same image. We

158

+err/S
+enq/S

—err, -Ls/R

+data/S
6 [~ 5]
+AO/R -tm0/S
+err, +tm1/R
Figure 7: Sg-Ra Converter (Co)
—data/R +tml/R
+Ls/S +Do/S —err, -Ls/R +err/R
| 2 [, | 9
+ack0/R —enq/R
—err,~-Ls/R

+ackl/R

+ack0o/R

+tm1/R —data,/R
+err/R —err, -Ls/R
11} R
—-eng/R +ackl/R —tm0/S

remLe/R Figure 8: S;-Rp Converter (C,)

also aggregate further the subsystem states, by combining
some states of Cy in each projection, as shown in Figures
9 and 10. Comparison of Figures 5 and 9 shows that state
0 of Cg corresponds to state 0 of Rg, the aggregated states
1 and 2 correspond to state 1 of Ry, etc. Each event of C;
that involves sending or receiving a message to or from
Sp corresponds exactly to an event of Rp, and for each
event of Rp there is a corresponding event of Cy. Events
of Cop that involve interaction with R, do not cross image
state boundaries, and therefore have null images; the ex-
ceptions are the events (2,3, +A0/R) and (6,7, +A1/R),
which correspond to the two “deliver” internal events of
Rp.

Now, events of Ry can change the state of the (Co,R,)
subsystem, but do not involve sending messages to the rest
of the system; they are considered “internal” events of the
composite process. Furthermore, since they do not change
the state of Cg, they cannot affect the image process state
of the subsystem, and therefore have null images. Since
the image of Sp is itself, it follows that (Sg,Rg) is an im-
age of (Sp,(Co,R4)); by a similar argument, (Sy,R,) is the
image of ((Sg,Co),Ra). Table 1 shows how the image pro-
cess states s’ and 7’ under the two projections correspond
to c.

We now proceed to show that the Bisync image has

—— vt —

+err/S

T T T oyr
—err, -Ls/R

+data/S

+AO0/R —tm0/S

+err, +tml1/R

| SEPI U SR

Figure 9: C, state aggregation in projection onto Bisyne

well-formed events. An image process event e is well-
formed if, for any global states g and A such that g % h,
and any r in §, there is a path from r to some state in
h, such that the last event is ¢’ , and all other events are
internal or send events (involving null-image messages) of
that process. In a projection defined by an aggregation
of process states, this condition may be checked simply
by inspection of the processes’ state spaces. In this case,
because we are considering subsystem states as process
states, we must show that the well-formedness condition
is satisfied for the subsystem’s state space, which we so
far have not made explicit. However, thanks to the char-
acteristics of Co (and the liveness property of AB), we can
show the well-formedness of the image without having to
explore the complete state space of the (Cg,Ra) subsys-
tem.

Because no aggregation of process states of Sg is in-
volved in the projection onto Bisync, and all messages
project onto themselves, the events of Sp in the Bisync
projection are clearly well-formed. Whenever an event of
Sg is enabled in g, the same event of Sy must be enabled
in g; similarly for ¢/, and events of Ra. So we just need
to show the well-formedness of events of Ry in the Bisync
image.

Let g = [s,U,V,c,X,Y,r] be the state of the conver-
sion system and gp = [s,U, V,r'] be its image under the
projection onto Bisync. We shall show that if an event
of Rp is enabled in g}, then a sequence of events not af-
fecting s, U, or V can occur and take the subsystem to
a state where an event whose image is the Rp event is
enabled. Consider the events of R that might be en-
abled in a state [s,U,V,r’] when ' is 0. Figure 5 shows
that these include (0,1, +data), (0,6,+Ls), (0,5, +err),
and (0,5, +enq). Table 1 shows that when 7' is 0, ¢ is 0.
Figure 9 shows if one of these events can occur in the im-
age state [s,U,V,0], then the event with that image can
occur in the state [s,U,V,0,X,Y,r]. So all the events en-
abled when r' is 0 are well-formed. A similar argument
applies to any events enabled when ' is 2, 3, 5, 6 or T:

159

N\
Y
A}
\
{ —-ackl/S
+err/S)
+A1/R I teng/S —err/S
-DI/R ‘el
—err, -Ls/R |‘
w—L)
n { i
+AO/R o —tmo/s T
+err, +tm1/R T e e

Figure 10: C, state aggregation in AB projection

only a single state of Cy corresponds to each of these states
of Rp, and the corresponding events of Cy are enabled in
each.

If v’ is 1, the event (1,2, deliver) is enabled. We shall
show that for any ¢ in any fair computation such that
gp = [s,U,V,1], there is a sequence of events that takes
the (Co,R4) subsystem to a state in which (2,3, +A0/R)
is enabled (the image of that event is (1,2, deliver)). Ta-
ble 1 shows that ¢ = 1 or ¢ = 2 in any such ¢g. Consider
g4 = [¢', X, Y, 7], the image of ¢ under the projection onto
AB: from Table 1 we have s’ =11in ¢/, if c =1 in ¢, and
s =2in g4 if ¢ = 2 in g. Now, the image, under the
projection onto AB, of the path in the conversion system
from the initial global state to g is a path from the initial
state of AB to ¢);. As we noted earlier, this path can be
extended to a fair computation of AB. In that fair com-
putation, the global state g/ must be followed by some
global state in which the state of S, is 3, by AB’s liveness
property. Consider the sequence of events leading from ¢,
to this state. From Figure 4, the only events of S, that
may occur in the sequence are those that correspond to
events of Cy that are enabled when ¢ is 1 or 2. Further-
more, the last event in the sequence must be (2,3, +A0).
So corresponding to the sequence of events beginning in
[¢',X,Y,r] and culminating in a state where the event
(2,3,4A0) of S, is enabled, is a sequence of events of
Co and Ry beginning in g = [5,U,V,¢,X,Y,7] and cul-
minating in a state where the event (2,3, +A0/R) of Cy
is enabled. All events in this sequence have null images
in the Bisync projection. Thus we have shown there is a,
sequence of events with null images that takes the system
to a state where the event whose image is (1,2, deliver) is

Costate {[0]1]213[4|5]6]7]8]9
Image Rp state | 0 213144567
Image Sy state [0 [1[2[3]3]4[5/0[0(3

—

Table 1: Mapping from converter to image process state
spaces

enabled, from any state g of the conversion system such
that (1,2, deliver) is enabled in gj; that event is therefore
well formed. A symmetric argument applies to the other
“deliver” event. Thus all the events of the image Bisync
protocol are well formed.

Properties

Because AB and Bisync are both images of the conversion
system, the inverse images of their safety properties hold
in it. Since the Bisync image has well-formed events, the
inverse image of its liveness property holds in the conver-
sion system.

The global state predicate “Rg at x” defines the set
of states [s, U, V, r] of Bisync for which r = z. The inverse
image of this set under the projection onto Bisync contains
exactly those states g of the conversion system such that
r’ =z in gp. Table 1 associates with each such z a state
or states of Cy, so that we can make explicit the inverse
image of the predicate “Rg at x” for any particular z.
The inverse image of the predicate “Sg at x” is of course
itself under this projection. Thus we have the following
inverse images of the properties given earlier.

From the projection onto Bisync:
Sg at 0 = Cy at 0
Sg at 3 = Cp at 4
(Co at 1V Cqy at 2) = Sp at 2
(Co at 3V Gy at 6) = Sp at 5

From the projection onto AB:
(Co at OVCO at 7VCo at 8)#RA at 0
(Coat 3V Cpat 4V Cy at 9) =R, at 3
Ry at 1= Cpat 2
Ry at 4 = Cy at 6

The safety properties desired of the conversion system
follow immediately from the properties above:

Sg at 0
SB at 3
RA at 1
Ry at 4

=
=
=
=

Ry ato
RA at 3
Sg at 2
Sg at 5

The inverse image of the Bisync liveness property is
(Sg at 1V Sp at 2) ~» Sp at 3,

which is the desired property.

160

4 Summary and Conclusions

We have illustrated the use of the projection paradigm
both in reasoning about protocol conversions and proving
them correct. The notion of the inverse image of a pred-
icate and of simple properties was formalized, and used
in obtaining properties of an example conversion system
from those of the two original protocols. The importance
of formal specifications in solving problems of this kind is
clear.

The example problem illustrates that even when proto-
cols provide identical service and have substantially equiv-
alent state spaces, a simple, stateless message mapping
may not be sufficient. In this case, the essential difference
between the two protocols took the form of additional
messages in one protocol, and additional process states
in the other. Work is continuing on understanding and
formalizing the requirements for protocol conversion.

References

[1] P.E. Green, Jr., “Protocol Conversion,” IEEE Trans-
actions on Communications, March 1986.

I. Groenbak, “Conversion between TCP and ISO
Transport Protocols as a means of achieving interop-
erability,” IEEE Journal on Selected Areas in Com-
munications, March 1986.

(2]

S. S. Lam & A. U. Shankar, “Protocol Verification
via Projections,” IEEE Transactions on Software En-
gineering, July 1984.

[3]

S. S. Lam, “Protocol Conversion: Correctness Prob-
lems” Proceedings ACM SigComm ‘86 Symposium,
Stowe, VT, August 1986.

(4]

[5] S. S. Lam, “Protocol Conversion,” University of
Texas Computer Sciences Department Technical Re-
port TR-87-05, February 1987; to appear in IEEE

Transactions on Software Engineering, 1987.

Z. Manna & A. Pnueli, “Adequate Proof Principles
for Invariance and Liveness Properties of Concur-
rent Programs,” Science of Computer Programming
4, North-Holland, 1984.

[6]

K. Okumura, “A Formal Protocol Conversion
Method,” Proceedings ACM SigComm ’86 Sympo-
sium, Stowe, VT, August 1986.

(7]

[8] C.S. Sunshine, ed.,“Communications Protocol Mod-
eling,” Artech House, 1981

