Deriving a Protocol Converter:
a Top-Down Method*

Kenneth L. Calvert and Simon S. Lam
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

Abstract

A protocol converter mediates the communication be-
tween implementations of different protocols, enabling
them to achieve some form of useful interaction. The
problem of deriving a protocol converter from specifi-
cations of the protocols and a desired service can be
viewed as the problem of finding the “quotient” of two
specifications. We define a class of finite-state specifi-
cations and present an algorithm for solving “quotient”
problems for the class. The algorithm is applied to an
example conversion problem. We also discuss its appli-
cation in the context of layered network architectures.

1 Introduction

The interconnection of computer networks has made it
possible to provide an information path between prac-
tically any two computer systems. Unfortunately, the
ability to move bits between machines does not imply
the capability for useful interaction: the connected sys-
tems must also have some common ground in terms of
protocols. This situation is depicted schematically in
Figure 1. System Py is designed to communicate with
system P, according to protocol P, while Qu and (O
are designed to communicate according to protocol Q.
If Py needs to interact with Q;, a protocol mismatch
exists.

The existence of different protocols for the same func-
tion is a fact of life that, for various reasons, is un-
likely to change. Communication protocols, like other
products, evolve with technology. As new protocols
replace old ones, several “generations” of architecture

*work supported by the National Science Foundation under
grant number NCR-8613338

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1989 ACM 089791-332-9/89/0009/0247 $1.50

247

must coexist, and upward compatibility will eventually
be sacrificed for superior quality. Another factor is the
desirability of having different protocols for the same
general purpose, in order to serve the needs of differ-
ent user communities. For example, a protocol opti-
mized for transfer of bulk data over long-haul networks
may differ from one optimized for transfer of interactive
terminal-session data over the same networks [5].

The obvious solution to the protocol mismatch prob-
lem is to modify one or both of the installations so that
they use the same protocol. Unfortunately, this can be
expensive, especially when the mismatch involves sev-
eral layers of the architecture. We call the problem of
overcoming a protocol mismatch without an extensive
modification of the existing systems the protocol con-
versiton problem.

. —
Pole— e
Protocol P
Qo.é_.. e. Ql
Protocol Q
—» :
PO j=o j Ql
Mismatch

Figure 1: Protocol configurations

The approach we consider in this paper is to place
an intermediary, or protocol converter, between Py and
Qi; the converter “translates” between the two proto-
cols and allows Py and Q; to achieve some degree of
useful interaction (Figure 2). However, it is not imme-
diately clear what constitutes a correct “translation”
of one protocol into another [13], or when such a trans-

Po] C Q:

Figure 2: Interposing a protocol converter.

service specification

/‘—_'/;\
b i

Figure 3: The abstract problem

lation is possible. For this reason, we turn to formal
methods, which enable us to reason about the rela-
tionship between protocols and the services they are
intended to implement.

In an earlier paper that considered many aspects of
protocol conversion, Green [7] proposed the formula-
tion of “a calculus of conversion” based on formal meth-
ods. In this paper, we present one part of such a calcu-
lus, a method for computing a converter specification
from specifications of the mismatched protocol compo-
nents and the service that they must provide to their
users. The method differs from others that have been
proposed, in that if it fails to produce a converter, no
converter exists for the given inputs, i.e., the given pro-
tocol components cannot be used to provide the given
service.

In the next section, we discuss the abstract prob-
lem and how our approach differs from others. In Sec-
tion 3 we present a system of specifications for finite-
state protocols and services, and define what it means
for interacting protocol components to satisfy a service
specification. In Section 4 we develop an algorithm for
computing a solution to the problem, and give an ex-
ample of its use in Section 5. In Section 6, we consider
the problem in the context of layered network intercon-
nection. In the final section, we sum up, and consider
future work.

2 The Problem

Suppose a service (e.g., a data transport service) is to
be provided to some users, using components of differ-
ent protocols, say Po and Q;. We would like to con-
struct a component C to mediate the communication
between Py and Q;, and enable them to provide the
desired service (Figure 3). However, we do not know
whether any such component is possible. An algorith-
mic solution to this problem would take as input the
specifications of the components Py and Q1, and a spec-
ification of the desired service, and produce a correct
specification of C, if and only if such a C exists.
Previous proposed approaches to the problem of find-
ing a converter have been based on a somewhat differ-
ent notion of correctness of the conversion system. In
the method of Okumura [17], the problem is assumed
to be as depicted in Figures 1 and 2. The specifica-

248

tions of the “missing” entities (in this case P; and Qo)
are part of the problem input. Also, instead of the
service specification, a partial specification of the con-
verter (called a conversion seed), is assumed to be part
of the input. The conversion seed represents properties
of the conversion system in terms of the converter it--
self, as opposed to the global specification of what is
required by its users. Okumura gives an efficient al-
gorithm for constructing a converter specification from
the specifications of P1, Qo, and the conversion seed.
If the algorithm fails to produce a converter, then one
may conclude that none exists for the given inputs, but
this does not mean that none is possible for the given
global service specification.

Lam [14] has also shown how a converter can be
heuristically derived in some cases by examining the
existing protocol systems and finding a projection of
each existing system onto a common image. (Note:
this amounts to showing that each existing system sat-
isfies the same abstract service specification.) When
such a common image can be found, a simple, stateless
converter is easily obtained. In this case, the common
image protocol provides the definition of the service to
be implemented by the conversion system. Calvert and
Lam [3] showed how projection could also be used to
reason about the correctness of more complex convert-
ers.

These approaches attempt to solve the problem by
relating some part of the conversion system to the miss-
ing entities of the original protocols. Their starting
point is the existing protocols, including components
that would not be part of the intended conversion sys-
tem. They are “bottom-up,” in the sense that if a con-
verter is found, the whole system must then be checked
to see if it implements the required global service. If it
does not, another converter must be sought.

In this paper, we consider a “top-down” method, in
which the converter is derived from the relevant parts of
the conversion system, without reference to the “miss-
ing” entities of the protocols. The input consists of
the specifications of the conversion system components,
Py and Q,, and a service specification, S. Our method
must determine whether there exists a C, such that
C, Py, and Q; interacting together provide the service |
defined by S, and if so, produce a specification. By ‘
analogy with number problems, we call this the quo-
tient problem — in effect we want to “divide” S by the
given specifications Pg and Q.

Problems of this kind arise in many areas of comput-
ing. Merlin and Bochmann [15] considered the “sub-
module construction” problem, and presented a solu-
tion adequate for specifications of safety properties.
More recently, a semi-algorithmic method based on
CCS specifications has been described [19], and a some-
what similar problem called the “supervisor synthesis

problem” has been discussed in the control-theory lit-
erature [20]. Our method is the first that we know of
to deal with progress properties.

Our view of the problem is a very high-level one. We
have abstracted away all the particulars of the proto-
cols — their roles in the architecture as well as details
such as timeout values and window sizes. We regard Py
and Q; as mathematical objects of some known form.
- Note that we have thrown away some information that
is used in the bottom-up methods — the specifications
of P; and Qo, along with the services provided by P
and Q. This results in a more general method, but as
might be expected, there is a cost in terms of addi-
tional computational complexity. The existence of such
an algorithmic solution method depends on the form
of the given specifications, and the classes of systems
they. represent. If the systems specified can be com-
pletely general (i.e., Turing machines), then no general
algorithmic method is possible (any such would entail
solving the halting problem). However, by restricting
the classes of systems and the forms of specifications,
algorithmic methods can be found.

3 Specifications

In this section, we describe a theory of specifications for
a class of concurrent finite-state systems. The restric-
tion to finite systems makes an algorithmic solution to
the quotient problem possible, albeit computationally
hard. Systems are modeled as finite state machines in-
teracting via named events. This form of interaction
is similar to that of CSP [9] and LOTOS [12, 2]. Be-
sides being easy to represent and manipulate, the finite
state machine model is well understood and has a long
history of use in specifying and analyzing protocols.
We are concerned with two main ideas: a notion of
composttion of systems, i.e., viewing a system of inter-
acting components together as a composite whole; and
a notion of what it means for one system to satisfy,
or implement, another. These appear in the theory as
a composition operator and a satisfaction relation on
specifications. Together, they allow us to reason about
whether a specified system of interacting protocol com-
ponents correctly implements a specified service.

Definition. A specification is a tuple (S,%,T, A, so),
where

S is a nonempty finite set of states

Y is a finite set of event names

TCSxX xS isthe external transition relation
AC S xS isthe internal transition relation

s0€ S is the distinguished initial state.

The set ¥ of events of a component completely de-
fines its interface with the environment (by “environ-

249

ment,” we mean its users or other systems with which
it is composed). The events of the interface are the
only way components can interact; intuitively, they
model an exchange of information or handshake across
the interface, possibly involving a state change on both
sides. In a protocol or service specification, events are
abstractions of relatively complex occurrences such as
submission of a message for transmission, or expiration
of a timer.

The relations T and X define the transitions of the
system, i.e., how its state may change over time. Each
state change in T has an associated interface event in
L; these define how the system’s state is affected by
interaction with its environment. If (s, e, s') is in T, we
say e is enabled in s, and write s = s’. Whenever the
system is in state s, and the event e is also enabled in
the environment, e may occur, and change the state of
the system to s’. It is important to realize that external
events are not under the exclusive control of either side
of the interface, but can only occur when enabled on
both sides. If multiple events are enabled in a state
s, then the system cannot prevent any of them from
occurring whenever it is in state s.

The relation A defines internal state transitions that
may occur unobserved, without environmental interac-
tion. When (s,s’) is in A, we write s A s’. Inter-
nal transitions introduce nondeterminism into speci-
fications, by allowing some state transitions to occur
under the exclusive control of one side of the interface.
Nondeterminism complicates the theory, but plays at
least two important roles in specifications. In speci-
fying a service, it can represent a choice among mul-
tiple acceptable behaviors. For example, in a trans-
port service, if an incorrectly-formatted service data
unit is submitted, the acceptable behaviors might in-
clude ignoring it, or responding with an error message.
This kind of nondeterminism allows high-level speci-
fications to avoid unnecessary overspecification. The
choice among the acceptable behaviors only needs to
be made once, when designing an implementation.

Nondeterminism is also useful as an abstraction
mechanism in describing an implementation. Here, in-
ternal transitions model low-level behavior that may
be random or deterministic, but which would add too
much complexity if modeled explicitly. An example is
the loss of a message in a communication channel: mod-
eling the actual causes of the loss would greatly com-
plicate the channel specification. Instead, the chain of
events constituting a loss is represented by a single in-
ternal transition, which may or may not occur. The
composition operator, in abstracting from the interac-
tions among the components of a system, also intro-
duces internal transitions. This kind of nondetermin-
ism is often assumed to be fair, meaning that an inter-
nal transition that is repeatedly enabled will eventually

occur.

Instead of having explicit fairness requirements at-
tached to each specification, we make certain assump-
tions about fairness. In defining “B satisfies A” for
specifications B and A, we shall regard A as a service
specification, and assume that all nondeterminism in
A is unfair. We view B as the specification of an im-
plementation, and assume that all nondeterminism in
B is fair. These assumptions yield a considerable sim-
plification of the theory at a relatively small cost in
generality.

It is sometimes helpful to view a specification as a
directed graph with labeled edges, and we represent
them as such in the figures. Nodes of the graph denote
states; edges of the graph denote transitions. The label
of an edge is its corresponding event, if any; transitions
in A have no label. In what follows, we use upper case
letters A, B, C, and D to name specifications. Com-
ponents of different specifications are distinguished by
subscripts. The states of a specification are represented
by (primed) lower-case italic letters corresponding to
the name of that specification: @ and a’ are members
of Sa, etc. The letter denoting a state makes it clear
to which specification it belongs, so that when we write
a3 a’ Ab3 ¥, it should be clear that one transition
is defined in T4, while the other is in Tp.

Composition

Composition of systems involves making each a part of
the other’s environment, and viewing them together as
a composite whole; their interactions with each other
are synchronized and hidden from the rest of the envi-
ronment. This operation is modeled by a binary com-
position function || on specifications.

Definition. For any specifications A and B, (A||B) is
given by:

Sy = SaxSs

Sagp)y = (ZaUZs)—(ZaNZp)

Teay) {({(a,b),¢,(a’,b)) :
e € T(ayp) A
((a=a"AbSb)V
(b=bAa2a))}

Aagpy = { ({a,b),(a’,0)):
(b=bAada)Vv
(a=a' AbAD)V
(Be:e€XaNZp A
a>a Ab=b)}

(a,)g = (a0, bo)

Each internal transition of the composite comes from
one of two sources: an internal transition in one of the

250

components, or a synchronized event of the interface
between them that becomes hidden in the composition.
Note that interface events that are not enabled in both
components do not appear in the composite.

Satisfaction

Our definition of satisfaction of one specification by an-
other has two parts, one dealing with safety (“what
can happen”), and one dealing with progress (“what
will happen”). Thus, “B satisfies A” if and only if “B
satisfies A with respect to both safety and progress.”
Satisfaction with respect to safety is a necessary con-
dition for satisfaction with respect to progress, so we
deal with it first.

A trace is a sequence of events in X, and represents a
possible behavior of the system, as it might be observed
by its environment. In terms of the directed graph
structure, we say a trace corresponds to the sequence
of labels along a finite directed path in the graph. We
associate a particular set of traces with each specifica-
tion, namely those corresponding to paths in the graph
beginning at the initial state. This set includes all pos-
sible behaviors of the system, and thus captures all of
its safety properties. Note that trace sets are prefix-
closed, and hence the empty trace, denoted by ¢, is a
possible behavior of every system.

In what follows, the letters t, r, ¢, t/, etc. denote arbi-
trary traces, while e denotes an arbitrary event. Events
are treated as traces of length one, and concatenation
is denoted by juxtaposition: te is a trace ending with
event e. For specification A, we write A.t for “¢ is a
trace of A.” With this one exception, predicates will be
represented by words or parts of words, while functions
are denoted by single letters.

Definition. The relation A* is the reflexive and tran-
sitive closure of A. Thus, s A* s’ means s’ is reachable
from s via zero or more internal transitions.

Definition. Every specification defines a relation “—”
which is the least relation satisfying

for any states s, s/, s”, trace t, and event e:
€
e s =55,
t e te
es—sNs —=s"=>s— 6",

Intuitively, s A says that there is a path from s to
s’ corresponding to trace ¢. Also, we write Y 5 as
shorthand for sg Los.

Definition. For any specification A, A.t = (Ja : A a).

The trace set interpretation yields a simple definition
of satisfaction with respect to safety: for specifications

A and B with the same interface, “B satisfies A with
respect to safety” means that every possible behavior
of B is a possible behavior of A.

Definition. For A and B with the same interface, B
satisfies A with respect to safety if and only if

Vi:B.i= At

Because both sides of the interface must cooperate in
order for something to happen, our notion of progress
deals with what events are enabled in the system after
any particular trace. Given this information, the en-
vironment can ensure that there is always some event
enabled on both sides of the interface, and thus pre-
vent deadlock. Intuitively, our definition of “B satisfies
A with respect to progress” should say “any environ-
ment guaranteed not to deadlock with A is certain not
to deadlock with B.” This notion of progress is similar
to the “refusals” of Hoare [9], or the “acceptance sets”
of Hennessey [8].

If there is at most one path corresponding to any
trace (i.e., if the specification is deterministic), then
. the environment can always determine the state of the
system after any trace, and thus “know” what events
are enabled. If nondeterminism is present, things are
more complicated. For one thing, a transition asso-
ciated with an external event is not guaranteed to be
accepted in a state with an outgoing internal transi-
tion, because it may be “pre-empted” by occurrence of
the internal transition. So we can only talk about sets
of events being enabled in states with no outgoing in-
ternal transitions. However, a trace may lead to a cycle
of internal transitions. If these internal transitions oc-
cur continuously, the system may never enter a state in
which no internal transition is enabled. What can we
say about which events the system is “guaranteed” to
accept in this case?

At this point, recall our discussion about fairness.
If nondeterminism is assumed to be fair, no internal
transition can pre-empt an external event or another
internal transition infinitely many consecutive times.
If there are internal transitions that leave the cycle,
then eventually one of them must occur. If no internal
transitions leave the cycle, then eventually one of the
external events enabled on the cycle will occur. This
means that a cycle of internal transitions can be re-
garded as a single state for the purposes of defining the
set of enabled events; the set of events enabled in a
state on such a cycle is therefore the set of all events
enabled in any state on the cycle.
~ Wecall a the states on a cycle of internal transitions
- with no internal transitions leaving the cycle a “sink
set.” Consider Figure 4. In the left-hand specification,
the two unlabeled states constitute a sink set; once ei-

251

Figure 4: Collapsing internal cycles

ther of them is reached, the set of events enabled is 5.
Thus we can view the sink set as a single state as on
the right-hand side.

Property. For any s, “s is in a sink set” if and only if
(Vs' 15 A% s’ => s’ A* 5). We write sink.s to denote the
latter predicate.

Recall that in defining satisfaction of A, we regard
A as a service specification, and its nondeterminism as
representing choices among different acceptable behav-
lors. Because a cycle of such choices does not make
sense, we shall assume that A does not contain any cy-
cle of internal edges. In fact, we require that A bein a
certain “normal form.”

Definition. A specification is in “normal form” iff:

(1) no state has both internal and external transitions
leaving it.

(ii) Forany s and s/, s * s’ A s’ A* s = s = g'.
(ili) For any states s, s/, s”, &, and &'

[- 2N € ~ ~ ~
SN S ASA S"ANs S aas Ly =g

"This restriction ensures that for each trace of A, every
path corresponding to that trace passes through a par-
ticular state. In other words, if A is in normal form,
then for each trace ¢ such that A.t, there is a unique
state a such that (Va' : "= a A a’). We denote
this state by 4.t. Note that normal form allows non-
determinism, but “focuses” it so that after any trace,
the sets of events that may be enabled after that trace
are easily determined. Also, in a normal form specifi-
cation, all sink sets are singletons.

We now present the rest of the definitions necessary
to define “B satisfies A with respect to progress.”

1
— a

Definition. 7.5 denotes the set of external events as-
sociated with transitions enabled in state s

ecTs = (3s':s 2 §)

Definition. 7*.s denotes the set of all external events
enabled in any state internally reachable from s:

ect s = (s’ :s X* ' NeeTs)

Intuition: 7*.s contains all states that may occur next
if the system’s current state is s.

Definition. For states a and b (of specifications A and
B, respectively), the predicate prog.a.b means

(Fa’ : a A* a’ A sink.a’ A 7.0’ C 7.b)

The intuition here is that if b is reachable via some
trace ¢ in B, and a is reachable via the same trace in
A, then any environment that will not deadlock with
A after ¢ will not deadlock with B, because A may be
in a sink set where every enabled event is also enabled
in B. We can now define satisfaction with respect to
progress.

Definition. For A and B such that
(i) A is in normal form

(ii) Nondeterminism in B is fair and nondeterminism
in A is not fair

(iii) B satisfies A with respect to safety

B satisfies A with respect to progress if and only if

Vt,b: (5 b A sink.b) = prog.(Ya.t).b

It turns out that because a sink set is reachable from
every state, the above formula is equivalent to

Vt,b: 5 b= prog.(va.t).b

Thus, we may ignore sink sets when actually using this
definition.

4 Quotient Algorithm

Returning now to the quotient problem, we are given
specifications A and B, such that X4 Ezt, ¥ =
Int U Ext, and Int and Ezt are disjoint event sets. We
must produce C such that ©¢ = Int, and BJ|C satis-
fies A, or show that no such specification exists. The
events in Int constitute the interface between B and C.
The events in Ezt are B||C’s interface to the environ-
ment as well as A’s interface. In terms of the conversion
problem of Figure 3, B is Py]|Q1, and A is the service
specification. The event set Ext is the interface between
the user and the service, and Int represents the inter-
actions — messages that may be sent and received —
between the peers of protocols P and Q.

252

In computing C, we deal with safety and progress
in separate phases. In the first phase, we construct
the state set and transition relation of C inductively,
beginning with the initial state. The result is a Co
with the largest trace set consistent with safety of B||C.
In the second phase, we iteratively remove states of Cy
that do not have sufficient outgoing external transitions
to prevent a possible progress violation. When this
phase terminates, if C has a nonempty state space, then
it is a solution, and moreover it is a mazimal solution
in the sense that, for any other solution D, we have
(Vr:D.r=Cur).

The following presentation is necessarily brief; the
interested reader is referred to [4] for further detail.
We first define the projection functions ¢ and o. If ¢
is a trace of B (a sequence of events in Int U Est),
then i.t is the projection of ¢ onto its interface with C
(Int), and o.t is the projection onto its interface with
the environment (Ezt). The two functions are defined
by the following axioms:

ie = ¢€
. it if e€ Ext
i.(te) { (it)e if ec Int
0 = €
ot ife€Int
ote) = { (ot)e if e € Ext

Definition. We say a trace r in Int" is safe, and write
safe.r, if every trace of B that “matches” r is a trace
of A when projected on Ezt:

safer = (Vt: (it = r AB.t) = A (o))

(Note that safe.re does not imply safe.r, and that r is
trivially safe if no trace of B matches r.)

Property. For any specification C:
(Vg : (B||C).¢ = A.¢) = (Vr : C.r = safe.r)

(recall that (B||C).q means ¢ is a trace of BJ|C).

Note that a quotient (with respect to safety) exists
if and only if safe.c, because C.c is true for any speci-
fication C.

The basis of our method is that we associate with
each state of C information about the possible current
state of B and the externally-observable portion of the
trace that led to it. This information can be encoded
in a set of (a, b) pairs, and we define a one-to-one corre-
spondence f between states of C and such sets. More-
over, we define a mapping h from traces in Int* to such]
sets of (a, b) pairs, and then ensure that, for each r and
¢,

¢ = (f.c= h.r)

Definition.

a,b)ehr=Gt:it=rA SbAra= Ya.(o.t))
(

We want to construct Cy to satisfy the following;:
e (C1) Vr: Co.r = safe.r

* (C2) If D is a specification with interface Int, sat-
isfying (Vr: D.r = safe.r), then (Vr:D.r = Co.r).

The first requirement says that Cy is a solution with
respect to safety; the second says that it has the largest
possible trace set. In order to accomplish this, we must
consider each trace over Int as a possible trace of Co.

We can use the sets h.r for each r to check safety
inductively, with the help of a predicate, ok, which we
now define.

Definition. For a set J of (a, b) pairs such that J = h.r
for some trace r: '

ok.J = (Ya,b:(a,b)€J : TN Ext C T*.0)

Intuitively, ok.J says that for every pair (a,b) in J,
any event in Ezt that is enabled in b is also enabled
in a state reachable from a. Note that ok.J is easily
checked by examination of J and the specifications A
and B.

Properties. (These follow from the definitions given
so far.) For any r € Int* and e € Int:

(P1) ok.(h.€) = safe.c
(P2) safe.r A ok.(h.re) = safe.re
(P3) safe.r = ok.r

These properties suggest an inductive computation.
We can begin by computing k., and checking ok.(h.¢),
because it is a necessary and sufficient condition for ex-
istence of a solution with respect to safety. If ok(h.c)
holds, we can create an initial state co and set f.cp =
h.e. Given a way of computing h.re from h.r, we can
iterate, adding states and transitions until closure is
achieved. Termination of this process is guaranteed by
 the finiteness of the range of h: the number of distinct
-~ sets of (a, b) pairs is finite.
. Weneed a function ¢ that maps a set J of (a,b) pairs
- and an event e to another set of pairs, and satisfies
 hr=J = hore = p.(h.r,e). Such a function, easily
-computed from J, B, and A, is given by

(a,b) € p.(J,e) =
(3a',¥',t: (a’",b) e T A
i.t:e/\b’—t>bAa’—jx>a)

253

Sc, 1= 0; new := §;
f-co := h.g
if ok.(f.co) then new := {co};
while new is not empty
select ¢ in new;
for each e in Int:
= (f.c e);
if ok.J then
if f~1.J ¢ (Sc, U new)
then create ¢’;
fd:=J;
add ¢’ to new;
else ¢’ := f~1.J
add ¢ = ¢’ to Tg,;
move ¢ from new to Sg,;

Figure 5: Algorithm - safety

where the relation a’ —b a is similar to —, but also
implies that @ = ¢.ge if a’ = 1).q for A in normal form.

We define X¢, = Int, and Ac,= @. Thus Cp has
no internal transitions. The state space and external
transition relation are computed by the algorithm in
Figure 5.

Upon termination of the safety phase, we have for
any r € Int*, e€ Int, a € Sp, b€ Sp, and c € Sc,:

Co.€ = ok.(h.€) (1)
ok.(f.c) (2)
We=> fe=hr 3)
Co.r A ok.(h.re) = Cy.re (4)
(a,0) € fe=
(3qg:q€ Bxt* A & (b,c) Na=1a.q) (5)

Theorem 1.
(i) (Vr:Co.r = safe.r)

(ii) If D satisfies (Vr:D.r = safe.r), then (Vr:D.r =
Co.?‘).

Proof Sketch. Both parts are proved by induction
on 7. For (i), the base case follows from (1). For the
induction step, Cq.re implies Cg.r by prefix-closure of
trace sets, and by the inductive hypothesis we have
safe.r. Also, Co.re means + c for some c, hence by (3)
we have f.c = h.re for some ¢. This implies ok.(h.re),
by (2). From safe.r and ok.(h.re), we conclude safe.re
by P2 above. For the base case of (ii), D.c implies
safe.e, which by (P3) implies ok.(h.c), which implies

Sc = Sc,;
repeat
save := Sc;
compute 7*.(b, ¢} for each b, ¢ pair;
foreach ¢ € Sc:
foreach (a,b) € f.c:
if ~prog.a.{b, ¢} then
mark ¢ bad;
remove bad states and their
associated transitions from S¢ and Tc;
until ¢y is removed or save = Sc

Figure 6: Algorithm - progress

Co.€ by (1). For the inductive step, D.re implies D.r,
which implies Cg.r by inductive hypothesis. D.re also
implies safe.re, which implies ok.(h.re). By (4), Co.r
and ok.(h.re) imply Co.re.

Turning to progress, the next phase of the algorithm
identifies states of Cp in which it is possible that a
progress violation of A can occur.

Definition. A state ¢ of C is bad if and only if:
Ja,b: (a,b) € c A —prog.a.(b,c)

By the definition of satisfaction with respect to

progress and (5) above, this definition implies that B||C
satisfies A with respect to progress if and only if C con-
tains no bad states. Because the definition of a bad
state depends on 7*.(b,¢), which depends on T¢, we
must iteratively identify and remove bad states, and
recalculate 7*.{b, c) for each b and ¢. The process ter-
minates when there are no more bad states to remove.
Note that removing the initial state is equivalent to re-
moving all remaining states, because it makes them all
unreachable. The algorithm is shown in Figure 6.

Theorem 2. If D is such that B||D satisfies A, and ¢
is marked bad at some point in the progress phase of
the algorithm, then Vr : +> ¢ = =D.r.

We omit the proof of this result, which depends upon
the maximality part of Theorem 1, and implies that the
second phase of the algorithm maintains that property.
As a consequence, if the algorithm terminates with an
empty state set, we can conclude that no quotient ex-
ists.

5 An Example

We now show the application of the algorithm to a
simple example. The protocols in the examples are the

254

Figure 7: Alternating Bit Protocol

acc

No
+A

T,
QD OO
-D e

N,

~A +D

Figure 8: Non-sequenced Protocol

venerable alternating-bit (AB) protocol [1], and a non-
sequenced (NS) protocol, which does not use sequence
numbers. Each protocol provides delivery of data mes-
sages from a Sender entity to a Receiver, in spite of
possible message losses by the transmission medium,
The specifications of the AB protocol are depicted in
Figure 7. The “acc” and “del” events (abbreviating
“accept” a message from the Sender and “deliver” a
message to the Receiver, respectively) constitute the
interface with the user, while other events are inter-
actions with the channel. Events beginning with “~”
represent passing a message interface into the chan-
nel, while “4” indicates removal of a message from the
channel. The Sender (Ag) attaches a one-bit sequence
number to each data message transmitted. Data mes-
sages are denoted by “d0” and “d1.” The Receiver
(A1) uses this sequence bit to synchronize with the
Sender and determine whether a received data mes-
sage has already been delivered; each data message is
delivered exactly once (for each time it is accepted for
transmission). An acknowledgement message, denoted
“a0” or “al,” is returned for each data message; it con-
tains the sequence number of the last-delivered data
message.

The NS protocol, shown in Figure 8, has no sequence
numbers; the Receiver (N;) delivers every received data
message. A data message is represented by “D.” The

R

Ay Ac <! e INc N,

<

Figure 9: Problem configuration

Ach

Figure 10: Channel specifications

Sender (Ny) repeatedly transmits the data until an ac-
knowledgement “A” ig received. While both protocols
guarantee that a message will be delivered at Jeast once,
the NS protocol may deliver the same message multiple
times, while AB delivers each exactly once. The service
of NS is thus somewhat “weaker” than that of AB.

The (duplex) channels between Sender and Receiver
are modeled as separate components of the system, as
shown in Figure 9. The channels are assumed to be
lossy; both protocols use timeouts to detect and recover
from lost messages. The channel specifications appear
in Figure 10. Unlabeled transitions represent the possi-
ble loss of a message; after such a loss, a timeout event
occurs at the Sender. Note that these timeouts never
occur prematurely. Again, «—» indicates passage of a
message into the channel, and “4.” indicates a message
leaving the channel, so these events match their coun-
terparts in the protocol specifications,

The specification of the desired service is shown in
Figure 11. The output of the safety phase of the quo-
tient algorithm is shown in Figure
converter with respect to safety: All possible sequences

P

del

Figure 11: Desired Service Specification

255

Figure 19; Output of Quotient Algorithm

Ac<__:_-' |

Ay N;

Figure 13: Revised configuration

of “acc” and “del” for the system Ao”Ach”CHNch”N 1
are prefixes of the sequence “accept, deliver, accept,
deliver, .., » However, some of these traces cannot be
extended, i.e., this converter cannot satisfy the progress
requirement of the service specification.

The problem is that if a message is lost between ¢
and Ny, C cannot tell if it was data or acknowledge-
ment. If it was data, progress will not occur unless
C retransmits. However, if the acknowledgement was
lost, retransmission will result in two consecutive “de]”
events, violating the safety requirement. In this exam-
ple, if a loss ever occurs in Nch, the user sees no further
progress, while C and A, exchange useless data, and ac-
knowledgement messages forever (states 6 and 8, and
15 and 17 in the figure). It is this kind of conflict be-
tween safety and progress that preventg existence of a
converter.

It is possible to weaken the service specification to
allow delivery of duplicates, and thereby obtain a con-
verter. Another approach, illustrated here, is to re-
quire that the converter be co-located with the NS
Receiver, so they may exchange messages directly, as
shown in Figure 13. This eliminates the possibility of
losses between C and N;. The input to the algorithm is
(Ao[|Ach||N;), plus the same service specification. The

Figure 14: Quotient for second example.

Cuser)

J |
TSg

user

$ |
TA, | T5a| T4, TB, TB,

NSA NSB

Figure 15: Heterogeneous networks

resulting converter is shown in Figure 14. Note that
the “+D” and “-~A” events match the same events in
N1, and denote passage of a data message from C to
N1, and acknowledgement message from N; to C, re-
spectively.

The dotted boxes in Figure 14 indicate a superfluous
portion of the converter; the cycles passing through
these states are harmless, but do nothing for overall
system progress. This is a consequence of deriving the
maximal converter. Removing such “useless” portions
of the converter is computationally expensive and is
best done by hand.

6 Architectural Issues

In the foregoing discussion, we considered a simplified
form of the problem, in order to focus on possible so-
lutions. In practice, protocol mismatches may involve
multiple layers in an architecture. In this section, we
broaden our view somewhat, and consider the problem
of deriving a converter for the interconnection of het-
erogeneous layered networks. We are still dealing with
an abstraction of the problem in that many important
issues are ignored, including addressing, routing and
network management.

Although protocol mismatches can occur at any
layer, the problems of primary interest today occur

256

-

TSs

TBo TB;

NSp

Figure 16: “Going up a level”

at the network and transport layers. Figure 15 shows
schematically two “adjacent” networks, each having a
different architecture. The network services are repre-
sented by a box labeled NS in each network; the trans-
port protocol peers are TAg and TA;, and TB;y and
TB;, and the transport services are denoted by TS.
Our objective is to provide a transport service conform-
ing to specification CST (not indicated in the figure)
between the user on Network A and the user on Net-
work B. Note that these “users” may in turn be peer
protocol entities.

We assume that the existing network and transport
services can be physically connected to each other (the
most likely situation is that both are located in the
same host). By connecting TA; and TBg to each other
via a simple pass-through entity as in Figure 16, we pro-
vide a “concatenated” data transfer service between the
two users. However, any end-to-end synchronization
capability of the existing services will not be preserved.
In Figure 16, any sychronization happens only between
user and converter; this is not sufficient for the trans-
port level, which is supposed to provide end-to-end
functionality. In particular, the connection manage-
ment function is concerned with end-to-end synchro-
nization. An example is the “orderly close” function,
which guarantees that all user data have been delivered
to the remote end by the time the connection closes.
One user might successfully close the connection, and
think that all data had been delivered to the other end,
when it was actually only delivered as far as the con-
verter.

One solution is to replace TA; and TBg with a con-
verter, as shown in Figure 17. If all of the specifications
are finite-state, and the service specification CST can
be placed in normal form, the problem of finding C for
this configuration can (in theory) be solved using the
quotient algorithm. The inputs are

B = TAo||NS|INSg||TB;

and A = CST.

Figure 18 shows a different architectural approach,
which combines conversion with augmentation, the ad-
dition of a sublayer protocol in both architectures. This
sublayer deals with routing and addressing, combining
all the (intra-) network services into an internetwork

\

fet—

TA, | OST reZIZ57 TB,
Y . ¥
NSA NSB

Figure 17: Transport-level conversion

user

Figure 18: Asymmetric configuration

service that provides unreliable transfer. The canon-
ical example of this is the DARPA-standard Internet
Protocol [6]. In Figure 18, the internetwork service
provides a data path between the transport peers TA,
and TB;. At that point, however, a protocol mismatch
occurs. To handle the mismatch, a converter is co-
located with TB; (it could also be placed at the TA,
end). The transmission path between converter and
TAp is unreliable, while that between converter and
TB; is reliable. As we have already seen, this setup
allows the converter to have better “knowledge” of the
state of the local entity (TB;), and may allow a more
useful conversion service than would be possible in the
symmetric configuration of Figure 17.

This configuration has other advantages. For one,
addressing issues are confined to the network layer, at
the boundary between networks. Another is that, if
both NS and NSp provide alternate routing, and the
two networks “intersect” at more than one place, then
the conversion service can also enjoy the benefits of al-
ternate routing. This is not possible when the converter
is placed at the network boundary, and state informa-
tion for each internetwork connection is maintained in
the converter. (For a discussion of this and other issues
related to transport-level “gateways,” see [18].)

Although the problems of interest today are mostly

257

at the transport level, one might expect that in the
future some form of end-to-end, reliable transport ser-
vice will be more or less universally available. When
that occurs, the conversion problems of interest will
be those at higher levels. Figure 18 also depicts that
problem, if the dashed box is considered to provide a
reliable transport service, rather than a lower-level one,
and TAy and TB; are viewed as applications entities.

As a simple example, TB; might be a yellow pages
server, and TAg a client on a different network that
is designed to work with a slightly different service.
The converter serves as a “front man” for the B server,
allowing Network A clients on the remote network to
access the service. At the same time, “normal” clients
of TB; can access the server directly. Other methods
of achieving interoperation of clients and servers using
different protocols are discussed in [16].

7 Conclusions

The work presented here shows that “quotient” prob-
lems can be solved algorithmically for a certain class
of finite state specifications. The problem of finding a
protocol converter is an example of such problems. By
solving for the converter in a top-down fashion, we can
detect when no converter exists for a particular proto-
col mismatch and desired service. This represents an
extension of earlier work on deriving protocol convert-
ers. It is also an extension of earlier work on other forms
of the quotient problem, in that we handle progress
properties.

The quotient problem is computationally hard (in
fact, it is PSPACE-hard, even if only safety is consid-
ered). The algorithm presented here has exponential
time and space complexity in the worst case. However,
the progress phase of the algorithm does not add sig-
nificantly to its complexity (it is polynomial in the size
of the quotient produced by the safety phase), which
is somewhat surprising. A converter produced by this
algorithm has a maximal set of traces, and thus may
contain spurious sequences of events that do not affect
correctness, but decrease efficiency. These are expen-
sive to remove, and such optimization is best done by
hand.

Areas of interest for future work include characteri-
zation of classes of instances for which the complexity
of the converter is small relative to that of the input;
these are the cases where interposing a converter will
be practical. Characterization of general problems for
which no converter exists would also be useful.

References

[1] K. A. Bartlett, R. A. Scantlebury, and P. T.

[3]

[4]

[5]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

Wilkinson. A note on reliable full-duplex trans-
mission over half-duplex lines. Communications
of the ACM, 12(5), May 1969.

E. Brinksma and G. Karjoth. A specification of
the OSI transport service in LOTOS. In Protocol
Specification, Verification, and Testing IV, 1984.

K. L. Calvert and Simon S. Lam. An exercise in
deriving a protocol conversion. In Proceedings of
SIGCOMM ’87 Workshop, Stowe, VT, 1987.

K. L. Calvert and Simon S. Lam. Finding quo-
tients of specifications. Technical report, Univer-
sity of Texas at Austin, Department of Computer
Sciences, in preparation.

David D. Clark, Mark L. Lambert, and Lixia
Zhang. Netblt: A high throughput transport pro-
tocol. In Proceedings ACM SIGCOMM 87 Work-
shop, Stowe, VT, 1987.

J. Postel (ed.). Internet protocol specification.
DARPA Internet Request for Comments 791,
September 1981.

Paul E. Green, Jr. Protocol conversion. IEFE
Transactions on Communications, COM-34(3),
March 1986.

Matthew Hennessey. Algebraic Theory of Pro-
cesses. MIT Press, 1988.

C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1986.

ISO. Connection oriented transport protocol spec-
ification. ISO 8073-CCITT X.224, July 1986.

ISO. Transport service definition. ISO 8072-

CCITT X.214, June 1986.

ISO/TC97/SC21/WG16-1. LOTOS — a formal
description technique based on the temporal or-
dering of observational behavior, March 1985.

Simon S. Lam. Protocol conversion — correctness
problems. In Proceedings ACM SIGCOMM 86,
Stowe, VT, 1986.

Simon S. Lam. Protocol conversion. IEEE Trans-
actions on Software Engineering, 14(3):353-362,
March 1988,

Philip M. Merlin and Gregor v. Bochmann. On
the construction of submodule specifications and
communications protocols. ACM Transactions on

Programming Languages and Systems, 5(1), Jan
1983.

258

[16]

[17]

[18]

[19]

(20]

D. Notkin, A. Black, E. Lazowska, H. Levy,
J. Sanislo, and J. Zahorjan. Interconnecting het-

erogenous computer systems. Communications of
the ACM, 31(3), 1988.

K. Okumura. A formal protocol conversion
method. In Proceedings ACM SIGCOMM ’86,
Stowe, VT, 1986.

M. A. Padlipsky. Gateways, architectures, and hef-
falumps. DARPA Internet Request for Comments
875, September 1983.

Joachim Parrow. Submodule construction as equa-
tion solving in CCS. In LNCS 287 Springer-
Verlag, 1988

P. J. Ramadge and W. M. Wonham. Supervisory
control of a class of discrete-event processes. SIAM
J. Control and Optimization, 25(1):206-230, Jan-
uary 1987.

