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ABSTRACT
Identifying the network-wide forwarding behaviors of a
packet is essential for many network management appli-
cations, including rule verification, policy enforcement,
attack detection, traffic engineering, and fault localiza-
tion. Current tools that can perform packet behavior
identification either incur large time and memory costs
or do not support real-time updates. In this paper we
present AP Classifier, a control plane tool for packet be-
havior identification. AP Classifier is developed based
on the concept of atomic predicates which can be used
to characterize the forwarding behaviors of packets. Ex-
periments using the data plane network state of two real
networks show that the processing speed of AP Classi-
fier is faster than existing tools by at least an order of
magnitude. Furthermore, AP Classifier uses very small
memory and is able to support real-time updates.

CCS Concepts
•Networks→Packet classification; Network man-
agement; Network reliability;

Keywords
Packet behavior identification; Network verification;
Software defined networking

1. INTRODUCTION
Managing packet forwarding in a large network is a
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complex problem. Software defined networking (SDN)
simplifies network management by decoupling the con-
trol plane from devices that forward packets, to be re-
ferred to as boxes.1 More specifically, control plane ap-
plications, including routing [5, 9], traffic engineering
[4], access control [26], measurement [32], and policy
enforcement [27], are implemented as software in a logi-
cally centralized controller. The controller specifies for-
warding actions of packets by writing directly into flow
tables in each box in the form of rules, through a stan-
dard API such as OpenFlow [25].

Let a flow be an equivalence class of packets defined
on a subset of fields in the packet header, e.g., the 5-
tuple consisting of source address, destination address,
source port, destination port, and protocol type. All
packets of a flow have the same forwarding behaviors in
a network (also referred to as the flow’s behaviors) when
there is no data plane update. Network-wide packet
behavior identification is a control plane function that
discovers the actual forwarding behaviors of the packets
in a flow (or a set of flows) including their forwarding
paths, where they stop or are dropped, and which boxes
they traverse, by analyzing network state in the data
plane [13]. Packet behavior identification is necessary
for SDN management in the following situations.

Verification of flow properties. For network flows,
the control plane may specify pre-defined flow behaviors
that satisfy application requirements or network poli-
cies, called flow properties. We highlight several typical
flow properties.

• Forwarding correctness: The control plane must en-
sure that flow packets can be forwarded to the des-
tination (e.g., a host or an egress router), or dropped
if they are not allowed to reach the destination.

1We use “box” to refer to any network device that for-
wards packets, including routers, switches, and func-
tional middle boxes such as firewalls, NATs and intru-
sion detection systems (IDSes).



• Policy enforcement: Network policies may require
packets of the flow to go through various middle
boxes. For example, HTTP traffic should be for-
warded through a sequence of middle boxes: fire-
wall, IDS, and web proxy [27]. Other types of traf-
fic may be required to traverse different sequences
of middle boxes.

• Quality of service: Some applications require guar-
anteed flow quality. For example, a multi-tenant
cloud should provide certain levels of bandwidth or
latency for its users based on service level agree-
ments [6, 21].

• VLAN isolation: A cloud provider guarantees that
packets in a virtual network (VLAN) cannot travel
to another VLAN.

Any data plane update could change the behaviors of
a number of flows. Prior to data plane updates, the con-
troller needs to verify that the data plane, with the new
updates, can forward the packets correctly and com-
ply with the flow properties. Such verification requires
packet behavior identification for the flows that will be
affected by the new rules.

Attack detection. Data plane attacks to an SDN
may change the correct packet behaviors or send packets
with abnormal behaviors, such as data plane DDoS at-
tacks. An efficient data plane attack detection method
should verify data plane forwarding behaviors and be
aware of the behaviors that violate network policies. For
example, a recent work SPHINX [11] uses flow graphs
to represent actual network operations and detect ab-
normal changes.

Traffic engineering. Centralized traffic engineering
[5] [8] [22] determines the forwarding paths for flows
to maximize network throughput. When the controller
is notified about a new flow, it needs to identify its
packet behaviors in the current data plane and check
whether they can meet application requirements such
as bandwidth or latency. If not, the controller needs to
modify the data plane to install a desired forward path
for the flow.

Localization of network faults. When the control
plane finds a flow property violation at any time, it
should identify the actual flow behaviors in the network
and compare them with the expected behaviors. In this
way the controller can find the part of the data plane
that contains faults, called fault localization [33].

A practical packet behavior identification method must
satisfy three requirements. First, it provides a high
throughput in responding to packet behavior queries.
According to recent measurement results [15] [7], a large
data center network may see hundreds of thousands of
new flows per second. SDNs should support hundreds
of data plane updates per second [14] and each update
may need to query multiple flows to verify correctness.

Hence a desired throughput should exceed one million
packet queries per second (1 Mqps). Second, the query
structure should fit into a small and fast memory such
as cache. Third, the query structure can be updated in
real time under data plane changes to ensure that query
results reflect the current network state.

Unfortunately none of the existing solutions can meet
all of the requirements stated above. A straightfor-
ward approach is to maintain copies of flow tables of
all boxes in the controller. However even for a medium-
scale network used in [17], tens of GBs are required to
store all rules [13]. Due to slow search speed among
flow tables and disk I/Os, the query throughput is very
low. Very recently, Inoue et al. [13] propose to use a
multi-valued decision diagram (MDD) to classify flows
to different sets of network-wide behaviors. However,
an MDD cannot be updated in real time. It has to be
reconstructed for updates and the reconstruction time
needs 0.1 second to a few seconds.2 Given the network
update frequency of current networks, many updates
could happen during the reconstruction time. Hence
the controller may never get an MDD that correctly
reflects the current network state.

In this work, we propose a network-wide packet be-
havior identification method called AP Classifier, where
AP stands for Atomic Predicates, a concept developed
in [30]. Each atomic predicate specifies a set of pack-
ets that have the same forwarding behavior in the net-
work. We develop a novel data structure, called AP
Tree, which can rapidly classify a packet to an atomic
predicate. The packet behavior can then be easily com-
puted using the atomic predicate. We evaluated the
performance of AP Classifier using the data plane net-
work state, including forwarding tables and access con-
trol lists (ACLs), from two real networks, namely: In-
ternet2 [2] and a Stanford campus network [17]. Our
results show that AP Classifier, running on a general-
purpose desktop computer, only uses a few MBs mem-
ory and supports more than two millions of queries per
second. In addition it can be updated in real time (<
4 ms for 95% updates in Internet2 and < 1 ms for 95%
updates in Stanford).

The balance of this paper is organized as follows. Sec-
tion 2 presents related work. We discuss the network
model and background knowledge in Section 3. We in-
troduce the framework of AP Classifier in Section 4.
The algorithms to construct an AP Tree are presented
in Section 5 and the update and reconstruction methods
of an AP Tree for dynamic networks are presented in

2The paper [13] claims that if a data plane update does
not change the existing packet behaviors, MDD update
can be finished in tens of milliseconds. However from
examining update traces of the Route Views Project [3],
it is unlikely that a data plane update does not change
the existing packet behaviors.



Section 6. We present experimental results in Section 7
and a discussion in Section 8. Finally we conclude this
work in Section 9.

2. RELATED WORK
Network-wide packet behavior identification is equiv-

alent to reachability computation for a specific packet.
This problem is related to, but different from, network
reachability analysis which has been studied for over a
decade. Xie et al. [28] present a model for static reacha-
bility analysis of data plane network state. Quarnet [18]
represents ACLs as firewall decision diagrams to com-
pute network reachability. Anteater [24] and Header
Space Analysis (HSA) [17] are both general-purpose
tools to check network invariants but not in real time.

For real-time applications, NetPlumber [16] makes
use of HSA to detect network invariant violations. Veri-
flow [19] stores all data plane rules in a multi-dimensional
prefix tree (trie) and determines the Equivalence Classes
(ECs) of packets. An EC is defined to be a set of pack-
ets that have identical forwarding actions in all boxes.
Veriflow then checks network invariants by analyzing
reachability graphs of ECs. AP Verifier [30] uses pred-
icates to represent packet filters that guard input and
output ports of boxes. It enables very fast computation
of reachability trees by first computing atomic predi-
cates for the set of predicates. Instead of computing
the conjunction of two predicates during reachability
computation, AP Verifier computes the intersection of
two sets of integers representing atomic predicates. AP
Verifier is more time and space efficient than prior tools.

All of the above methods focus on analyzing network-
wide invariants (e.g., reachability, loop-freedom) but
were not designed to identify the reachability of a spe-
cific packet. For example, they can determine whether
it is possible to reach box B from box A but cannot tell
whether a given packet can reach B. AP Verifier [30]
can check whether all packets entering a port in the
network pass through a waypoint (e.g., a firewall) but
cannot tell whether a specific packet traverses a given
waypoint.

One possible solution to the packet behavior identifi-
cation problem is to obtain all related data plane rules of
the packet by searching the trie created in Veriflow and
then compute the forwarding path based on the rules.
However storing all rules requires non-trivial memory
cost (tens of GBs for the Stanford network) which could
cause disk I/Os during query processing. As a result,
using the Veriflow trie for packet behavior identification
was shown to be very slow by Inoue et al. [13] who pro-
posed a tool that can quickly classify a packet to an EC.
Its main drawback is that their MDD structure cannot
correctly represent the current network state because its
does not support real-time updates, especially for SDNs
where data plane updates are frequent [20].
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Figure 1: (a) Three predicates. (b) The packet header
space and five atomic predicates. (c) A sample network
including the three predicates.

Recently, Network Optimized Datalog is proposed as
a general specification language to model high-level ab-
straction of network beliefs and dynamism [23]. A new
approach to derive data plane from network configura-
tions is presented in [12].

3. MODEL AND BACKGROUND
We model a network as a directed graph of boxes,

each of which has a forwarding table as well as input and
output ports guarded by access control lists (ACLs).
Each packet has a fixed-size header, including all fields
that are evaluated by forwarding tables and ACLs in
the network. A flow is then a sequence of packets that
have the same values in the evaluated header fields.

Following the concepts in [30], forwarding tables and
ACLs are all packet filters. Each ACL can be specified
by a predicate. The set of packets that are allowed by
the ACL are evaluated to true by the predicate. Simi-
larly, by analyzing a forwarding table, each output port
can be specified by a forwarding predicate. The set of
packets that can be forwarded to the port are evaluated
to true by the predicate.3 Forwarding tables and ACLs
can be converted to predicates using the algorithms
in [30]. A predicate P specifies the set of packets for
which P evaluates to true. Hence if a packet can travel
through a sequence of packet filters, it is evaluated to
true by the conjunction of predicates corresponding to
the packet filters.

Given a set of predicates, we can compute a set of
atomic predicates. Due to space limitation, we do not
repeat the formal definition of atomic predicates, which
can be found in [30]. A proved property of the set of
atomic predicates is that they specify the minimum set
of equivalence classes in the set of all packets. The pack-

3All predicates are represented by binary decision dia-
grams (BDDs) in our implementation of AP Classifier.
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Figure 2: The AP Tree of predicates in Figure 1(b).

ets that are evaluated to true by the same atomic pred-
icate have identical behaviors at all boxes. For a set of
predicates P = {p1, p2, ..., pk}, each atomic predicate ai
is in the form ai = q1∧q2∧ ...∧qk, where qj ∈ {pj ,¬pj}.
(Note that ai in the previous sentence is an atomic pred-
icate only if it is not false.) Every predicate is equal to
the disjunction of a subset of atomic predicates. Every
packet is evaluated to true by one and only one atomic
predicate.

As an illustration, Fig. 1(a) shows three predicates
p1 (triangle), p2 (square), and p3 (circle), each of which
represents a set of packets that are evaluated to true
by a predicate. Each predicate specifies a set of packets
that can pass the corresponding packet filter. Fig. 1(b)
shows the three predicates in the packet header space.
All packets in this example can be classified into five
equivalence classes specified by five atomic predicates,
a1 to a5. Each predicate is equal to the disjunction of a
subset of atomic predicates. For example, p2 = a3 ∨ a4.
Also, a4 = ¬p1 ∧ p2 ∧ p3. All packets evaluated to true
by a4 have identical behaviors: they can pass the filters
of p2 and p3 but cannot pass p1.

In the network shown in Fig. 1(c), Let p1 specify the
set of packets that can be forwarded at box b1 to its
output port to host h1, p2 specify the set of packets
that can be forwarded at box b1 to its output port to
box b2, and p3 specify the set of packets that can be
forwarded at box b2 to its output port to host h2. A
packet specified by a4 = ¬p1 ∧ p2 ∧ p3 is forwarded
at b1 by the path b1 → b2 → h2. A packet specified by
a5 = ¬p1 ∧ ¬p2 ∧ p3 is forwarded to h2 if it is at b2,
but will be dropped if it is at b1. An atomic predicate
characterizes the behaviors of all packets it evaluates to
true.

4. DESIGN FRAMEWORK
AP Classifier is a program designed for a SDN con-

troller. It computes the network-wide behaviors for an
input packet (or flow). AP Classifier performs two-stage
processing for a packet. First, using the AP Tree, it clas-
sifies the packet to the atomic predicate that evaluates

to true for the packet. Second, AP Classifier determines
all forwarding paths for the packet by using the atomic
predicate, network information, and ingress box of the
packet.

4.1 AP Tree
Using the algorithms presented in [30], the controller

first converts each ACL to a predicate and the for-
warding table of each box to m predicates, where m
is the number of output ports of the box. Let P =
{p1, p2, ..., pk} be the set of predicates of all boxes in
the network. The controller constructs an AP Tree
which is a binary tree. The root is labeled by p1. At
level i, the 2i internal nodes are each labeled by pi.
Starting from the root, at each internal node, the in-
put packet is evaluated by the predicate in the label.
If the result is true, the packet continues to be evalu-
ated in the left sub-tree. Otherwise it goes to the right
sub-tree. An AP Tree with (k + 1) levels can be con-
structed from evaluating each of the k predicates at each
level of internal nodes. A leaf node is then labeled by
q1 ∧ q2 ∧ ...∧ qk, qi ∈ {pi,¬pi}, which specifies the set of
packets reaching the leaf. From Theorem 2 in [30], leaf
labels (that are not false) represent the atomic predi-
cates of P . Fig. 2(a) shows the AP Tree of the three
predicates in Fig. 1(b). Shaded circles indicate leaf la-
bels that are false. We will show that two sub-trees in
an AP tree do not necessarily have a same predicate
order in Section 5.3.

To classify a packet to an atomic predicate, AP Clas-
sifier simply searches the AP Tree by evaluating the
packet until the leaf labeled by the atomic predicate is
found. At each node, the packet is evaluated by check-
ing the BDD of the predicate. Since predicates on sib-
ling nodes are disjoint, for a given packet, the path from
the root to the leaf is exclusive and determinate.

In the worst case, there could be 2k atomic predi-
cates and finding a leaf needs to evaluate all k predi-
cates. However, it is found that the number of atomic
predicates is surprisingly small for real networks [30].
Hence many leaves specify empty sets of packets. For



example, in Fig. 2(a), p1 ∧ p2 ∧ p3, p1 ∧ p2 ∧ ¬p3, and
p1 ∧¬p2 ∧ p3 are all false according to the relationships
in Fig. 1(b). Hence no packet can reach any of these
three leaves. We use the following rule to “prune” the
AP Tree: If no packet reaches a sub-tree, i.e., all leaves
in the subtree are labeled by false predicates, the sub-
tree is removed from the AP Tree. If an internal node
has only one child, it is removed from the AP Tree as
there is no need to check the predicate. We define the
depth of a leaf to be the number of predicates evaluated
to reach the leaf. After pruning, the average depth of all
leaves in the AP Tree can be reduced and each node has
either 0 or 2 children. Fig. 2(b) shows the pruned AP
Tree whose average depth is (1 + 3 + 3 + 3 + 3)/5 = 2.6.

An important observation is the following: If predi-
cates are placed at the levels in a different order, the
average depth of the AP Tree may be different. In
Fig. 2(c), the predicates are placed at three levels in
the order of p2, p3, p1. The average depth of all leaves
in the pruned AP Tree is 2.4. An important contribu-
tion of this work is an algorithm to find an order of
predicates that substantially reduces the average depth
of an AP Tree.

For examples, each of the Internet2 and Stanford
networks includes hundreds of thousands of forwarding
rules, which can be converted to 161 (Internet2) or 507
(Stanford) predicates. Using our AP Tree construction
algorithm, the average depth of the AP Tree is only
10.6 (Internet2) or 16.8 (Stanford). In an unpruned AP
Tree, a packet needs to be evaluated by 161 or 507 pred-
icates. AP Classifier only requires it to be evaluated by
10.6 or 16.8 predicates, on average, thus improving the
query throughput by more than an order of magnitude.
The detailed algorithm design of AP Tree construction
is presented in Section 5.

4.2 Computing packet behaviors
The second stage of AP Classifier determines the network-

wide behaviors of the queried packet from the network
information, the ingress box, and the atomic predicate
determined in the first stage.

Since the atomic predicate is in the form q1∧q2∧ ...∧
qk, qi ∈ {pi,¬pi}, for any predicate pj , AP Classifier can
easily check whether the predicate evaluates to true or
false for the packet. Recall that pj represents a packet
filter of an ACL or output port. Hence AP Classifier can
determine at any box whether the packet is dropped
and which port it is forwarded to. Starting from the
ingress box, i.e., the box that sees the packet first in the
network, AP Classifier finds the output port to which
the packet is forwarded and then determines the next-
hop box. If the packet is a multicast packet, it may be
forwarded to multiple ports. AP Classifier continues to
find the forwarding ports on the next-visited boxes until
the packet reaches the destination or is dropped. The

p1

p2

p3

b1

b2

h1

h2

4 1 2 3a p p p   

Forwarding path of a packet specified 

by a4 at ingress box b1

Figure 3: Computing forwarding path for a packet

packet behaviors are thus obtained.
Fig. 3 shows an example to illustrate how to compute

network-wide forwarding paths for a given packet. Con-
sider a packet which arrives at the ingress box b1 and
it is classified to atomic predicate a4 by searching the
AP Tree. The representation, ¬p1∧p2∧p3, of a4 shows
that the packet is forwarded to b2 because p1 is false and
p2 is true for the packet. Similarly at b2, the packet is
forwarded to h2 because p3 is true for the packet.

We ran experiments to evaluate the speed of the above
approach on a general-purpose desktop computer. We
found that, for the Internet2 and Stanford datasets, the
throughput is greater than 15M and 10M packets per
second, respectively. Note that this throughput is much
higher than the throughput in the first stage. Therefore,
the main effort of this work is to optimize the construc-
tion, search, and update of the AP Tree.

5. AP TREE OPTIMIZATION
The most challenging problem in designing AP Clas-

sifier is to construct an AP Tree with minimized average
depth, which can support dynamic updates.

5.1 Query throughput versus average depth
To reduce the query time and improve the query through-

put, the optimization goal of AP Tree construction is
to reduce the average depth of leaves. We conduct a
set of experiments to justify the correlation of reduc-
ing the average depth and improving the throughput.
We use the Internet2 network containing 161 predicates
and the Stanford network containing 507 predicates. In
each experiment, we randomly order the k predicates
for placement at levels of the AP Tree. Then we query
the generated tree using sample packets and measure
the query throughput. In Fig. 4, we show the relation-
ship between query throughput and average depth for
100 random generated AP Trees for each network. After
pruning, the average depth of the AP Tree of Internet2
varies from 15.9 to 44.2, and the average depth of the
AP Tree of Stanford varies from 39.1 to 92.5. From
the two sub-figures in Fig. 4, it is obvious that an AP
Tree with smaller average depth provides higher query
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Figure 5: Additional example

throughput. The star in each figure represents the per-
formance of the AP Tree constructed by AP Classifier.
The query throughput of AP Classifier is 3.35 Mqps (In-
ternet2) and 1.82 Mqps (Stanford), substantially higher
than any random construction.

5.2 Quick-Ordering algorithm
Given a fixed number of leaves, a balanced binary tree

minimizes the average leaf depth. Compare the two AP
Trees in Fig. 2(b) and (c) whose average depths are 2.6
and 2.4, respectively. The one in Fig. 2(c) is more bal-
anced and hence has less average depth. The reason for
the imbalance in Fig. 2(b) is that p1 is placed at a higher
level of the tree. According to properties of atomic pred-
icates, every predicate is equal to the disjunction of a
subset of atomic predicates. The number varies from
one to the number of all atomic predicates. In this ex-
ample, p1 is a predicate that is equal to a single atomic
predicate. Hence the left child of the node labeled as p1
must be a leaf node representing the atomic predicate.
However, the right sub-tree may include more levels,
causing the imbalance.

In fact, an analysis of the two real network data
planes shows that many predicates are equal to a single

atomic predicate. One fast yet effective ordering of pred-
icates is to place those predicates at lower levels. For
example, in Fig. 2(c), p1 is placed at the lowest level.
Notation . Let R(p) denote the subset of atomic

predicates whose disjunction is p. |R(p)| denotes the
cardinality of R(p).

In the Quick-Ordering algorithm, |R(pi)| is counted
for each predicate pi. Then the AP Tree is constructed
by placing all predicates onto the tree in descending
order of |R(pi)|.

5.3 Optimized AP Tree construction
Developing on Quick-Ordering, we propose a more

sophisticated ordering method that further reduces the
average depth of the AP Tree.

One important observation is that, for two sub-trees
whose roots are siblings, their predicate orders can be
different. In the example of Fig. 5(a), we now have four
predicates p1 (triangle), p2 (square), p3 (circle), and p4
(ellipse), which determine six atomic predicates, a1 to
a6. If the predicates are added in the order p2, p3, p1, p4,
the pruned AP Tree is shown in Fig. 5(b). However,
for the sub-tree rooted at the right child of the root,
its subtree is more balanced if the predicate order is
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p1, p3, p4, as shown in Fig. 5(c).
For a given set of predicates P = {p1, p2, ..., pk}, the

atomic predicates A = {a1, a2, ..., an} is determined.
The number of leaf nodes of the AP Tree is n, because
each leaf node corresponds to an atomic predicate. We
define F (Q,S) as the minimal sum of leaf depths of the
subtree (which is a part of the AP Tree) whose nodes
include the set of predicates Q and leaves are the set
of atomic predicates S. In the example of Fig. 5(c), let
Q = {p1, p3, p4} and S = {a1, a2, a5, a6}, F (Q,S) = 8.
F (Q,S) can be calculated recursively using the follow-
ing equations. Let H(Q,S, p) be the minimal sum of leaf
depths if the root of the sub-tree is p. If S ∩R(pi) 6= ∅
and S∩R(¬pi) 6= ∅, H(Q,S, p) is the sum of three com-
ponents: F (Q\{p}, S∩R(p)) and F (Q\{p}, S∩R(¬p))
are recursive computing for the left and right sub-trees
and extra |S| needs to be added because the depth of
every leaf increments by 1. We have

H(Q,S, p) = F (Q\{p}, S∩R(p))+F (Q\{p}, S∩R(¬p))+|S|

If S∩R(p) = ∅, the left sub-tree will be pruned and the
leaf depths do not increase. Hence,

H(Q,S, p) = F (Q \ {p}, S ∩R(¬p))

Similarly, if S ∩R(¬p) = ∅, we have,

H(Q,S, p) = F (Q \ {p}, S ∩R(p))

In addition, we have the following recursive equation.

F (Q,S) =

{
0 if |S| = 1
minpi∈Q H(Q,S, pi) otherwise

(1)

When |S| = 1, it is easy to see that the sub-tree con-
tains only one leaf, hence F (Q,S) = 0. Otherwise, the
predicate pi ∈ Q is selected as the root of the sub-tree
such that pi minimizes H(Q,S, pi).

Using the above formula, it is possible to compute
F (P,A). By recording the selection of pi at each recur-
sion, the optimized AP Tree can also be constructed.

However, the time complexity of solving this recur-
sion is as high as O((2k) ∗ k!), where k is the cardi-
nality of P . We need to propose an efficient heuristic
algorithm to simplify the recursion. At a level of re-
cursion, we need to find the predicate pi that minimizes

H(Q,S, pi). Instead of trying all predicates, we propose
an easier way to decide which predicate to select.

We define a pair-wise relation between two predi-
cates that implies which one is better to select. If
H(Q,S, pi) < H(Q,S, pj), we say that pi is superior

to pj and pj is inferior to pi, denoted as pi
S→ pj . If

H(Q,S, pi) = H(Q,S, pj), we say pi and pj are in the

same order, denoted as pi
S∼ pj .

We compare two predicates in four cases based on
their logical relationships, as shown in Fig. 6. Here, pi
and pj refer to predicates which are equal to union of
atomic predicates in S∩R(pi) and S∩R(pj) respectively.

1) Packets specified by pi intersect with those of pj
(Fig. 6(a)). If we place pi to the root and pj to the
children of the root, we have

H(Q,S, pi) =|S|+ F (Q− {pi}, S ∩R(pi))

+ F (Q− {pi}, S ∩R(¬pi))
=|S|+ F (Q− {pi, pj}, S ∩R(pi) ∩R(pj))

+ F (Q− {pi, pj}, S ∩R(pi) ∩R(¬pj))
+ |S ∩R(pi)|
+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(pj))

+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(¬pj))
+ |S ∩R(¬pi)|

If we place pj to the root and pi to the children, we
can get H(Q,S, pj) similarly. Since |S ∩ R(pi)| + |S ∩
R(¬pi)| = |S∩R(pj)|+|S∩R(¬pj)| = |S|, H(Q,S, pi) =

H(Q,S, pj). We have pi
S∼ pj .

2) Packets specified by pi disjoint with those of pj
(Fig. 6(b)). pi∧pj is false. If we place pi to the root and
pj to the children of the root, the sub-tree representing
pi ∧ pj will be pruned. Hence

H(Q,S, pi) =|S|+ F (Q− {pi, pj}, S ∩R(pi) ∩R(¬pj))
+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(pj))

+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(¬pj))
+ |S ∩R(¬pi)|

Similarly, if we place pj to the root and pi to the chil-
dren,

H(Q,S, pj) =|S|+ F (Q− {pi, pj}, S ∩R(pj) ∩R(¬pi)))
+ F (Q− {pi, pj}, S ∩R(¬pj) ∩R(pi))

+ F (Q− {pi, pj}, S ∩R(¬pj) ∩R(¬pi))
+ |S ∩R(¬pj)|

Despite of the same terms, if |S∩R(¬pi)| < |S∩R(¬pj)|,
pi

S→ pj . If |S ∩ R(¬pi)| = |S ∩ R(¬pj)|, pi
S∼ pj .

Otherwise pj
S→ pi.

3) Packets specified by pj are a subset of those of pi.
If we place pi to the root and pj to the children of the
root, the sub-tree representing ¬pi ∧ pj will be pruned.



Hence

H(Q,S, pi) =|S|+ F (Q− {pi, pj}, S ∩R(pi) ∩R(pj))

+ F (Q− {pi, pj}, S ∩R(pi) ∩R(¬pj))
+ F (Q− {pi, pj}, S ∩R(¬pi) ∩R(¬pj))
+ |S ∩R(pi)|

If we place pi to the root and pj to the children of the
root, the sub-tree representing pj ∧ ¬pi will be pruned.

H(Q,S, pj) =|S|+ F (Q− {pi, pj}, S ∩R(pj) ∩R(pi)))

+ F (Q− {pi, pj}, S ∩R(¬pj) ∩R(pi))

+ F (Q− {pi, pj}, S ∩R(¬pj) ∩R(¬pi))
+ |S ∩R(¬pj)|

Therefore if |S ∩ R(pi)| < |S ∩ R(¬pj)|, pi
S→ pj . If

|S ∩R(pi)| = |S ∩R(¬pj)|, pi
S∼ pj . Otherwise pj

S→ pi.
4) Packets specified by pi are a subset of those of pj .

Similar to the above cases, we can get if |S ∩R(¬pi)| <
|S ∩ R(pj)|, pi

S→ pj . If |S ∩ R(¬pi)| = |S ∩ R(pj)|,
pi

S∼ pj . Otherwise pj
S→ pi.

We then design the key criterion of predicate selection
for each level of recursion, namely: We select a predi-
cate that is not inferior to any other predicate. The
algorithm is presented as follows: For each level of re-
cursion, a predicate ps is maintained, initially being p1.
A linear scan is performed from p2 to pk. For a predi-

cate pi, if pi
S→ ps, then ps is set to pi. At the end, ps

is selected as the root node of the subtree for this level
of recursion.

To prove the correctness of the above algorithm, we
need to show that ps is indeed not inferior to any other
predicate. A sufficient condition is that the superior/inferior
relation is acyclic, i.e., there are no three predicates

pa, pb, pc such that pa
S→ pb, pb

S→ pc, and pc
S→ pa. We

have proved the acyclic property by exhaustion. Our
proof is not shown herein due to space limitation.

Time efficiency of AP Tree construction. In the
AP Tree construction algorithm presented above, we
avoid the time-intensive operation of computing the con-
junction of two predicates represented as BDDs. Instead,
our algorithm computes the intersection of two sets of
integers that are identifiers of atomic predicates, as sug-
gested in [30]. Intersections of integer sets can be com-
puted much more quickly than conjunctions of BDDs.

The time complexity of determining relationship be-
tween two predicates is O(n), where n is the number
of atomic predicates. For each level of recursion, a lin-
ear scan needs O(k′n) time, where k′ is the number of
predicates in the current level. The overall complexity
of building an AP Tree depends on the number of levels
as well as the balance of the tree. Here we only provide
the complexity analysis for a balanced AP Tree. For a
balanced AP Tree, there are 2l nodes at level l. For each
node, k′ ≤ (k− l). Hence at level l, the time complexity

is at most 2l(k− l)n. Since l ≤ log2 n, 2l(k− l)n < kn2.
Since there are dlog2 ne levels, the overall time complex-
ity is upper-bounded by O(kn2 log n).

6. AP TREE UPDATE AND
RECONSTRUCTION

An important requirement of practical packet behav-
ior identification is to support dynamic network changes,
including link and rule changes, both of which require
addition and deletion of predicates. We design fast
AP Tree update methods for adding a predicate and
deleting a predicate while maintaining tree correctness.
However, after a large number of updates, an AP Tree
will experience performance degradation. Hence we also
design an AP Tree reconstruction method that periodi-
cally rebuilds the tree to optimize its performance while
performing packet query processing at the same time.

6.1 Real-time update of an AP Tree
The SDN data plane of a network is frequently up-

dated by rule installation and deletion. When a rule
is inserted into or removed from a forwarding table or
an ACL, it may change one or more predicates. The
set of atomic predicates may change as well. We use
the method presented in [29] to convert a rule insertion
or deletion to predicate change. If there is no predi-
cate change after a rule update, AP Classifier does not
need to update the AP Tree. Otherwise, AP Classi-
fier performs the methods presented below to remove
the old predicate and add the updated predicate in
the AP Tree. These methods are also used after ad-
dition/deletion of a network link which requires addi-
tion/deletion of predicates.

Add a predicate. When a new predicate p is added,
for each leaf node representing an atomic predicate a
in the current AP Tree, AP Classifier computes a ∧ p
and a ∧ ¬p. If none of them is false, two children are
added to the leaf node, representing a ∧ p and a ∧ ¬p
respectively. If one and only one of the two conjunctions
is false, the label of the leaf node is replaced by the
other conjunction. If both conjunctions are false, AP
Classifier does nothing to this leaf node.

Delete a predicate. To delete an existing predicate
p from the AP Tree, AP Classifier does not remove all
internal nodes labeled by p. This is because after the
removal of a node, merging the two sub-trees rooted
at its children is very difficult. Instead, we still keep
p in the AP Tree, but mark it as “deleted” in the list
of all predicates. A query packet is still processed by
the AP Tree to find its leaf node representing its atomic
predicate. It is still evaluated by the deleted predicates
to determine which sub-tree to visit next. However, in
the second stage of AP Classifier, i.e., computing packet
behaviors, AP Classifier just ignores all predicates that
have been deleted.
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6.2 Parallel reconstruction of an AP Tree
Although, the AP Tree updates in AP Classifier are

fast and maintain correctness of packet behavior iden-
tification, the AP Tree is no longer optimized and the
query throughput will degrade over time. Hence AP
Classifier also reconstructs the AP Tree to optimize it
from time to time. To enable query processing at the
same time as tree reconstruction, AP Classifier runs two
processes in parallel, called the query process and recon-
struction process, executing on two different cores. The
start of a reconstruction is triggered by an event, e.g.,
query throughput is lower than a threshold or the num-
ber of updates on the current AP Tree is higher than
a threshold. During reconstruction, the query process
still maintains the old AP Tree by performing updates,
and responds to queries. After the reconstruction pro-
cess has built a new tree, the new tree needs to be up-
dated for data plane changes that have occurred during
the reconstruction period, if any. The updated new tree
is then transmitted to the query process to replace the
old tree.

Fig. 7 shows an example of the parallel reconstruction
of an AP Tree. The query process performs AP Tree
search to respond to queries as well as updates when
data plane changes happen. In this example, the first
reconstruction starts shortly after the change that re-
quires update 1, which is included in the construction
of a new tree. However, when the new tree is finished,
two changes that require updates 2 and 3 have occurred
during the reconstruction period. The new tree does
not reflect these two updates. Thus the reconstruction
process also applies these two updates to the new tree.
Then the updated new tree is sent to the query process
to replace the old AP Tree. Similarly the second re-
construction begins after changes that require updates
4, 5, and 6. The new tree constructed needs to be up-
dated for changes (that require updates 7 and 8) which
occur during the reconstruction period, before it can be
sent to the query process. Note that if there is no data
plane change during a reconstruction period, the new
AP Tree is optimized.

7. EXPERIMENTAL EVALUATION
We have implemented and evaluated AP Classifier on

Table 1: Statistics of the two real networks

Stanford Internet2

No. of rules
Forwarding ACL Forwarding

757170 1584 126017
No. of predicates 507 71 161

No. of atomic pred. 494 21 216

a general purpose desktop computer with quadcore@3.2G
and 16GB memory. Our implementation and evalua-
tion include all functional components for packet be-
havior identification from scratch, including comput-
ing atomic predicates, classifying packets using the AP
Tree, and computing packet behaviors. (In compari-
son, prior work on this problem only implements and
evaluates a single function, namely: classifying pack-
ets to equivalence classes [13].) For our experimental
evaluation, we use forwarding tables and ACLs from
two real networks: Internet2 [2] and Stanford network
[17]. Internet2 includes 126,017 forwarding rules and
the Stanford network includes 757,170 forwarding rules
and 1,584 ACL rules. The predicates and atomic pred-
icates are computed using the method in [30]. We com-
pare AP Classifier with possible solutions by utilizing
two state-of-art tools, namely Header Space Analysis
(HSA) [17] and AP Verifier [30]. We do not compare
AP Classifier with MDD [13] because it relies on a spe-
cial method for MDD construction and the source code
is not publicly available. Furthermore, its method does
not support dynamic updates.

7.1 Depths of leaf nodes
In this set of experiments, we show the depths of

leaf nodes in an AP Tree, which can demonstrate effec-
tiveness of the proposed tree construction algorithms.
We evaluate and compare three methods, Best from
Random, Quick-Ordering, and Optimized AP Tree con-
struction (OAPT), for both Internet2 and Stanford net-
works. The Best from Random method generates a ran-
dom order of predicates for placement on levels of an AP
tree and performs pruning. It constructs 100 AP trees
and chooses the tree with the minimal average depth of
leaf nodes. Quick-Ordering is presented in Section 5.2
and OAPT is presented in Section 5.3.

Fig. 8 shows the average depth of of leaf nodes in an
AP tree. For Internet2, the average depth of Best from
Random is 16.0, worse than those of Quick-Ordering
(13.0) and OAPT (10.6). OAPT reduces the average
depth by 34% compared to Best from Random and
19% compared to Quick-Ordering. For the Stanford
network, Best from Random also has the highest av-
erage depth (39.0), followed by Quick-Ordering (24.2)
and OAPT (16.9). OAPT shows significant improve-
ment: It reduces the average depth by 57% compared
to Best from Random and by 30% compared to Quick-
Ordering.
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Figure 9: Cumulative distribution of the depths of leaf nodes in AP Trees
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Figure 11: Query throughput for static networks

Fig. 9 shows the cumulative distribution of depths
of leaf nodes in an AP Tree. For Internet2, the leaf
depths of Quick-Ordering are clearly smaller than Best
from Random. However for the Stanford network such
improvement is not very significant. OAPT has clearly
smaller depths for all percentiles compared to the other
two methods. For Internet2 80% of the leaf nodes in the
OAPT tree have a depth less than 11 and for Stanford
this number is 21. The maximum depths are 24 and 46
for Internet2 and Stanford, respectively.

7.2 Memory Usage
AP Classifier stores all predicates and atomic pred-

icates as BDDs and also, for each predicate, a set of
integer identifiers of atomic predicates. In the AP Tree
a node only stores a pointer to the labeled predicate or
atomic predicate. Since pointers use very little memory,
the memory costs of different methods are very close.
Hence we only show the memory cost of AP Classifier
using OAPT.

The total memory cost of AP Classifier for Internet2
is 4.79 MB and that for Stanford is 2.15 MB. Although
Internet2 has fewer predicates than Stanford, it requires
more memory because BDDs of the Internet2 predicates
are more complex than those of Stanford. Unlike the
results of [13] that only show memory cost of the search
structure, our memory costs account for all components
for packet behavior identification, including the network
topology, predicates, atomic predicates, and AP Tree.
We found that AP Classifier uses very small memory

and can be stored in cache.

7.3 AP Tree construction time
Fig. 10 shows times to construct AP Trees using the

three methods for the two networks. Note that the time
cost is the overall construction time that includes the
times for computing atomic predicates as well as for AP
Tree construction. The Random method costs the least
time but it is only for one random construction. To
find the best AP Tree from a large number of random
constructions takes substantially longer time. Quick-
Ordering and OAPT have similar time costs, 201.36 ms
and 204.39 ms, for Internet2. For the Stanford network,
OAPT requires 342.77 ms for Stanford, a little longer
compared to Quick-Ordering (293.36 ms).

7.4 Query throughput for static networks
In this set of experiments, we measure the through-

put of AP Classifier to process packet queries, in num-
ber of queries per second (qps). Packet headers used for
queries in the experiments are generated randomly with
respect to the atomic predicates. The throughput re-
sults for static networks are shown in Fig. 11. For Inter-
net2, AP Classifier using OAPT can achieve 3.4 Mqps,
higher than Best from Random by 102% and Quick-
Ordering by 52%. For Stanford network, AP Classifier
using OAPT can achieve 1.8 Mqps, higher than Best
from Random by 46% and Quick-Ordering by 34%. For
both networks, the throughput of AP Classifier is much
higher than 1 Mqps, which is enough to satisfy most
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Figure 12: Cumulative distributions of time cost for adding a predicate.

application requirements in SDN.
For static networks, we can use the open-source tool

Hassel-C [1] that implements HSA [17] to perform packet
behavior identification for a specific packet. By provid-
ing the input port and a specific query packet, Hassel-C
computes the reachability tree of the query packet. (For
a unicast packet, the reachability tree is a forward path
to the packet’s destination.) The query throughputs of
using Hassel-C to perform packet behavior identifica-
tion are 6 Kqps and 4.7 Kqps for Internet2 and Stan-
ford, respectively, which are about 1000 times slower
than the query throughputs of AP Classifier. They are
also plotted in Fig. 11 but they are very small and barely
visible. We also compare AP Classifier with AP Veri-
fier [30]. We first use AP Verifier to compute all atomic
predicates, and perform a linear search of all atomic
predicates for the query packet until the packet matches
an atomic predicate. Results in Fig. 11 show that AP
Verifier is also much slower, though its throughput is
improved a lot compared to Hassel-C.

7.5 Dynamic Networks
In this set of experiments, we first construct the AP

Tree using a number of predicates and then keep adding
new predicates. We measure the time cost to add each
new predicate and update the AP Tree. Fig. 12 (a) shows
the cumulative distribution of time cost for adding a
predicate in the Internet2 network. The initial number
of predicates is set to 40, 80, and 120 for three different
experiments. From the figure we find that about 80%
of the predicate additions are finished in 2 ms. It may
take 5-6 ms in worst cases. We do not observe obvious
differences when the initial numbers of predicates are
different. Fig. 12 (b) shows the results of similar exper-
iments for Stanford. The initial number of predicates is
set to 100, 250, and 400 for three different experiments.
Over 90% of the predicate additions are finished in 1
ms. Deleting a predicate does not require extra compu-
tation, hence there is no result for deletions.

Query throughput for dynamic networks. We
also evaluate the throughput of AP Classifier in practi-

cal environments where additions and deletions of rules
and predicates happen over time. At the beginning of
each experiment, a number of predicates are chosen ran-
domly from the set of predicates of a network to con-
struct the initial AP Tree. Starting from time 0, the
arrivals of change events requiring the addition or dele-
tion of predicates are modeled by a Poisson process.
Each update operation can be adding a new predicate
or deleting an existing predicate. In all experiments,
equal numbers of additions and deletions are inserted
to the event queue. A reconstruction is triggered ev-
ery 0.4 s. During every reconstruction, AP Classifier
answers queries and performs updates as explained in
Section 6.2. We compare AP Classifier with two pos-
sible methods, APLinear and PScan, APLinear utilizes
AP Verifier [30] to compute atomic predicates and per-
forms a linear search for the query packet until the
packet matches an atomic predicate. Note that BDDs
of atomic predicates are more complex than those of
predicates. Hence APLinear is not efficient. PScan per-
forms a scan on all predicates using the query packet
and decides whether the packet is filtered by the pred-
icate. Both methods can be used to identify packet be-
haviors.

Fig. 13 shows the throughputs of AP Classifier, APLin-
ear, and PScan in dynamic networks. The x-axis is time
and the y-axis is throughput measured in Mqps. We
conduct two sets of experiments whose update rates are
100 updates/s and 200 updates/s. From all subfigures
in Fig. 13, we find that AP Classifier is faster than the
other two methods by an order of magnitude.

Note that starting from time 0, the throughput of
AP Classifier slowly decreases as an increasing num-
ber of updates make the AP Tree less optimized. The
first reconstruction starts at time 0.4 s and finishes at
about 0.6 s in Fig. 13(a) and (c), and 0.7s in Fig. 13(b)
and (d). When a reconstruction finishes, the through-
put immediately goes back to a high value (4 Mqps in
(a) and (c), and 2 Mqps in (b) and (d)). Furthermore,
the throughput does not degrade in the long-term view.
Comparing results of the two different update rates, we
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Figure 13: Query throughput for dynamic networks.

find that the average throughput of AP Classifier does
not drop much even after the update rate is doubled.
Hence AP Classifier is fast and robust for practical dy-
namic networks.

8. DISCUSSION
Optimization for packet distribution. In the

proposed algorithms of AP Classifier, we assume that,
for a packet query, leaf nodes (atomic predicates) have
equal probability to be visited. Therefore minimizing
the average depth of leaf nodes maximizes the query
throughput. However, practical network flows may not
be distributed uniformly with respect to the set of atomic
predicates. For example, if many queried packets may
eventually visit a leaf in a very deep position and leaves
close to the root are rarely visited, the throughput de-
creases. To improve the query throughput for uneven
packet distribution, we assign weights to atomic pred-
icates such that leaf nodes that are visited frequently
will be placed relatively close to the root. The experi-
mental results also show that our method is very robust
to different packet distributions. Detailed design and
experimental results are skipped due to page limit.

Dealing with Packet Header Changes. In mod-
ern networks, some middleboxes may make changes to
packet headers, such as Network Address Translation
(NAT). In these cases, when the AP Classifier searches
the AP Tree using the particular packet header, it will

tell that the packet stops at the middlebox. If AP Clas-
sifier realizes that the packet stops at a middlebox, it
needs to check whether the packet is dropped, e.g., by
a firewall, or the packet header has been changed based
on the middlebox policies. If it is the later case, the AP
Classifier will consider the packet to be a new one and
compute the forwarding behaviors for the new packet
header by searching the AP Tree again. Such process
may repeat multiple times until the computed path ends
at the packet destination. It is hard for AP Classifier to
handle the middleboxes that determine packet behav-
iors based on high-level payloads or real time policies,
as such load balancers and adaptive routing methods
[10, 31] in data center networks. We leave a full design
to future work.

9. CONCLUSION
We propose AP Classifier for network-wide packet

behavior identification that can be utilized by many
important network management applications. We de-
sign algorithms to construct the AP Tree for a network,
which can be used to quickly classify a packet to an
atomic predicate. Each atomic predicate represents the
network-wide forwarding behaviors of a set of packets.
Experimental results using the datasets of two real net-
works show that the proposed AP Tree construction
algorithm can optimize the average depth of leaf nodes.
AP Classifier can process millions of packet queries per



second. The speed is faster than existing tools by at
least an order of magnitude. Furthermore, it uses only
a few MBs memory. It can be updated in real time and
is robust under dynamic data plane changes.
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