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ABSTRACT

A livelock arises in a communication protocol if the communicating entities
in the protocol keep on exchanging messages while no "useful work® is being
done. We investigate this phenomenon in networks of communicating finite
state machines. In particular, we show that it is undecidable in general
whether the communication of any such network can reach a livelock. We also
identify some special classes of networks for which livelock detection is decid-
able.

1. Introduction

The model of communicating finite state machines is useful in the specification

[4,27,28], analysis (2,5,6,9,11,12,14,19,20,23,25,26,27,28,20,31,32,33,34] and synthesis
[3,7,10,13,22] of communication protocols. The procedure for modeling and analyzing a
communication protocol using this model typically proceeds as follows:

First, the protocol is defined as a network of communicating finite state machines:
Each machine in the network has a finite number of states and state transitions
(called nodes and edges respectively in this paper). Each state transition of a
machine is accompanied by the sending of a message into a channel or receiving
of a message from a channel. Channels are assumed to be directional from one
machine to another and FIFO. In general, a network may have an arbitrary
topology.

Second, the network defined is analyzed to ensure that its communication satisfies
some nice properties such as boundedness [33], freedom from deadlocks
25,26,31,32] and freedom from unspecified receptions {11].

Examples of some realistic protocols that can be modeled and analyzed using this
procedure include: the alternating-bit protocol [1], the Binary Synchronous protocol [24],
and the call establishment/clearing procedures in X.21 [23,31] and X.25 [12,24].
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One property that should be satisfied by networks of communicating finite state
machines modeling real protocols, is freedom from livelocks. A livelock occurs when the
machines in a network keep exchanging messages but no ®useful work® is being done.
The characterization of livelocks in distributed systems and communication protocols
was considered by Hajek [16] and Lai [18]. Sherman and Rudin [29] characterized
livelocks in networks of communicating finite state machines and pointed out the impor-
tance of detecting livelocks in such networks in protocol validation. In this paper we ex-
tend the work of Sherman and Rudin by showing that the livelock detection problem is
undecidable for a general network of communicating finite state machines. We also list
some special classes of networks for which the problem is decidable. Efficient algorithms
for livelock detection in such networks are presented in [15].

This paper is organized as follows: Networks of communicating finite state
machines are presented formally in Section 2. The concept of livelocks in such networks
is defined in Section 3. In Section 4, we define the livelock detection problem and show
that it is undecidable for general networks of communicating finite state machines.
Finally in Section 5, we identify special network classes for which livelock detection is
decidable.

2. Networks of Communicating Finite State Machines

A communicating finite state machine M is a labelled directed graph with two
types of edges, namely sending and receiving edges. A sending (or receiving) edge is
labelled -g (or g, respectively) for some message g in a finite set G of messages. A node
in M whose outgoing edges are all sending (or all receiving) edges is called a sending (or
receiving) node. A node in M whose outgoing edges include both sending and receiving
edges is called a mized node, and a node in M that has no outgoing edges is called a
final node. One of the nodes in M is identified as its énitial node, and each node in M is
reachable by a directed path from the initial node.

Let M and N be two communicating finite state machines with the same set G of
messages. Let (M,N) denote the network consisting of machines M and N connected by
two FIFO channels in opposite directions.

A state of network (M,N) is a four-tuple [v,w,x,y], where v and w are two nodes in
M and N respectively, and x and y are two strings over the messages in G. Informally, a
state [v,w,x,y] means that the executions of M and N have reached nodes v and w respec-
tively, while the input channels of M and N store the strings x and y respectively.

The initial state of network (M,N) is [vy,wg,E,E] where v, and wy are the initial
nodes in M and N respectively, and E denotes the empty string.

Let s=[v,w,x,y] be a state of network (M,N); and let e be an outgoing edge of node
v or w. A state s’ is said to follow s over e iff one of the following four conditions is
satisfied:

e e is a sending edge, labelled -g, from v to v’ in M, and s’=[v’,wx,y.g], where *.*
is the concatenation operator.

e e is a sending edge, labelled -g, form w to w’ in N, and s'=[v,w’,x.g,y}.
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e e is a receiving edge, labelled +g, from v to v’ in M, and s'=[v’,w,x’,y], where
x=g.x'".

e e is a receiving edge, labelled +g, from w to w’ in N, and s'=[v,w’x,y’], where
y=gy"

Let s and s’ be two states of network (M,N), s’ follows s iff there is a directed edge
ein M or N such that s’ follows s over e.

Let s and s’ be two states of (M,N), s’ is reachable from s iff s=s’ or there exist
states s,,...,s, such that s=s,, s'=s and s, ; follows s; for i==1,...,r-1.

A state s of network (M,N) is said to be reachable iff it is reachable from the initial
state of (M,N). Next, we use the concept of reachable states to define what it means for
the communication of a network (M,N) to be free from deadlocks and unspecified recep-
tions, and to be bounded.

A reachable state [v,w,x,y] of a network (M,N) is a deadlock state iff (i) both v and
w are receiving nodes, and (ii) x=y=E (the empty string). If no reachable state of net-
work (M,N) is a deadlock state, then the communication of (M,N} is said to be deadlock-
free.

A reachable state [v,w,x,y] of a network (M,N} is an unspeci fied reception state iff
one of the following two conditions is satisfied:

o X=g.8y . By (k>1), and v is a receiving node and none of its outgoing edges is
labelled +g;.

* y=g; 8 . & (k>1), and W is a receiving node and none of its outgoing edges is
labelled +g;.

If no reachable state of (M,N) is an unspecified reception state, then the communication
of (M,N) is said to be free from unspecified receptions.

The input channel of machine M (N) in network (M,N) is said to be bounded by K
iff for every reachable state [v,w,x,y] of (M,N), |x]<K {Jy|<K). A channel in (M,N) is
said to be bounded iff it is bounded by K, for some nonnegative integer K. The com-
munication of (M,N) is said to be bounded (bounded by K) iff each of the two channels
in (M,N) is bounded (bounded by K).

3. Livelocks

A marked network is a triple (M,N,m), where (M,N) is a network of two com-
municating finite state machines M and N, and m is a function, called the marking of
the network. m assigns to each edge in M or N either the value "p* or the value “n*.
Let e be an edge in machine M or N. If m(e)=p then e is called a progress edge, other-
wise m(e)==n, and e is called a nonprogress edge.

Let (M,N,m) be a marked network and let C and D be two directed cycles in M
and N respectively. The pair (C,D) is called a livelock in (M,N,m), iff the following three
conditions are satisfied:

i. All the edges of cycle C ,in M, are nonprogress.
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ii. All the edges of cycle D ,in N, are nonprogress.

ili. There exists a sequence (s,,...,s;) of reachable states of network (M,N) such
that the following two conditions hold:

a. For i==1,...r-1, state s;, | follows s; over an edge e; in M or N. Also
state s, follows s, over an edge e in M or N.

b. The set of edges {e;,e,,...,e,} constitutes the two cycles C and D.

This sequence {s;,...,s;) is called a nonprogress cycle for the livelock (C,D).
(Notice that a livelock may have more than one nonprogress cyele.)

Example (A Buffer Allocation Protocol): In a store-and-forward (SF) network,
each SF node has a finite number of buffers to store received packets before forwarding
them to another SF node in the network. A buffer is allocated for a packet when it is
received and only released when a positive acknowledgement message of the packet is
received from its next SF node. A store-and-forward livelock can occur in the absence of
an effective buffer management strategy [17]. We illustrate such livelock, in the simple
case of two SF nodes that communicate via a full duplex channel; each SF node has two
buffers which can store at most two data packets.

-NAK:
@-AC ACK Both buffers are empty

+PKT PKT at nodes 1 and 2

+ACK -PKT +ACK -PKT
-NAK. -PKT -NAK -PKT:
-ACK- Al}%) One buffer is empty
+PKT +NAK PKT +N at nodes 3-5

+ACK -PKT +ACK -PKT

-PKT NAK -PKT-
) Both buffers are full
+PKT +PKT/ at nodes 6-8
M N

Figure 1. A buffer allocation protocol based upon contention.

Consider the two communicating finite state machines M and N in Figure 1. Each
machine models a SF node with two buffers. The exchanged messages between M and N
have the following meanings:

PKT denotes a data packet.
ACK denotes a positive acknowledgement.
NAK denotes a negative acknowledgement.

Starting from node 1, M can either receive a data packet or send out a data
packet. After receiving a data packet, M sends back a ACK or NAK message to
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machine N and returns to node 1. If M sends out a data packet, it reaches node 3. At
node 3, one buffer is used to store a sent (and unacknowledged) packet, therefore only
one buffer remains available. There are four possibilities:

o M sends a second data packet to N: M uses up the remaining buffer and reaches
node 6.

& M receives a data packet: M stores the packet in the remaining buffer, sends back
an ACK message to N, then releases the buffer.

o M receives an ACK message: M returns to node 1, since its two buffers are avail-
able now.

o M receives an NAK message: M enters node 5 and retransmits the data packet
stored in the buffer.

At node 6, the two buffers in M are used to store the two sent and unacknowledged
packets. If a new data packet from N is received, it has to be discarded, since there is
no buffer available to store it, and M sends a NAK messsage back to N. If a NAK mes-
sage is received, M retransmits the data packet stored in the buffer. If a ACK message is
received, M returns to node 3 since one buffer becomes available. (It is straightforward
to extend this model to the situation of n buffers. We simply repeat the structure in the
second row of machine M, n-2 times and connect them together.)

One natural marking m for this protocol is as follows: All the edges labelled
+ACK in M or N are marked progress, while all the other edges are marked non-
progress. Let C; (D) be the directed cycle in M (N) that starts at node 6, goes to node
7, then returns to node 6. Also, let C, (D,) be the directed cycle in M (N) that starts at
node 6, goes to node 8, then returns to node 6. It is straightforward to show that
{C;,Dy) and (Cy,D,) are livelocks of the marked network (M,N,m).

The livelock (C;,D,) represents the situation where the two machines have used up
all their buffers for outgoing packets. Each expects the other to send a positive ack-
nowledgement message. One way to prevent such livelocks is to require buffer reser-
vation for each direction before any data transfer begins, or by separating packets into
different priority classes based upon *hop count* [30}.

0

4. Undecidability of the Livelock Detection Problem

The livelock detection problem can be stated as follows: Decide for any given
marked network whether it is free from livelocks. The next theorem shows that this
problem is undecidable for a general network of communicating finite state machines.
(Actually, as the proof shows, livelock detection is undecidable even if we restrict the
machines to those that send only two types of messages and have no mixed nodes.)

Theorem 1: It is undecidable whether any arbitrary marked network (M,N,m) can
reach a livelock.

0
Proof:
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We show that if the livelock detection problem can be decided, then the undecid-
able halting problem of Post machines can be decided.

A Post machine P is a finite directed graph with a string z over the symbols in
{0,1,#}. Each vertex in the directed graph is labelled with a statement. The arcs in the
directed graph represent the execution order among statements. There are four types of
statements (shown in Figure 2):

o The start statement: It is the first statement executed by the Post machine and
has no effect on string z. See Figure 2a.

e assignment statements: These statements concatenate a symbol, namely 0, 1 or
#, to the right of string z. See Figure 2b.

e test statements: These statements check the leftmost symbol of string z, namely
head(z}, and delete it after making decision. Since the test result has four pos-
sibilities, there are four outgoing arcs in each vertex labelled with the test state-
ment. See Figure 2c.

o The halt statement: This statement is the last statement executed by the Post
machine before halting. See Figure 2d.

Let P be any given Post machine. The computation of P can be simulated by a
marked network (M,N,m) that is constructed as follows:

o Machines M and N exchange four types of messages, namely 0, 1, # and $.
e Machine M sends every message it receives from N.

o Machine N simulates the actions of the Post machine P. It is constructed by ap-
plying the following four transformation rules to the directed graph of P:

a. The start statement is transformed to an arrow which indicates the in-
itial node in N. See Figure 2e.

b. An assignment statement z <-- z.g, where g is a symbol in {0,1,#}, is
transformed to a sending node with an outgoing edge labelled -g in
N. See Figure 2f.

¢. A test statement is transformed to a structure shown in Figure 2g. In-
formally, with this structure, machine N simulates the test of empty(z)
by sending the special message $ to M, then it waits to receive a mes-
sage from M. If it receives the same message $, it recognizes that z is
empty. If it receives other message, it recognized that z is not empty.
In this case, N removes the message $ then waits to receive the next
message and depending on its type, the execution of N proceeds along
one of the three outgoing edges.

d. The halt statement is transformed to the structure shown in Figure 2h.

e The marking m of (M,N;m) is as follows: All the edges of machine M are marked
nonprogress and all the edges of machine N are marked progress except those
edges which form the cycle C in the structures corresponding to the halt state-
ment.
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@ =

(2) (e)
(b) {f)

I z+tail(z)| l z+tail(z) ‘ I z+tail(z) I

! f !

progress progress
+1  +#

progress progress

-$ $

+0 +9 -
progress nonpro%. DONprog.

(d) (h)
Figure 2. Reducing a Post machine to communicating finite state machines.
It is clear from this simulation that P reaches the halting statement iff the marked net-

work (M,N,m) reaches a livelock. This completes the proof. (Notice that the machines
in the simulated network exchange four types of messages, but these can be simulated
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using only two types of messages. Notice also that the machines have no mixed nodes.)
O

5. Classes of Networks with Decidable Livelock Detection Problem

In [15], we present efficient algorithms to detect livelocks in the following classes of
networks:

e Networks of two machines with bounded communication.

o Networks of two machines where one of the two channels is bounded.

e Networks of two machines where one machine sends a single message type.
e Networks with any number of machines that have closed covers [9].

The algorithm for livelock detection for each of these special network classes is
based on constructing an abstract representation of the reachability graph of a given net-
work. Livelock detection is accomplished by an examination of this abstract represen-
tation (in a finite time) instead of the entire reachability graph. In each case, the con-
structed abstract representation is finite for any given network in its class, even if the
reachability graph of this network is infinite (i.e. even if the communication of the given
network is unbounded). For a complete discussion of these abstract representations and
the specified algorithms, we refer the reader to [15].
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