Specification and Verification of Collision-Free Broadcast Networks*

Pradeep Jain and Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

ABSTRACT

For high-speed local area networks that offer integrated ser-
vices for data, voice, and image traffic, a class of demand-assigned
multiple-access protocols have been presented in the literature.
These protocols exploit the directionality of signal propagation
and enforce time constraints to achieve collision-freedom. A cor-
rect implementation of such a protocol requires a careful analysis
of time-dependent interactions of event occurrences using a for-
mal method. To date, most protocol verification methods are
intended for the analysis of asynchronous communication over
point-to-point channels.

We present a model for broadcast bus networks. The
novel features of our model include the ability to specify broad-
cast channels and the specification of real-time behavior. The
broadcast characteristics of cables or buses are captured by some
simple axioms. Real time is modeled as a discrete quantity using
clocks and time variables. Real-time properties are specified by
safety assertions. To illustrate our model and analysis method,
we present a specification of the Expressnet protocol. We found
that to achieve collision-freedom, a small modification to the orig-
inal Expressnet protocol is needed.

1 Introduction

In a broadcast bus network, if two or more messages over-
lap in time at the same bus location, a collision results and the
messages involved are garbled. Therefore, a multiple access pro-
tocol is needed to coordinate access to the bus. Recently, a class
of demand-assigned multiple-access (DAMA) protocols has been
proposed for broadcast bus networks [2,3,4,12,13]. These proto-
cols incorporate some of the advantages of both ring networks
and Ethernet. Stations are connected to a bus-via taps. Since
taps are passive elements, as opposed to the repeaters in a ring

* This work was supported by National Science Foundation under
grant no. NCR-8613338.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

© 1988 ACM 0-89791-279-9/88/008/0282 $1.50

282

which are active elements, these networks are less susceptible to
node and link failures. The protocols rely on observable channel
events (such as the beginning or the end of a message, the bus
becoming idle, etc.) for a station to determine when to trans-
mit. Specifically, they exploit the directionality of signal propa-
gation to provide collision-free access to a shared bus. Effectively,
DAMA protocols employ a token-passing mechanism that is im-
plicit and efficient.

Compared to the CSMA/CD protocol, DAMA protocols are
capable of providing a higher channel throughput for high-speed
LANSs, as well as a bounded packet delay. Such schemes are thus
particularly attractive for the next generation of LANs operat-
ing at speeds of 50-200 Mbps and providing integrated services
(data, voice, video, facsimile, etc.). However, a correct implemen-
tation of any DAMA protocol will require a careful analysis of
time-dependent interactions of event occurrences using a formal
method.

DAMA protocols have two characteristics that distinguish
them from protocols studied in the verification literature. First,
the communication channel is a broadcast bus, i.e., a message
transmitted by one station is received by all others. Also, mul-
tiple messages may coexist in the bus. These characteristics are
fundamentally different from those of point-to-point links. Sec-
ond, DAMA protocols are real-time protocols which require cer-
tain time-constraints to be met for their correct functioning [11].
These time constraints arise from the use of timeouts and impo-
sition of bounds on delays, which are required to ensure collision-
free access to the medium.

To model timing delays and constraints in a broadcast bus,
the actual propagation of signals along the bus has to be modeled.
Also, there could be multiple signals in different sections of the
bus. The relative positions of these signals are also important.
All these factors render the problem of modeling a broadcast
bus unique. To date, almost all protocol verification techniques
have focused on asynchronous communication over point-to-point
channels [1,5,9,10,14].

While many DAMA protocols have been proposed in the
literature, there is no formal model to specify them. Some au-
thors have attempted to use finite state machines for specifica-
tion. However, their representations are informal and too coarse
[4,12]. That is, the states and state transitions are described with
important details hidden. The analysis of these protocols, if any,

has been ad hoc. Typically, the reasoning is operational in nature
and is based on time-space diagrams, which provide a graphical
representation of the communication among the stations. Even
the more ‘formal’ of these proofs essentially base their reasoning
on a verbal description of the time-space diagrams. Since each
such proof is carried out for a particular protocol and relies heav-
ily on its operational details, it cannot be reused in the analysis
of a different but similar protocol.

In [7], we presented a model for specifying broadcast bus net-
works and a method for verifying DAMA protocols. The novel
features of this model include the ability to specify broadcast
channels as well as the specification of real-time behavior. The
model can be used to specify a variety of broadcast bus con-
figurations. The timing relations for a particular broadcast bus
configuration are proved independent of specific protocols. Fur-
thermore, proofs of protocol properties are independent of the
number of stations and their positions on the bus.

In this paper, the model is extended in two ways: (1) to
account for the detection delay that is inherent in the sensing
of the channel state by a station, and (2) to allow a station to
perform concurrent actions. These extensions make possible the
specification of a wider class of protocols. As an illustration,
we specify the Expressnet protocol [12] formally. We show that
for the protocol to be collision-free, a small modification to the
original protocol is necessary.

In section 2, we describe our model for broadcast bus pro-
tocols. To illustrate the model, the Expressnet protocol (with
a small modification) is specified in section 3. In section 4, we
present our proof system. We use it in section 5 to show that
the modified Expressnet protocol is collision-free. In section 6,
we point out some special features of our model.

2 Modeling Broadcast Bus Networks

Several configurations and access methods are in use for
DAMA networks [3]. We illustrate our model by using it to
represent and verify a protocol based on the Unidirectional Bus
System (UBS) configuration. (Our model is also applicable to
the other broadcast bus network configurations [7.)

Unidirectional Bus System : The transmitted signal trav-
els in only one direction. This directionality imposes an ordering
on the stations. One way of achieving broadcast communication
is to use two unidirectional buses, one in each direction. Another
way is to fold the cable (figure 1). There are two logical channels,
one inbound (for receiving) and the other outbound (for sending).

C

"Inbound Channel "

O

Connector

L]

O—-= : : b
Outbound Channel

Figure 1. The UBS Configuration

283

2.1 The Model

The network is modeled by a system of concurrent processes.
Each station attached to the bus is represented by a station pro-
cess. In the UBS configuration with two buses, each bus is mod-
eled by a channel process. In the UBS configuration using a
folded cable, the bus is represented by two channel processes:
one for the inbound segment and the other for the outbound seg-
ment. A host connected to a station is modeled by a user process.

Interprocess Communication

Interprocess communication is achieved by shared variables.
A station or channel process has both local and shared variables.
A user process has only shared variables (shared with a station
process). Such a variable can be updated by the user process,
thus causing a change in the state of the station process. Other
than the specification of such state changes,
not explicitly modeled.

user processes are

A variable shared between a pair of processes (a station pro-
cess and a channel process, or a station process and a user pro-
cess, or a pair of channel processes) can be read by both pro-
cesses. It can be written by one process or both processes. A
shared variable that can be written by a single process only is
said to be an ezclusive-write variable of that process. A shared
variable that can be written by both processes is said to be a
mutual-write variable.

Modeling of Time

The access methods rely on the observance of certain time
constraints imposed on the system. Real time is modeled by
means of a global clock !, time variables, and time events. Using
the time variables, real time constraints, such as timeouts and
bounded delays, can be specified. The clock and time variables
are discrete, i.e., they can have only integer values. A time event
corresponds to a clock tick and marks the passage of one time
unit. The real time constraints and the time events impose a
temporal ordering on the events of the collection of processes.

The value of each time variable is incremented with each tick
of the global clock. A tick marks the end of a time slot, which is
a time interval of one time unit in duration. Events take place
only at ticks. An assertion made for time ‘7’ is assumed to hold
for the entire duration of the time slot immediately before the
tick that sets the global clock to)

In the following, the variable ‘r’ refers to the value of the
global time. We follow the convention that time variables, in-
cluding ‘r’, have the initial value 0.

Station Process

A station is specified by a set of local variables, a set of
shared variables, and a program implementing the access algo-
rithm. (The local variables may include time variables needed

!The assumption of a global clock can be

relaxed. This is the topic of a
forthcoming paper:

to implement timing constraints.) Shared variables are shared
with a user process or a channel process. The language used is
a subset of Pascal, augmented with three temporal primitives.
The axioms for the procedural constructs (assignment, alterna-
tion and repetition) are the same as those described by Hoare in
[6]. The temporal primitives are described below. These primi-
tives specify the condition under which a process halts or resumes
processing.

The predicate stated before a primitive is its pre-condition,
and 7 in the predicate refers to the global clock at that point
in the program, i.e., before the execution of the statement. We
will denote this value of the global clock as Thegin. The predicate
stated after a primitive is its post-condition, and 7 in the pred-
icate refers to the value of the global clock at that point, i.e.,
after the execution of the statement. This value of the global
clock will be referred to as Tenq-

Let V be the set of exclusive-write variables of the station
process, W be the set of mutual-write variables, and X be the
set of shared variables (of the station process) that are exclusive-

write variables of other processes. We shall also use the following
notation:

{vi,V2y..-,Vm} subset of V

{wi,Wa,...,Wn} subset of W

€1,..+3,€m4n expressions

e(r) value of expression e at time T

P predicate over variablesin V

C predicate over variables in W U X
1. set

V1,V2yeeVm

In the following, Pel(‘r),ez(T),...,em(T)
cate P with all free occurrences of v; replaced by (7).

refers to the predi-

V1,V2,.eVm

{(T = Tbesin) and Pe;(f),ez(‘r),...,em(r)}

set Vi,..., Vi, Wiy.+.,Wn i= €1,...,€m4n
{(T = Tend = Thegin + 1) and P(7)}

The set command takes one clock tick to execute. It assigns
e1 tovy, ez to va,...,and e, to vy in one atomic operation.

. wait-seq
Let Cy,Cg, ... Cn be boolean conditions, and Ty, Te, .. .,

T, be durations of time. For notational convenience, we de-
fine the following terms:

pattern = C; for Ty; C; for Ty;...5Cy for T,
S=T1+...4+Tn
The wait-seq statement causes the process to halt and
remain idle until the ‘pattern’ described by the statement

is observed in its entirety (wait-seq stands for wait-for-
sequence).

The predicate match (pattern, t), defined below, is
true at time t if there is a match for the pattern, i.e., con-

284

dition C; is observed to be true for a time period Ty, im-
mediately following which C; is seen to be true for T, and
so on, and the pattern ends at time t.

match(pattern,t) =
Vi it — Tp <ty €t Cyulta)
and
th—l t— (Tn + Tn—l) < tn-1 S t— Tn : Cn-l(tn—l)
and
Vty : t—(Tat. . +T1) < t1 € t=(Tn+...4+T2) : Ca(t1)

The axiom for the wait-seq states that during the ex-
ecution of the wait statement, the exclusive-write variables
of the process do not change. The wait-seq terminates at
time Teng if a match is found for the pattern at time 7end,
i.e., the pattern started some time after Thegin and the first
match for the pattern occurred at 7end-

{(7 = Toegin) and P(7)}
wait-seq (pattern)

{T = Tend 2 Thegin +SandVt: Thegin St < Tend * P(t)
and match(pattern, Tepd)
and Vi’ : Tpegint+S < t' < Tend © not match(pattern, t')}

3. wait-par

In the following, sequence; stands for a sequence of wait
and Pascal statements. (The set statement is not allowed to
appear in such a sequence.) Nesting of wait-par is permitted.

The following axiom defines the semantics of a sequence
in terms of the semantics of its components, i.e., wait-seq, wait-
par and Pascal statements.

{ P} sequence; { P’ }, { P’ } sequence; { Q }

{VP } sequence;;sequencey { Q }
Given sequencey, ... ,sequence, such that :
{ P } sequence; {Qi},

fori=1,2,...,mn,

the axiom for the wait-par statement is the following:

{(T = megin) and P(T)}

wait-par
sequencey; label :=1;
|| sequences; label :=1;

|| sequencen; label := 1,
end-wait-par

{(T = Tend > T'begin) and Vt : Thegin <t < Tend: P(t)
and label =1 = Q; and ...and label =1, = Qn}

The meaning of the wait-par statement is the following.
! When control reaches the wait-par statement, start ‘executing’
all sequences concurrently (wait-par stands for wait-in-parallel).
i The wait-par terminates as soon as any one of the sequences
. completes execution (* fires’). When that happens, control passes
| to the statement following the wait-par statement, and all se-
i quences inside the wait-par are terminated. Since the set state-
ment is not allowed in any of the sequences, upon termination
of the wait-par the process is in the same state as it would be
* in if it had executed only the firing sequence. Depending upon
which of the sequences fired, the process will carry out a specific
action. The variable ‘label’ is used as an auxiliary variable to
identify the sequence that fired, and is used to select the piece of
code to be executed after the wait-par statement. In this sense,
the wait-par acts as a selection statement.

Consider the frequently used special case of wait-par
where each sequence consists of a single wait-seq(pattern) state-
ment. We define the following terms:

pattern; = Cj for Ty ;.. .5 Cinq) for T npy
where n(i) is the number of terms in pattern;,
and, Si=Ti1+ Tiz+..-+ Ting)

We have the following axiom:

{(T = Tyegin) and P(r)}

wait-par
wait-seq(pattern;); label := L
|| wait-seq(pattern,); label :=1,

|| wait-seq(patternp,); label := 1y
end-wait-par

{(T = Tend) and (Vt H Tbegin S t S Tend * P(t))
and
label =1 = (7 = Tend > Thegin + S1 and match (patterny, Tena))

and
label = Ly = (T = Tend 2 ThegintSm and match (patternm, Tend))
and Vt; : Thegin + S1 < t1 < Tena : not match (patterny, t;)

and Ytm : Thegin + Sm < tm < Tenq : DOt match (patterny, tn) }

The axiom states that the wait-par statement termi-
nates as soon as any one of the patterns is matched by the input
conditions. Note that two or more patterns may achieve a match
at the same time, in which case a non-deterministic choice is
made.

Special cases of wait statements

Some forms of the wait-seq and wait-par statements

285

are used frequently. They are given special names.

1. delay (T)
= wait-seq (true for T)

The statement delay (T) causes the process to halt
and remain idle for time T. It takes time T to execute.

{(7 = Thegin) and P(7)}
delay (T)

{(T = Tend = Thegin T T) and (Vt ! Thegin St < Tend * P(t))}

. wait (C)
= wait-seq (C for 1)

The statement wait (C) causes the process to halt and
remain idle until the specified boolean condition, C, is ob-
served to be true. (If C is already true when the execution
of wait (C) begins, the process still waits for the next time
slot during which C is observed to be true.) The time taken
for the wait (C) command is indeterminate, as it depends
upon when C becomes true.

{(7T = Thegin) and P(7)}

wait (C)

{(T = Tend > Tbegin)
and (Vt : Myegin < t < Tena @ P(t)) and C(m)}
In the wait-seq statement, if the time for a particular con-
dition is 1, we will omit the ‘for T’ clause, i.e., wait-seq (C; for
1; C; for T3) will be written as wait-seq (Cy; C2 for T2).

Each program is essentially a loop which a station process
executes continually. The statements within the loop involve
computations on local and shared variables, and sensing and set-
ting of signals on the channels (to be described later).

Channel Process

The channel process specification consists of a description
of the state of the channel, and the transition rules describing
how the channel state changes with time. A bus is divided into
segments, the length of a segment being the distance the signal
propagates on the bus in one time unit. The segments are num-
bered 0 to N, with the numbers increasing along the direction of
the unidirectional bus. A station on the bus is referred to by its
position on the bus, i.e., the station connected to the bus at po-
sition p will be called station p. (Therefore the station numbers
may not be contiguous.)

The state of the channel consists of the state of each segment,
i.e., the presence or absence of a signal in each segment. Thus
the state of the channel at any given time is essentially described
by specifying the portion(s) of the channel carrying a signal at
that time. Transition rules are stated which describe how the

state of each segment changes with time. The state transition
rules capture the propagation of signals, transmitted by stations,
along the channel.

This simple model of a channel is actually quite general: it
can model simultaneous transmission by two or more stations,
and can model the presence of several messages in the channel.
A variety of broadcast bus networks can be specified [7].

The UBS configuration for Expressnet (see section 3) is mod-
eled by an outbound-channel process (for the outbound-bus) and
an inbound-channel process (for the inbound-bus). The status
of the outbound-channel is represented by an array called cgyt,
and that of the inbound-channel by the array c;j;,. There is one
element in the array for each segment of a bus. cout (p) repre-
sents the status of the outbound-bus at segment p, and ¢y, (p)
that of the inbound-bus at segment p.

Cout, Cjn @ array [0..N] of 0..1
cout (p) : 1, if a carrier is present on the outbound-bus
at segment p
0, otherwise
¢in (p) : 1, if a carrier is present on the inbound-bus
at segment p
0, otherwise

3 The Expressnet Protocol

In this section, we illustrate our model by specifying the
Expressnet protocol [12]. First, we give a brief description of the
Expressnet protocol in section 3.1. A formal specification follows
in section 3.2.

3.1 Description of Expressnet

Topology of Expressnet

Expressnet is based on the UBS architecture (figure 1). Each
station transmits on the outbound channel and receives on the
inbound channel, and has the ability to sénse the transmissions
by stations on the upstream side of its transmitter. The inbound
and outbound channels are connected by a connector. The end-
to-end propagation delay along the inbound or outbound channel
is denoted by 7. The propagation delay along the connector is
7. (where 0 < 7. < 7). The propagation delay between the out-
bound and inbound taps for each station is fixed and equal to
7 + 7. The detection-delay, i.e., the time required to detect the
presence or absence of a carrier on a bus, is d.

Train of Transmission Units

A transmission unit (TU) consists of a preamble followed
by the information packet itself. Information packets may be
of fixed or variable size. The preamble is for synchronization at
the receivers. It is sufficiently long for a receiver to detect the
presence of the transmission unit, and to synchronize bit and

286

packet boundaries. Stations transmit their TUs in a round-robin
fashion. The succession of TUs transmitted in the same round is
called a train.

Events EOCqyyt and EOT;y,

Functions cjy and coue are defined to indicate the presence of
a carrier on the inbound and outbound channels, respectively.

cin(p, t) = 1, if station p detects a carrier on the
inbound channel at time t
0, otherwise

cout(P, t) = 1, if station p detects a carrier on the
outbound channel at time t
0, otherwise

Function train;, is defined to indicate the presence of a train
on the inbound channel.

traing, (p,t) = 1, if station p detects a train on the
inbound channel at time t
0, otherwise

trainin(p,t) = 1 = cin(p,t —d — 1) = L or cin(p,t) =1

Event EOCou(p,t), for end-of-carrier, is said to occur when
Cout(P,t) changes from 1 to 0. Event EOTi,(p,t), for end-of
train, occurs when train;,(p,t) changes from 1 to 0.

Elements of the Access Mechanism

The basic access mechanism followed by the Expressnet pro-
tocol is the attempt-and-defer method. Aslong as a train is in
progress on the outbound channel, each station tries to transmit
a TU using that method. Immediately following the detection
of the EOC,u(p,t) event, station p starts transmission of its
unit. Simultaneously, it monitors the outbound channel (on the
upstream side of its transmission tap) for the presence of a car-
rier. If another station, p’, with index lower than that of p, has
also started transmission following its detection of EOQCqyu(p',
t), station p will detect a carrier within the first d seconds of its
transmission. If that happens, station p immediately aborts its
current transmission, and defers to the one from the upstream
station. Otherwise, it completes the transmission of its unit.

Apart from the basic access mechanism, the protocol has two
more components:

1. After all stations have had a chance to transmit a packet
in a round, each station executes a procedure to start a new train.
This consists of transmitting an unmodulated signal for duration
d, called the locomotive, following the EOT;iy(p,t) event. (By
virtue of the Expressnet topology, locomotives transmitted by
different stations overlap exactly.)

2. If a station determines that the network is asleep, it
undertakes a cold-start procedure. This comprises the trans-
mission of an unmodulated signal, called pilot, until a carrier is
observed on the inbound channel.

3.2 Specification of Expressnet

Station process p shares variables talk (p) and cou (p) with
the outbound-bus process, and variable ¢j,, (p) with the inbound-
bus process. The inbound-bus and the outbound-bus processes
share variable cout (N).

When station p starts transmitting a signal on the bus, it sets
variable talk (p) to true; talk (p) is set to false at the end of
the transmission. talk (p) affects the state of the outbound-bus,
and can be considered as output of the station process.

During its operation, station p continuously monitors the
two buses, and takes actions based on the status of each bus.
Therefore, ¢, and coyut can be considered as inputs to the station
process.

While executing the access protocol, the station process trans-
mits other signals besides the information packet itself. For clar-
ity and ease of stating and verifying the property of collision-
freedom, it is useful to distinguish the various signals transmit-
ted by the station: pilot, locomotive, preamble, and packet. We
intreduce four variables in the program to indicate the signal
that is being transmitted. These variables are: transmit-pilot,
transmit-loco, transmit-preamble, and transmit-packet.
Each variable is set to true for the duration that the station
is transmitting the corresponding signal. Note that the variable
talk indicates the transmission of a signal of any type. Hence,
talk is true if any one of the transmit variables is true.

The variable packet-to-send is shared between the station
process and a separate user process. It is set to true by the
user process whenever it needs to transmit a packet. It is set to
false by the station process after the packet has been successfully
transmitted. The variable transmission-time denotes the time
taken for a packet transmission. Variables request-to-wake-up
and request-to-sleep are also shared between the station pro-
cess and the user process, and are set to true by the user process
whenever it wishes the station process to wake up or sleep, re-
spectively. These variables are set to false by the station process,
once it wakes up.

Time Constraints

Since time is modeled as a discrete quantity, events can take
place only at ticks. An action in response to a condition can start
only at the beginning of the time slot following the one in which
the condition becomes true. This introduces a delay of one time
unit between a condition and its response. The protocol makes
use of the following time constraints:

1. Two consecutive TUs are separated by a gap of duration

d+1 time units, which is the time necessary to detect EOCy,

and start transmission.

. Event EOTi,(p, t) occurs when there are no more TUs in
the current train, i.e., there is no signal on the inbound bus
for d42 time units.

. The time gap between two consecutive trains, defined as
the time between the end of the last TU in a train and

287

the beginning of the locomotive of the subsequent train, is
T+ T1c+2d 4+ 2.

. The net is asleep if there is no signal on the inbound bus
for 7 + 7. + 2d + 3 time units.

3.3 Modification introduced to achieve collision-
freedom

The Expressnet protocol as specified in [12] does not guar-
antee collision-free access to the bus. Consider the following
scenario. Stations py, p; and p3 are awake and have finished
transmitting their packets in the ongoing round. In due course
of time, each of them detects an EQT}, event and transmits a
locomotive of length d units. Assume that p; and py do not have
a packet to transmit by the time they finish transmitting their
locomotives. They will both stop transmission, and will start
waiting for the next EOT;, or EOC,y event. If p3 has a packet
to send, immediately following the locomotive, it will proceed to
transmit its preamble. At the end of the preamble, p3 will detect
the outbound bus to be idle, thereby concluding that no station
upstream of it is going to transmit a packet in the current round.
Therefore, it starts transmitting its packet.

Because of the detection delay, p; will detect the end of p1’s
locomotive as an EOCqy, event, d time units after it completes
its own locomotive transmission. If by then it has received a
packet to transmit, p, will start transmitting its preamble and
packet, which will collide with p3’s packet. Clearly, this behavior
is undesirable.

To achieve collision-freedom, we propose the following modi-
fication. Following the locomotive transmission, if a station does
not have a packet to send, it waits for d+1 time units before
checking for the next EOC,y or EOT;, event. This ensures that
the end of the locomotive will not be seen as an EOC,,, event by
any station. Therefore, if a station receives a packet to transmit
after it has had a chance to transmit in the current round, it will
have to wait for the next train to start before it can transmit its
packet.

It should be noted that the introduction of this wait does not
increase the overall packet delay for any station. This is because
the time spent in this wait is less than time until the next EQT;,
event.

Station Program

The program for station p implementing the Expressnet pro-
tocol is given on the next page. The assertions appearing in the
program are derived from the station process’ axioms stated in
section 2. Their meaning will be explained in section 5. (We have
used the following abbreviations in the program annotations: T
stands for transmit, and C stands for clear. For example, T-
packet means transmit-packet, and C-loco stands for clear-loco.)

The initial value of all Boolean variables is false, and Vp :
€in(P) = €out(p) = 0.

wait (request-to-wake-up);
set request-to-wake-up, request-to-sleep := false, false; {to = 1}

wait-par (* Check if net is awake *)
wait-seq (cin = 0 for 7 + 7. + 2d + 3); label := net-asleep
[| wait (cin = 1 or coue = 1); label := net-awake
end-wait-par;

if label = net-asleep then M0tV ST +2d4+2: ein(p,t —t') =0 = C-pilot(p,1)}
begin {(* Cold start *) {ti=zt=to+r+1.+2d+3}
set transmit-pilot, talk := true, true; {3t < t: [C-pilot(p,t1) and cin(p,t — 1) =0and Vt' : t; <t < t: T-pilot(p,)]}
if ¢jp # 1 then wait (¢in = 1); {t > t1 + L and ein(p,t — 1) = 0 and C-pilot(p,t1) and V¥’ : t; <t <t: T-pilot(p,t')}
set transmit-pilot, talk := false, false
end;
repeat {T-pilot(p,t) = T-loco(p,t) = T-preamble(p,t) = T-packet(p,t) = false}
wait-par
wait-seq (Cin = 1; ¢in = 0 for d + 2); label := eotj, {EOT:n(p,t)} = {C-loco(p,t)}
|| wait-seq (Cout = 1; Cour = 0); label := eocous {EOCmu(p,t) }
end-wait-par; {ta =t}

{label = eocou = EOCou(p, t) and label = eot;, = EOT;n(p,t) }

if label = eoty, then

begin (* Start a new train *)
set transmit-loco, talk := true, true; { 3ty < t: [C-loco(p,tz) and ¥t' : t, < t' < t: T-loco(p,t')] }
delay (d - 1) {Ft2 < t: [C-loco(p,tz) and Vi’ : ty < ¥ < t: T-loco(p,t')] and t = t5 + d}
= {loco-sent(p,)}
end;

if not packet-to-send then
begin
set transmit-loco, talk := false, false;
delay (d + 1) (* MODIFICATION : delay to ensure no station transmits out of turn *)

end
else {ta=t}
begin (* Attempt to transmit packet *) { EOC,u(p,t) or loco-sent(p,t)} = {C-preamble(p,t) }
set transmit-loco, transmit-preamble, talk := false, true, true;
{ 3tz < t: [C-preamble(p,t3) and Vt' : t3 <’ < t: T-preamble(p,t')]}
delay (d); {3 < t: [C-preamble(p,ts) and V1’ : t3 <t/ < t: T-preamble(p,t')]
and (t =3+ d + 1)}
if coue = 1 then (* Defer to upstream station *)
set transmit-preamble, talk := false, false
else
begin (* Complete transmission of TU *) {ta=t=t3+d+1}
{3t; < t: [C-preamble(p,ts) and Vt' : t5 <t < t: T-preamble(p,t’)]
and (cout(p, t) = 0) = C-packet(p,t)}
set transmit-preamble, transmit-packet := false, true;
{T-pilot(p,t) = T-loco(p,t) = T-preamble(p,t) = false}
{3ty < t: [C-packet(p,ts) and Vt' : t4 < t' <t: T-packet(p,t)}
delay (packet-delay - 1);
{3ty < t: [C-packet(p,ts) and Vt' : t, <t' < t: T-packet(p,t')}
set transmit-packet, talk, packet-to-send := false, false, false
end
end

until request-to-sleep;

288

4 Verification

4.1 History Variables and Detection Delay

In section 2, the station axioms were stated in terms of condi-
tions as observed by the station process. But there is an inherent
delay between the time a condition actually becomes true, and
the time it is sensed to become true by the station. For Express-
net, this time delay is the carrier-detection time, d, introduced
in section 3.

The proof system will involve assertions on the past values
of shared variables. Therefore it is convenient to define the fol-
lowing history variables, which also enable us to characterize the
detection delay.

Cina (p,t) = 1, if a signal is actually present at segment
p of the inbound bus at time t
0, otherwise

Cout,a (P>t) = 1, if a signal is actually present at segment
p of the outbound bus at time t
0, otherwise

cin (P,t) = 1, if a signal is sensed by the station at
segment p on the inbound bus at time t
0, otherwise

Cout (P,t) = 1, if a signal is sensed by the station at
segment p on the outbound bus at time t
0, otherwise

talk (p,t) = true, if there is a station at segment p and
it is transmitting a signal at time t
false, otherwise

The following axioms relate the actual and sensed signals :
Al. ¢n(p,t) = Cin_a(p,t - d)
A2. Cout(p,t) = Cout,a(p’t - d)

4.2 Axioms for the Channel Processes

The following axioms define the state transition rules for the
channel processes.

1. For the outbound bus :
A3. Vp:0<p <NVt > 0: (couta(p,t)y =1) =
(Cout,alp — 1,8t — 1) = 1) or talk(p — 1,t — 1)
Ad. Vt:coua(0,t) =0
2. For the inbound bus :

A5.Vp:0<p <NVt > 0:cinalp,t) = Cinalp — 1,t — 1)
AB. Vt:Cinal(0,t) = cout,a(N,t — 7¢)
4.3 Basic Theorems for Channel Processes

Using the axioms stated above, the following theorems can
be proved. These theorems state timing relations between events

289

at different points along the channel and their effects at remote
points. These theorems are used, together with the invariant as-
sertions to be proved for the station process, to verify system
properties.

Theorem 1 : The following relations hold for the outbound-
channel process :

a. talk(p1,t) = Vp2 > p1 : Com(P2,t +p2—P1+d) =1

b. cout(P1,t) =1 = 3py < py : talk(pz,t — (P2 — p2) — d)

The theorem states that for every time instant that station
p1 transmits a signal on the outbound-bus, each station to its
right, pz, will detect a signal after a delay which is equal to the
propagation delay between the two stations plus the detection
delay. Similarly, if station p; detects a signal, then some station
to its left, p2, must have transmitted a signal at a time which is
(propagation delay + detection delay) before this particular time
instant.

Theorem 2 : The following relations hold for the inbound-
channel process :

a. ¢in(p1,t) =1 = Yp2 : Cin(pP2;t+p2—p1) =1

b. ¢in(p1,t) = 0 = Vp2 : cin(p2,t+ p2—p1) =0

The theorem states that all stations see the same signal on
the inbound bus.

Theorem 3 : The following relations hold between the signals
on the inbound and outbound buses:
a. Cout(p1,t) = 1= Vp2 : cin(p2, t+(7+7) +(p2—p1)) =1
b. talk(p;,t) = Vp2 : Cin(p2,t+ (T+ e +d)+ (P2 —p1)) = 1

The theorem relates the time when a signal is present on the
outbound bus or when a station transmits a signal to the time
that signal is detected on the inbound bus.

Proofs of these theorems are given in [8}.

The stations interact with each other only indirectly via the
inbound and outbound buses. The effect of the activity of one
station (starting or stopping transmission) is seen by each of the
other stations as a change in the status of the buses. This effect
is felt at the other station after a time delay which is equal to the
propagation delay between the two stations. Our model captures
these timing relations.

4.4 Proving Properties

A property of the system is stated as a predicate over the
variables of the protocol system: To verify a given property, we
prove invariant assertions for the station program using axioms
for the station process presented in section 2. Timing relations
are captured by Theorems 1,2 and 3. The proof consists of show-
ing that the invariant assertions, together with the three theo-
rems, imply the system property.

5 Proof of Collision-freedom

To prove that Expressnet is collision-free, we make use of
several predicates, which are defined below.

Definitions
D1. EOCout(p,t) = cout(p,t — 1) = 1 and coue(p,t) = 0

The predicate EQOC,y; corresponds to the end-of-carrier event,
and is true when ¢,y undergoes a transition from 1 to 0.

D2. EOTin(p,t) = cin(p,t —d—-2) =1
and Vt/ : 0 <t/ < d+ 2 : cin(p,t —t) =0

The predicate EQOT;, corresponds to the end-of-train event.
It becomes true when ¢, changes from 1 to 0 and remains 0 con-
tinuously for d + 2 seconds. This is because the gap between
two consecutive TUs is d+1, and the station has to wait for an
additional time unit to determine that no more packets are going
to arrive in the current train.

D3. clear-pilot (p,t) =Vt': 0< t/ <7+ 7. +2d+2:

Cin(p,t - t")=0
The predicate clear-pilot stands for “clear to transmit pi-
lot”, and represents the condition which must hold for a station
to transmit a pilot. It is clear to transmit a pilot when the station
has observed the inbound channel idle for time 7 + 7. + 2d + 3
continuously. This is because the gap between consecutive trains
is 7+ 7. 4 2d + 2, and waiting for the above time period without

any signal on the inbound bus ensures that the net is asleep.

D4. clear-loco (p, t) = EOTin(p,t)

The predicate clear-loco is true when it is clear to transmit
a locomotive. That condition is met when an end-of-train is seen
on the inbound channel.

D5. loco-sent (p, t) = clear-loco (p, t — d)
and Vt’ : t — d <t/ < t: transmit-loco (p, t’)

clear-preamble (p, t) = EOCyu(p,t) or loco-sent (p, t)

The predicate clear-preamble describes the condition when
it is clear to transmit a preamble. It is true when an end-of-carrier
is seen on the outbound bus, or a locomotive has been transmit-
ted following an EOTjy.

D6. clear-packet (p, t) = (EOCou(p,t —d - 1)
or EOTin(p,t — 2d — 2)) and coue(p,t) =0

The predicate clear-packet describes the condition which
must hold for a station to transmit a packet. It is true when
a preamble of length d + 1 has been transmitted, and cou = 0,
indicating that no station from upstream is transmitting a packet.

Invariants

The following assertions hold invariantly for the station pro-
gram of Expressnet.

I1. talk (p,t) = transmit-pilot (p, t) or transmit-loco (p, t) or
transmit-preamble (p, t) or transmit-packet (p, t)

The above assertion states that the predicate talk is true as

290

long as the station is transmitting any signal.

I2. transmit-pilot (p, t) =
3to < t : [clear-pilot(p,to) and cin(p,t — 1) =0
and Vt' : tg < t' < t : transmit-pilot (p, t')]

The above assertion states that if station p is transmitting a
pilot at time t, then the condition to transmit a pilot must have
been true at an earlier time, and station p has been transmitting
continuously since then.

The following three invariants are similar to 12, and apply
to the transmission of locomotive, preamble and packet, respec-
tively.

I3. transmit-loco (p, t) = 3tg <t : [clear-loco(p, to)
and Vt' : tg < t' < t: transmit-loco (p, t'}

I4. transmit-preamble (p, t) = 3tg < t : [clear-preamble(p, to)
and Vt’ : tg < t/ < t: transmit-preamble (p, t'))

15. transmit-packet (p, t) = Jtp < t : [clear-packet(p, t5)
and Vt' : tp <t/ < t: transmit-packet (p, t')]

The annotated program for the Expressnet protocol is given
in section 3. It can easily be checked that the above assertions
are indeed invariant.

Condition for Collision-freedom

The pilots, locomotives and preambles from two or more sta-
tions may overlap in time. But the packet transmitted by a sta-
tion should not be corrupted by any other signal. This condition
is stated as the following assertion:

CF. Vt,Vp2 > p1:
[transmit-packet(py, t) = not talk(pz,t + pz — p1)
and talk(pi,t) = not transmit-packet(ps,t + pz — py)]

A proof that the Expressnet protocol satisfies the above as-
sertion is given in [8].

6 Some Features of Our Model

In our method, proving a system property comprises three
steps : deriving the timing relations (Theorems 1, 2 and 3 of sec-
tion 4.3), proving invariants for the station program, and showing
that the system property follows from the timing relations and
program invariants.

1. The theorems for the channel processes stated in section 4
essentially state the timing relations between events at a
station and their effects at remote points in a simple and
concise manner. It is possible to state the timing relations
in this manner because of the way the channel is being
modeled. Treating time as a discrete quantity enables us
to treat the channel as made up of an integral number of

segments, which permits inductive reasoning. We are thus
able to identify the portions of the channel that are busy
at any time, and track the propagation of the signal along
the channel.

The channel processes, and hence the timing relations, re-
main unaltered for different protocols based on the same
configuration. Thus this method has more general applica-
bility than other attempts at analyzing DAMA protocols.

2. The invariants of interest for the station program are the
assertions that hold during transmission (in our example,
assertions I1-I5 in section 5). These invariants capture the
essence of the multiple-access algorithm followed by each
station. These assertions involve only one station — the

interaction among the stations has already been captured

by the timing relations stated earlier.

These invariants can be proved by examining just one pro-
cess — that of a station. Thus the problem reduces to a
verifying a single program in isolation. Checking for non-
interference is not required, even though shared variables
are being used. This is because the channel processes do
not interfere with a station process, and the assertions used
in the verification of a station process refer only to its own
state and the past state of channel processes. The station
process does interfere with the channel processes; the effect
of that interference is incorporated in the channel axioms.

3. The proof is independent of the number of the stations
and their positions in the network. The specification of
the station process and the channel axioms capture all the
relevant physical details.

7 Conclusions

DAMA protocols are particularly suitable for the next gen-
eration of LANs, which will operate at very high speeds and
will offer integrated services for data, voice, video and facsimile
traffic. These protocols exploit the directionality of signal prop-
agation and implement stringent timing constraints to achieve
collision-freedom. Correct implementation of these protocols will
require a careful analysis of time-dependent interactions between
event occurrences using a formal method. To date, most pro-
tocol verification methods have been focused on asynchronous
communication over point-to-point links.

We have proposed a model for verifying real-time protocols
for high-speed LANs. The novel features of our methodology are
the ability to model broadcast channels as well as the specifica-
tion of real-time protocol behavior. The method has potential
applicability to a wide class of broadcast bus networks. A formal
proof technique is used for analysis, instead of resorting to infor-
mal arguments. We illustrate our model and analysis method by
specifying the Expressnet protocol and proving it to be collision-
free, given a small modification to the original protocol.

291

References

[1] G. V. Bochmann, “Finite state description of communica-
tion protocols,” Computer Networks, vol. 2, pp. 361-372,
October 1978.

K. Eswaran, V. C. Hamacher and G. S. Shedler, “Collision-
free access control for communication bus networks,” IEEE
Transactions on Software Engineering, vol. SE-7, pp. 574-
582, November 1981.

[3] M. Fine and F. Tobagi, “Demand assignment multiple access
schemes in broadcast bus local area networks,” IEEE Trans-
actions on Computers, vol. C-33, pp. 1130-1159, December

1984.

L. Fratta, “An improved access protocol for data communi-
cation bus networks with control wire,” Proceedings of the
ACM SIGCOMM Symposium, Austin, TX, March 1983.

B. Hailpern and S. Owicki, “Modular verification of com-
puter communication protocols,” IEFEE Transactions on
Communications, vol. COM-31, Jan. 1983.

C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communications of ACM, vol. 12, pp 571-580, 1969.

P. Jain and S. S. Lam, “Modeling and verification of real-
time protocols for broadcast networks,” IEEE Transactions

on Software Engineering, vol. SE-13, pp. 924-937, August
1987.

P. Jain and S. S. Lam, “ Specification and verification of
collision-free broadcast networks,” Tech. Report, Dept. of
Computer Sciences, University of Texas at Austin (in prepa-
ration).

[9] S. S. Lam and A. U. Shankar, “Protocol verification via
projections,” IEEE Transactions on Software Engineering,

vol. SE-10, pp. 325-342, July 1984.

(10] A. U. Shankar and S. S. Lam, “An HDLC protocol spec-
ification and its verification using image protocols,” ACM
Transactions on Computer Systems, vol. 1, pp. 321-368,

Nov. 1983.

{11] A. U. Shankar and S. S. Lam, “Time-dependent distributed
systems: Proving safety, liveness and real-time properties,”

Distributed Computing, vol. 2, pp. 61-79, 1987.

[12] F. Tobagi, F. Borgonovo and L. Fratta, “Expressnet: A
High-performance integrated-services local area network,”
IEEE Journal on Selected Areas in Communications, vol.

SAC-1, pp. 898-912, Nov. 1983.

[13] C. Tseng and B. Chen, “D-net: A new scheme for high data-
rate optical local area networks,” IEEFE Journal on Selected
Areas in Communications, vol. SAC-1, pp. 493-499, Novem-

ber 1983.

[14] P. Zafiropoulo et al, “Towards analysing and synthesising
protocols,” IEEE Transactions on Communications, vol.

COM-28, pp. 655-660, April 1980.

