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ABSTRACT
Per-flow congestion control helps endpoints fairly and ef-
ficiently share network resources. Better utilization of net-
work resources can be achieved, however, if congestion man-
agement algorithms can determine when two different flows
share a congested link. Such knowledge can be used to im-
plement cooperative congestion control or improve the over-
lay topology of a P2P system. Previous techniques to detect
shared congestion either assume a common source or desti-
nation node, drop-tail queueing, or a single point of conges-
tion. We propose in this paper a novel technique, applicable
to any pair of paths on the Internet, without such limita-
tions. Our technique employs a signal processing method,
wavelet denoising, to separate queueing delay caused by net-
work congestion from various other delay variations. Our
wavelet-based technique is evaluated through both simula-
tions and Internet experiments. We show that, when de-
tecting shared congestion of paths with a common endpoint,
our technique provides faster convergence and higher accu-
racy while using fewer packets than previous techniques, and
that it also accurately determines when there is no shared
congestion. Furthermore, we show that our technique is ro-
bust and accurate for paths without a common endpoint or
synchronized clocks; more specifically, it can tolerate a syn-
chronization offset of up to one second between two packet
flows.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Network Operations
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1. INTRODUCTION
Congestion control has been performed at a per-flow level;

each flow adjusts its sending rate according to feedback re-
garding the network’s congestion status. The stability of
today’s Internet is mainly due to congestion control, espe-
cially the additive increase/multiplicative decrease approach
of TCP.

Better utilization of network resources is achievable with
cooperation between flows. For example, the Congestion
Manager [3] examines all flows of the host where it resides,
and groups flows passing through the same bottleneck link
into a single flow aggregate. By performing congestion con-
trol over flow aggregates, rather than over each individual
flow separately, the Congestion Manager could improve fair-
ness and efficiency significantly.

The recent proliferation of overlay systems poses a new
challenge in cooperative congestion control. There are many
applications of overlay systems that would benefit from co-
operative congestion control, including end system multi-
cast, file download from multiple servers, and overlay QoS
routing. Such systems usually consist of a large number of
end hosts and unicast flows between them. Unlike flows con-
trolled by the Congestion Manager, these unicast flows have
different source and destination nodes, but still may inter-
fere with each other by sharing one or more intermediate
links. If the system can tell which flows are sharing a bot-
tleneck link, it can improve overall performance by changing
the overlay topology to avoid such interference.

The basic primitive required for cooperative congestion
control is to decide whether two flows are sharing a bottle-
neck link or not. Techniques for inferring shared congestion
use two kinds of information from feedback: packet loss and
delay. Techniques based on packet loss assume bursty packet
loss [8, 15]. Thus, they work well with drop-tail queues and
lossy links, but are slow and inaccurate with low loss rate or
with other queueing disciplines, such as RED. Techniques
based on delay [11, 15] show more robust behavior in such
an environment. They are adequate for the case where two
flows have a common source or a common destination. The
major weakness of both kinds of techniques is that they re-
quire that the two tested paths share an endpoint, usually
at the source. Thus, they cannot be used for general overlay
networks.

We propose a novel technique (delay correlation with wavelet
denoising or DCW) to detect shared congestion between two
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Internet paths. Like previous techniques, it is based on a
simple observation: two paths sharing congested links have
high correlation between their one-way delays. However,
naive correlation measurements may be inaccurate, due to
random fluctuation of queueing delay and mild congestion
on non-shared links. In our technique, these interfering de-
lay variations are filtered out with wavelet denoising, a signal
processing method to separate signal from noise.

We evaluate our technique through extensive simulations
and Internet experiments. When two paths have a common
source, for which previous approaches can also detect shared
congestion, our technique shows fast convergence with fewer
packets. It takes at most 10 seconds to reach near 100% ac-
curacy with both drop-tail and RED queues, while previous
techniques often take longer or fail. We also show that our
technique maintains its accuracy without a common end-
point; more specifically, it tolerates a synchronization offset
between flows of up to one second, which is achievable on
the Internet.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our basic technique using cross-correlation.
Section 3 introduces wavelet denoising and explains how to
apply it to our technique. Section 4 addresses implementa-
tion issues, and Section 5 presents results of simulations and
Internet experiments. We conclude in Section 6.

2. BASIC TECHNIQUE
We first present a basic technique to detect shared con-

gestion using cross-correlation. This technique is effective
when clocks of the nodes measuring delay are synchronized
and there is only one point of congestion. With this as a
basis, we will develop a general technique that tolerates a
large synchronization offset and allows multiple points of
congestion in Section 3.

2.1 Model
Two paths sharing links on the Internet are illustrated in

Figure 1. Paths X from Xsrc to Xdst and Y from Ysrc to
Ydst are sharing links between S and T . Let the one-way
delay of path X be DX , and that of path Y be DY . Each of
them has two components: dS, the delay from S to T , and
the remainder denoted by dX or dY .

DX = dS + dX
DY = dS + dY

(1)

A key observation is that the delay of a congested link has
large fluctuations due to queueing delay changes, while the
delay of a link with light load is relatively stable. A per-
sistently congested link may have stable delay because its

queue is persistently full. However, a measurement study
shows that packet loss processes caused by congestion are
better thought of as spikes rather than persistent conges-
tion periods, and that loss runs of most spikes are shorter
than 220 ms [19]. It confirms that a congested link shows
large fluctuations in delay. In order to detect shared conges-
tion, we need to determine whether such fluctuations occur
between S and T .

2.2 Cross-correlation
Our basic technique is based on the observation that mea-

sured delays of two paths show strong correlation if the paths
share one or more congested links, and little correlation if
they do not share any congested links [15]. Suppose that
paths X and Y in Figure 1 are sharing congested links be-
tween S and T , and that the other links are lightly loaded.
Then DX and DY will show strong similarity, since the only
strongly varying component dS is shared by both paths. On
the other hand, if congestion occurs on links other than the
links between S and T , DX and DY become independent.

We use the cross-correlation coefficient to measure such
similarity. Let {Xi} and {Yi} be one-way delay sequences
of paths X and Y , respectively, assuming that each 〈Xi, Yi〉
pair was measured at the same time. Then their cross-
correlation coefficient XCORXY is defined as follows.

XCORXY =

Pn
i=1(Xi −X)(Yi − Y )qPn

i=1(Xi −X)2 ·Pn
i=1(Yi − Y )2

(2)

Note that XCORXY = 1 if both dX and dY are constant and
dS is not constant (shared congestion), and XCORXY = 0 if
dS is constant and dX or dY varies independently (no shared
congestion). Of course, other network effects could make
XCORXY = 1 in the absence of shared congestion, or make
XCORXY = 0 in the presence of shared congestion. We
follow earlier work by assuming that this rarely happens [15];
further Internet experimentation is required.

One of the properties of the cross-correlation coefficient
is that its value is independent of any constant component
of {Xi} or {Yi} and dominated by components with large
fluctuations. It matches well with our purpose to determine
if any of the shared links has large delay fluctuations. Also
note that, due to this property, no clock synchronization
between the source and destination nodes of paths X and
Y is required in measuring one-way delay between them.
However, clock skew may affect measurement. We assume
that such skew is minimized by other means [13].

2.3 Basic technique implementation
The basic technique consists of two stages: sampling and

processing. In the sampling stage, Xsrc sends to Xdst a
sequence of UDP packets with a timestamp, starting at time
t0 with its own clock. Each such UDP packet is called a
probe packet. Probe packets are sent at a constant rate until
t0 + T , where T is the probe interval. On receiving a probe
packet, Xdst calculates one-way delay and sends it, with the
original timestamp, back toXsrc. Then Xsrc records the one-
way delay together with the timestamp as a delay sample.
Missing samples are linearly interpolated from neighboring
samples, because if missing samples are discarded, Xi and
Yi are very likely out of synchronization from then on. The
sampling stage ends when the last delay sample from Xdst

is received (or upon timeout if the last probe or the reply
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Figure 2: Cross-correlation coefficient between two
delay sequences vs. synchronization offset

to it is lost). Ysrc and Ydst also collect delay samples in the
same way.

In the processing stage, the cross-correlation coefficient
of two sequences of delay samples is computed as defined
in Eq. 2. The actual procedure to gather delay sequences
collected by different nodes is application-dependent. For
example, in application-layer multicast, a common ancestor
node of Xsrc and Ysrc in the multicast tree can gather and
process delay sequences.

2.4 Limitations
Applicability of the basic technique is limited because it

makes two assumptions that generally do not hold for the
Internet.

The first assumption is that the two delay sequences are
synchronized. Ideally, the basic technique expects packets
measuring Xi and Yi to pass through S at the same time.
To achieve this, the endpoints would need precisely synchro-
nized clocks, and to predict the delays from Xsrc and Ysrc
to S. However, one-way delays cannot be measured without
network support, and network clock synchronization proto-
cols are not accurate enough for our purposes, since they
still allow errors up to half of the round-trip time between
the nodes [12]. To quantify such synchronization errors, we
define synchronization offset as the time difference between
arrivals of two probe packets at S, one sent by Xsrc at time
t with Xsrc’s clock and the other by Ysrc at time t with
Ysrc’s clock. As the synchronization offset increases, the de-
lay sequences collected by the two nodes show less and less
correlation.

Figure 2 illustrates this; it plots the cross-correlation coef-
ficient for two paths sharing a congested link as synchroniza-
tion offset rises from 0 to 1 second. Each point is the mean
coefficient over 300 simulations; the bars show 5th and 95th
percentiles. In each simulation, two delay sample sequences
were collected for 100 seconds on the topology shown in
Figure 3 using ns-2.1 The bandwidth of every link was
1.5 Mb/s, and its propagation delay was chosen randomly
between 20 ms and 30 ms for each simulation. The delay se-
quences represent one-way delays of two paths, from Xsrc to
Xdst and from Ysrc to Ydst. Pareto ON-OFF CBR (constant
bit rate) flows were used as background traffic, because then
the congestion level could be controlled easily by changing
the number of flows. The average ON and OFF times were

1http://www.isi.edu/nsnam/ns/

Xsrc

Ysrc

Xdst

Ydst

on-off on-off

on-off

Figure 3: Simple topology with a common source

selected uniformly between 0.2 and 3 seconds. The CBR
rate was selected uniformly between 20 and 40 kb/s, and its
Pareto shape parameter was 1.2. The loss rate of the shared
link was about 10%; the other links did not have any loss.
Without synchronization offset, the mean cross-correlation
between the two delay sequences is about 0.99. However,
the mean cross-correlation drops as synchronization offset
increases so that a 600 ms synchronization offset results in
half of the mean cross-correlation without offset.

The second assumption required by the basic technique
is that queueing delay variation on non-congested links is
close to zero. If such delay variation is not negligible, it
confuses the basic technique and will give an obscure cross-
correlation coefficient not close to zero or one. Then it is
difficult to determine the threshold to differentiate shared
congestion and independent congestion cases.

In Section 3, we propose wavelet denoising to enhance the
basic technique. It effectively filters out delay variations in
non-congested links and short-term fluctuations that confuse
the basic technique, as well as negative effects of synchro-
nization offset. With the combination of wavelet denoising
and cross-correlation, our new technique can detect shared
congestion for paths with a large synchronization offset and
varying delays at non-congested links. It also determines
quickly when there is no shared congestion.

2.5 Related work
Previous approaches to detect shared congestion using

probe packet streams are also based on the assumption of
strong correlation between packet delays or losses of two
paths that share a bottleneck. Thus these approaches have
the same limitation as our basic technique, i.e., two probe
packet streams should be synchronized for such technique
to be effective.

Rubenstein et al. proposed two techniques, one based on
one-way delays and the other based on packet losses [15].
Both techniques send probe packets for each path, using
a Poisson process with a rate of 25 Hz. The delay-based
technique computes cross-correlation coefficients of one-way
delays, but in a different way from our basic technique.
Given two delay sequences obtained for different paths, auto-
measure Ma is computed as the cross-correlation coefficient
between the second sequence and its shifted version obtained
by removing its first sample. Cross-measure Mx is computed
from a new sequence obtained by merging the two delay se-
quences. Only adjacent pairs with the preceding element
from the first sequence and the following element from the
second sequence are selected. Then Mx is calculated as the
cross-correlation between the samples belonging to the first
sequence and those belonging to the second. If Ma < Mx,
the two paths share a bottleneck. In their loss-based tech-
nique, Ma andMx are conditional probabilities that a packet



is lost when its following packet is lost. Since the loss-based
technique requires such conditional probabilities to be high,
it doesn’t work well with queueing disciplines other than
drop-tail queueing. Even with drop-tail queues, the delay-
based technique was more robust than the loss-based one in
all their simulations. Both techniques require that two paths
share either a common source or a common destination node
to synchronize probe packet streams.

Harfoush et al. [8, 9] proposed a loss-based technique that
outperforms the loss-based technique of Rubenstein et al. In
their technique, a common source sends a packet pair back to
back at 15 Hz. The probability that only the second packet
is lost is computed from packet losses. If the probability
exceeds the threshold (0.4), two paths are sharing a bottle-
neck. However, like the loss-based technique of Rubenstein
et al., this technique also assumes that back-to-back pack-
ets are likely lost together when a link is congested, and
thus requires drop-tail queueing. Furthermore, due to the
requirement of sending packets back to back, it is applicable
only when two paths share a common source node.

The technique of Katabi et al. [11] is an entropy-based
technique, which doesn’t depend on delay or loss correla-
tion. Rather than detecting shared congestion between two
paths, its objective is to group flows. More specifically, a
node observes inter-packet arrival times of multiple flows
passively, and partitions flows into groups such that all flows
in each group share the same bottleneck. It is based on the
assumption that correct grouping minimizes the entropy of
inter-arrival times. This technique is more scalable than oth-
ers when grouping a large number of flows because no probe
packet is required and pair-wise comparison is unnecessary.
However, it requires that all flows reach the same destina-
tion node, and that they occupy a significant fraction of the
bottleneck bandwidth.

3. WAVELET DENOISING
To provide efficient solutions to network problems, various

types of signal processing techniques have been employed
for modeling [14] and analysis [1, 4, 10] of Internet traffic.
However, they are mainly used to infer static or long-term
network information from a large set of data collected over
a long time span. In order to obtain dynamic information
such as congestion status in a timely manner, techniques
capable of on-line processing and fast response are required.

In this section, we first examine the time series of packet
delay in a flow and its characteristics. Based on these char-
acteristics, we introduce a signal processing technique—wavelet
denoising [6]—that overcomes limitations of the basic cross-
correlation technique in Section 2.4. Wavelet denoising takes
the original delay time series, and generates another time se-
ries with reduced interfering fluctuations that might affect
cross-correlation adversely. Finally, we discuss a procedure
to find a wavelet basis that minimizes negative effects of
synchronization offset.

3.1 Nature of delay data in time and frequency
domain

Figure 4 demonstrates an example set of time series of
packet delay for a link with two different congestion levels.
The source and destination nodes were connected through
a 1.5 Mb/s link on ns-2. The delay between them was mea-
sured using UDP packets as explained in Section 2.3. The
time series in Figure 4(a) is the one-way delay under light
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traffic load (76 ON-OFF CBR flows, no packet loss) while
the time series added in Figure 4(b) is the delay under heavy
traffic load (92 ON-OFF CBR flows, loss rate between 2%
and 10%). ON-OFF CBR flow parameter settings were iden-
tical to those described in Section 2.4. The 95th percentile
of loss run length for heavy traffic load was about 180 ms,
which is close to the Internet measurement result (220 ms)
in [19].2 Observe that the one-way delay with light traffic
is a noise-like waveform with small amplitude, while the de-
lay with heavy traffic shows an irregular pulse pattern with
larger amplitude. Such pulses result from network conges-
tion.

The corresponding frequency domain power spectral den-
sities of the individual time series, normalized to unity area,
are provided in Figure 5. In the frequency domain, the delay
with heavy traffic shows larger amplitude at low frequen-
cies than the delay with light traffic. Such large amplitude
components at low frequencies correspond to the irregular
pulses in Figure 4(b), caused by congestion, while others
are introduced by the randomness of queue behavior, well-
demonstrated in Figure 4(a). Therefore, for a proper as-
sessment of network traffic under congestion via delay data,
it is necessary to reduce the effects associated with random
queue behavior which corrupts the traffic delays in both the
time and frequency domains. In addition, if a synchroniza-
tion offset is introduced in delay sampling, the measure of
network traffic via delay will be less reliable.

2Loss run lengths were measured using a Poisson packet
stream with a rate of 50 Hz.



If we are only interested in extracting the large ampli-
tude components at low frequencies, a simple low-pass filter
seems to be an intuitive solution. Low-pass filtering would
smooth the delay signals, increasing cross-correlation when
there is shared congestion. On the other hand, low-pass
filtering may fail to diagnose non-shared congestion cases.
Consider the extreme case that there is no congestion on
either path. In such a case, near-zero cross-correlation is
expected since the delay signals will be dominated by ran-
dom queue behavior. However, simple low-pass filtering may
over-smooth the signal, resulting in an inappropriately high
value of cross-correlation. This is because the frequency
spectrum in network delay data varies in a dynamic fashion
due to the fact that network traffic changes in time. There-
fore, any attempt to mitigate the interference effects should
include an approach based on both time and frequency (or
scale) analysis, e.g., the wavelet transform. Hence, we use
wavelet denoising rather than simple filtering.

We will show that wavelet denoising is highly effective
for the purpose of detecting shared congestion. A major
advantage of wavelet denoising is that it preserves the dom-
inant characteristics of one-way delay and filters out non-
dominant ones in a time and scale localized manner, thus it
can deal with the time-varying spectrum of network delay
data. Therefore, even when there is no congestion, wavelet
denoising preserves strong transients at high frequencies and
thus maintains low cross-correlation between denoised sig-
nals.

There may exist other signal processing techniques that
perform as well as or better than wavelet denoising. Much
more investigation is needed to evaluate the large number
of signal processing techniques in the literature.

3.2 Wavelet transform and denoising
The wavelet transform is a signal processing technique

that represents a transient or non-stationary signal in terms
of time and scale distribution. Due to its light computa-
tional complexity, the wavelet transform is an excellent tool
for on-line data compression, analysis, and denoising.

Assume that a signal f(t) is contaminated by an additive
noise n(t); then the measured data is x(t) = f(t)+n(t). The
measured time series x(t) can be represented as an orthonor-

mal expansion with wavelet basis ψi,j(t) = 2−i/2ψ(2−it− j)
as follows [5]:

x(t) =
∞X

i=−∞

∞X

j=−∞
Xi
jψi,j(t) (3)

where the wavelet coefficients are calculated from

Xi
j =

Z ∞

−∞
x(t)ψi,j(t) dt . (4)

Note that Xi
j is the discrete wavelet transform of x(t) at

scale i and at translation j, and represents how x(t) is cor-
related with the i scaled and j translated basis function.

Two cases should be taken into account to achieve ro-
bust and reliable cross-correlation results. When there is
congestion, the slowly varying congestion information (at
high scale) should be extracted from the delay data, which
are corrupted by synchronization offset and random queue
behavior. Without congestion, strong random transients
should be extracted to ensure a low correlation. Wavelet

denoising is capable of selecting the desired signal while re-
moving others in each case.

Wavelet denoising lets us build a nonlinear approxima-
tion of the signal f(t) using the wavelet coefficients of the
measured data x(t). The wavelet coefficients for the mea-
sured data x(t) = f(t) + n(t) become X i

j = F ij +N i
j , where

F ij =
R∞
−∞ f(t)ψi,j(t) dt and N i

j =
R∞
−∞ n(t)ψi,j(t) dt. Then

f̃ (t), an approximation of the signal f(t), is obtained from
the wavelet coefficients of the measured data x(t) by sup-
pressing noise with a nonlinear thresholding function, dT .
In this paper, we employ a soft thresholding operation on
dT with the following definition [6]:

dT (x) =

8
><
>:

x− T if x ≥ T
x+ T if x ≤ −T
0 if |x| < T .

(5)

The value of the threshold T is determined by the vari-
ance of the noise σ2 [6] and the number of samples N using
T = σ

p
2 logeN , as proposed by Donoho [7]. Then the de-

noised signal f̃(t) is obtained by applying the threshold to
the wavelet coefficients Xi

j in Eq. 3.

f̃(t) =

∞X

i=−∞

∞X

j=−∞
dT (Xi

j)ψi,j(t) (6)

Soft thresholding plays a key role in the approximation of
the traffic delay data under congestion. If there is shared
congestion, the dominant low frequency term, which corre-
sponds to the true traffic congestion information, will exhibit
relatively large wavelet coefficient values at high scale (low
frequency) so that true traffic information will remain after
the thresholding operation. Meanwhile, the high frequency
components, which can be assumed to be the effects of ran-
dom queue behavior, will have relatively small wavelet coef-
ficients at low scale (high frequency), and will be filtered by
the thresholding operation. Soft thresholding also has the
effect of smoothing the transient irregular peaks in the de-
lay data. In the basic cross-correlation technique, randomly
occurring peaks in the delay data could have a dominant
deleterious effect on the cross-correlation value. Wavelet
denoising smooths these irregular peaks, making the cross-
correlation value more robust. On the other hand, when
there is no congestion, delay variations caused by random
queue behavior will have relatively large wavelet coefficient
values, and thus will be preserved by soft thresholding.

3.3 Selection of wavelet basis
The wavelet transform provides a time and scale localized

representation of a measured time series; however, the time
and scale resolution of the representation depends on the
selection of a wavelet basis. Hence, in order to get the most
robust and reliable results from wavelet analysis including
wavelet denoising, it is crucial to select the best basis func-
tion for wavelet decomposition [16]. In this paper, selection
of a wavelet basis is confined to within the Daubechies fam-
ily of wavelets, which is widely used due to its simplicity of
implementation. Other wavelets and their tradeoffs between
performance and complexity need more investigation.

The correlation between a data signal and a wavelet basis
is determined by time and frequency localized characteris-
tics. Such characteristics of a data signal and wavelet basis
can be represented by the time and frequency localized mo-
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ments, which enable the approximation of the individual
time-frequency signal elements as a Gabor logon [18]. Then
the trace of the signal elements on the time-frequency plane
is defined as an elliptic curve as shown in Figure 6. In this
section, we define a metric, instantaneous SNR (signal-to-
noise ratio), to indicate how closely a wavelet basis matches
a data signal on the time-frequency plane. Then the met-
ric is used to select a wavelet basis that minimizes adverse
effects of synchronization offset.

3.3.1 Instantaneous SNR
Figure 6 provides a schematic description of localized time

and frequency characteristics for a data signal and wavelet
basis. The quarter ellipse including C and D1 represents
the localized time-frequency characteristics of the data sig-
nal, and the quarter ellipse including C and D2 represents
those of the wavelet basis. For the two quarter ellipses to
be well-matched, the size of the common area C should be
large while the discrepancy D = D1 + D2 should be small.
To quantify how closely the time-frequency characteristics of
a data signal and wavelet basis match, we postulate a tran-
sient resolution index named “instantaneous SNR” whose
dimension is dB/sec:

ISNR =
1

T
10 log10

C

D
. (7)

T is the time duration of the wavelet basis [16] shown in
Figure 6. ISNR provides a measure of similarity between
the data signal and wavelet basis within the time frame of
the wavelet basis function.

3.3.2 Minimizing adverse effects of synchronization
offset

In our application, the measured data consists of two
parts, slowly-varying congestion information and interfer-
ence from random queue behavior and synchronization off-
set; such interference can be mitigated by employing a soft
thresholding technique in wavelet denoising. We can fur-
ther reduce the interference from synchronization offset by
choosing a wavelet basis carefully.

Synchronization offset in the delay data can be interpreted
as the difference of the time-shifted version of delay data and
the original one. Therefore, the synchronization offset de-
pends on the characteristics of the original data. Hence,
the basis ψi,j(t) should be chosen to maximize the ISNR of
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f(t) and ψi,j(t), and minimize the ISNR of n(t) and ψi,j(t),
where f(t) is the delay changes caused by network conges-
tion and n(t) is the interference caused by the synchroniza-
tion offset. Therefore, it suffices to find the basis that max-
imizes the difference between the two ISNRs, which we call
the differential ISNR. However, since the true f(t) and n(t)
are not available directly, an approximation is required; we
used the delay data of a congested path as f(t), and the
difference between the delay data and its shifted version as
an approximation of n(t) = f(t)−f(t−∆max), where ∆max

is the maximum possible synchronization error (1 second
in this paper). More discussion on the maximum possible
synchronization error is presented in Section 4.3.

In Figure 7, we plot the differential ISNR for Daubechies
wavelets 2 through 10. The delay sequences were obtained
by repeating the simulation used to draw Figure 4(b) 120
times to approximate f(t), and the interference n(t) is di-
rectly computed from f(t). Each point in Figure 7 is the
mean value of the differential ISNR for the 120 sequences.
As shown in the figure, Daubechies wavelet 6 has the highest
differential ISNR, which implies that it is best matched with
congestion information and least matched with the noise
due to synchronization offset on the time-frequency plane.
Therefore, the Daubechies wavelet 6 basis will be employed
for wavelet denoising in this paper.

4. IMPLEMENTATION
The procedure of our wavelet-based technique is illus-

trated in Figure 8. The wavelet-based technique has the
same sampling stage as described in Section 2.3. The sam-
pling stage produces two sequences of delay samples, D1(t)
and D2(t). The processing stage uses wavelet denoising to
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Figure 9: Cross-correlation coefficients with sam-
pling rate of 10 Hz

produce new, denoised sequences D̃1(t) and D̃2(t), as ex-
plained above. The cross-correlation coefficient XCOR12 is
computed from D̃1(t) and D̃2(t). (The computational over-
head of these operations is very low. We found that when
delay samples were collected at 10 Hz for 100 seconds for
each of two paths, a machine with a 2.53 GHz Intel Pentium
4 CPU took only a few milliseconds to finish the operations.)
As in the basic technique, the procedure to gather delay se-
quences for different paths is application-dependent and out
of the scope of this paper.

There are three issues to discuss in implementing the
wavelet-based technique: the delay sampling rate, synchro-
nization offset between delay sequences, and threshold for
binary decision.

4.1 Sampling rate
There is a trade-off in choosing the sampling rate of a

delay sequence. High-rate sampling is more accurate but
incurs a large overhead on the network. On the other hand,
low-rate sampling has little overhead while being slow in
convergence. To investigate the effect of sampling rate on
performance, we performed simulations with different sam-
pling rates on the topology shown in Figure 3. The se-
quence of delay samples for each path was processed with
our wavelet denoising method. To minimize effects from
synchronization offset, we used a topology with a common
source. The source nodes were co-located and their clocks
were synchronized. A full evaluation involving synchroniza-
tion offset will be presented in Section 5. Each link had a
bandwidth of 1.5 Mb/s, and ON-OFF CBR flow parameter
settings were identical to those in Section 2.4. To simulate
shared congestion, we put 100 ON-OFF CBR flows on the
shared link, and 60 on the other two links. With 60 flows,
no packet loss was observed. The loss rate with 100 flows
varied between 2% and 12%. For independent congestion,
we put 60 ON-OFF CBR flows on the shared link, and 100
on the others.

Given a sampling rate, an experiment was repeated 500
times for each of shared and independent congestion. Fig-
ure 9 plots the cross-correlation coefficient with the sampling
rate of 10 Hz as time elapses. Each curve is the mean cross-
correlation coefficients over 500 experiments, and a vertical
bar represents the interval between the 5th and 95th per-
centile values at a specific time.

Figure 10 plots the mean cross-correlation coefficient over
500 experiments for five different sampling rates. The be-
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Figure 10: Effect of sampling rate

havior consistent over all sampling rates is that the coeffi-
cients converge either to one or to zero as more and more
samples are collected. With all sampling rates except 1 Hz,
the cross-correlation coefficient converges within 10 seconds.
Their variance is also small; after 5 seconds, the interval be-
tween the 5th and 95th percentile values with shared con-
gestion never overlaps with the corresponding interval with
independent congestion for every rate but 1 Hz.

Since our technique is implemented in user space, the
granularity of a timer in an operating system kernel should
also be taken into account. Though recent operating sys-
tems provide clock rate of 100 Hz, older ones have only 10 Hz.
From the figure, we conclude that a sampling rate of 10 Hz
is fast enough in convergence and feasible to implement on
most operating systems.

4.2 Limiting synchronization offset
There is a synchronization offset in the two sequences of

delay samples collected. However, using simple techniques,
the synchronization offset between any two paths on the
Internet can usually be limited to 1 second. In Figure 1,
the synchronization offset of two paths, from Xsrc to Xdst

and from Ysrc to Ydst, is caused by (i) the difference of the
delay from Xsrc to S and the delay from Ysrc to S, and (ii)
the clock difference between Xsrc and Ysrc. (i) is bounded by
the maximum one-way delay on the network, and (ii) by half
the round-trip time between Xsrc and Ysrc since the clocks in
these two nodes can be synchronized by exchanging packets.
So the maximum offset is roughly the maximum round-trip
time on the network. Measurement studies including one by
CAIDA3 confirm that round-trip time is less than 1 second
for the vast majority of paths on the Internet.

4.3 Threshold for binary decision
Though cross-correlation itself is a reasonable measure of

shared congestion, in situations where a binary answer is
preferred, a threshold should be set. Since cross-correlation
converges to one (or zero) for shared (or independent) con-
gestion as in Figure 10, our technique is not sensitive to the
threshold in such cases. However, because synchronization
offset reduces correlation of paths sharing a congested link
(as shown in Figure 2), it is still important to investigate an
appropriate value for the threshold.

When cross-correlation coefficients of delay sample sequences
with shared and independent congestion are close to each

3Available at http://www.caida.org/tools/measurement/
skitter/RSSAC/.
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other, two types of errors may occur: false positive and false
negative. The former is the case where the technique reports
shared congestion when there is no shared congested link,
and the latter is the case where it reports non-shared con-
gestion when there is one or more congested links shared by
two paths. The error rate of each type can be estimated
from distributions of cross-correlation coefficients for shared
and independent congestion. Then the threshold can be ad-
justed to minimize the total cost of errors using Bayesian
testing. Our implementation assumes that the cost of false
positive and the cost of false negative are equal, and min-
imizes the total error rate, which is the sum of the false
positive ratio and the false negative ratio. Actual costs may
differ from application to application.

To determine the best threshold value, we need an es-
timate of the synchronization offset for any two paths on
the Internet. According to measurements by CAIDA, most
paths from the F DNS root server to its customers have
round-trip time less than 300 ms. Considering that customer
hosts of a DNS root server are close to the server, we take
600 ms as the target synchronization offset to optimize the
threshold for. More investigation is needed on the actual dis-
tribution of round-trip times, and the relationship between
the target offset and the accuracy of binary decision.

Figure 11 shows the distributions of cross-correlation co-
efficients with 600 ms synchronization offset. The distribu-
tions were obtained from the same delay sequences used in
Section 4.1. We used the delay samples collected during the
first 10 seconds, with the sampling rate of 10 Hz. The left
histogram represents the distribution for independent con-
gestion, and the right one for shared congestion. If we ap-
proximate the histograms with normal distributions, they
intersect when the cross-correlation coefficient (XCOR) is
0.512, which would be the threshold value that minimizes
the total error rate. (The error rate is not sensitive to the
choice of the threshold value as long as the threshold is be-
tween 0.3 and 0.6, because XCOR is rarely close to 0.512.)
We use this value as the threshold in later experiments, un-
less stated otherwise. We will investigate the effect of the
threshold on false positive and false negative ratio in Sec-
tion 5.2.

5. PERFORMANCE EVALUATION
In simulations, we compare our technique against two rep-

resentative techniques: a delay-based approach of Ruben-
stein et al. [15] and a loss-based one of Harfoush et al. [8,
9]. Below we refer to them respectively as MP (Markovian

probing) and BP (Bayesian probing). See Section 2.5 for
descriptions of both techniques.

We define Positive Ratio as a metric to represent accuracy
of each technique.

Positive Ratio =
# of answers indicating shared congestion

# of experiments
(8)

If an experimental setup involves shared congestion, Positive
Ratio should be close to one; otherwise, it should be close
to zero.

We first compare our technique with MP and BP when
paths share a common source node and have either shared
congestion or independent congestion only. Then we inves-
tigate how they perform in more challenging environments
involving paths not sharing a common source or destination
and multiple points of congestion. Finally, we present initial
results on the performance of our technique on the Internet.

5.1 Probing with a common source
Both MP and BP assume that there is a common source

(or a common destination for MP). For such a topology,
clocks for the two paths can be synchronized and two sam-
ples can be merged into one in chronological order. This
is a critical requirement for both techniques. In fact, BP
requires the stronger condition that two probe packets with
different destinations must be sent back-to-back.

Xsrc

Ysrc

Xdst

Ydst

1 2 3
4

6

5

7 8

Figure 12: Topology with a common source

Figure 12 shows a network topology where two paths share
a source node. Each link has a bandwidth of 1.5 Mb/s. A
similar topology was used in simulations for MP [15]. We
ran experiments for the following three scenarios depending
on the type of background traffic.

Long-lived TCP flows A small number of long-lived
TCP flows are used to cause congestion, and non-congested
links are left idle. In shared congestion cases, a link is chosen
from links 1 through 3, and 20 TCP flows are created to
traverse the link. In independent congestion cases, links 1
through 3 are idle, and the other links have TCP flows, of
which the number is chosen uniformly between 0 and 20.

ON-OFF CBR flows A large number of ON-OFF
CBR flows are used as background traffic. Congestion level
is controlled with the number of such flows. For shared
congestion, a link chosen from links 1 through 3 has 100
ON-OFF CBR flows. The number of ON-OFF CBR flows
on the other links is chosen uniformly between 31 and 70.
For independent congestion, links 1 through 3 have ON-OFF
CBR flows between 31 and 70, and the other links between
61 to 100. The same parameter settings of ON-OFF CBR
flows as in Section 2.4 are used.

Short-lived TCP flows A large number of short-lived
TCP flows, created by ns-2’s web traffic generator, are used
as background traffic. The generated traffic consists of many
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Figure 13: Convergence with a common source and drop-tail queues
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Figure 14: Convergence with a common source and RED queues

“web sessions,” in each of which a client node continually
downloads from a server a web page containing multiple ob-
jects. For shared congestion, a link chosen from links 1
through 3 has 250 web sessions created by 25 web servers
and 250 clients. The number of web sessions on the other
links is chosen uniformly between 1 and 25. For independent
congestion, links 1 through 3 have web sessions between 1
and 25, and the other links have web sessions between 151
and 250.

Figure 13 plots Positive Ratio of each technique over 500
experiments as time progresses when links are using drop-
tail queues. In the legend, DCW refers to our delay cor-
relation technique with wavelet denoising. With long-lived
TCP background, MP is fast in detecting both shared and
independent congestion, while BP is relatively slow in both
cases. DCW is slightly faster than MP for shared conges-
tion, but as slow as BP for independent congestion. MP is
the fastest in detecting independent congestion, in this case
and many others below, because relatively small delay fluc-
tuations on independent links can make the cross-measure
Mx smaller than Ma. We will show this in Sections 5.2 and
5.3. Overall, every technique works well and reaches accu-
racy over 90% within 10 seconds.

With ON-OFF CBR background, however, all three tech-
niques are slower in detecting shared congestion than with
long-lived TCP background. For DCW and MP, this is be-
cause non-congested links have small queueing delay fluctu-
ations. For DCW, such fluctuations add noise to delay sam-
ples; for MP, they change the order in the merged samples
and thus decrease Mx. Nevertheless, since DCW removes
most noise through wavelet denoising, its degradation is not
as severe as MP’s. BP experiences the most notable degra-
dation among the three; though it is the fastest for indepen-
dent congestion, its Positive Ratio for shared congestion is

still less than 0.6 after 100 seconds. This is because our ON-
OFF CBR background flows include some with very short
ON/OFF time, while all ON-OFF CBR flows in the simu-
lations of [8] have relatively long ON time—2 seconds. BP
requires the probability that both packets in a packet pair
are lost to be high to detect shared congestion. A longer
ON time means a queue remains full for a long time caus-
ing both packets in the pair to be dropped. However, it
is less likely with short ON time. That leaves DCW to be
the only technique that reaches 90% accuracy after 10 sec-
onds with ON-OFF CBR background. Degradation of BP
is even more pronounced with short-lived TCP background,
because a loss period is even shorter in that scenario. As a
result, BP fails to detect shared congestion. On the other
hand, DCW and MP are not affected much.

Figure 14 presents the same simulation results when links
use RED. DCW and MP show similar performance as with
drop-tail queues. However, BP does not work at all with
RED queues. Its problem with RED was already pointed
out using ON-OFF CBR flows [8], but the problem is more
serious here because their simulation setup has a higher loss
rate and smaller queues, which means a RED queue’s be-
havior is close to that of a drop-tail queue. Neither DCW
nor MP has such a problem; they maintain performance as
good as with drop-tail queues.

Xsrc

Ysrc

Xdst

Ydst

S

Figure 15: Topology with no common endpoint
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Figure 16: Effect of synchronization offset

5.2 Probing with no common endpoint
The topology in Figure 15 is an extended version of that in

Figure 12. The paths have different source and destination
nodes. Delay samples collected at different nodes cannot be
synchronized because of two reasons. First, the clocks of
node Xsrc and node Ysrc are not synchronized. Second, the
delay from Xsrc to S is different from the delay from Ysrc to
S.

5.2.1 Effects of synchronization offset
To investigate the effect of synchronization offset between

two paths, we plot, in Figure 16, the Positive Ratio for ex-
periments with shared congestion as we increase the syn-
chronization offset for all three types of background traffic.
The original sets of delay samples were obtained from the
two paths on the topology in Figure 12; the synchronization
offset was added to the set of delay samples between Ysrc

and Ydst. Only the overlapping portions were used. BP is
excluded; its Positive Ratio with shared congestion is 0.2 or
less even with 10 ms offset [8], due to its requirement that
two packets (for different paths) be sent back-to-back. Be-
cause MP is slower than DCW in Positive Ratio convergence
for shared congestion, MP may exhibit lower performance
because of low accuracy if the number of delay samples is
not large. Thus, detection used delay samples belonging to
the first 100 seconds of the overlapping period to ensure that
both MP and DCW had near-100% accuracy. Positive Ratio
drops to zero between 30 ms and 70 ms for MP, and between
1 sec and 2 sec for DCW. The sharp decrease of MP happens
in the [30 ms, 70 ms] interval because the average probe rate
in MP is 25 Hz, equivalent to 40 ms inter-departure time.
Therefore, if the offset exceeds that value, most packets in
a merged sequence are out of order, and the cross-measure
Mx becomes low. Though we plot the results for drop-tail
queues only, the results for RED queues are similar.

Next, we examine how wavelet denoising helps our tech-
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Figure 17: The effect of wavelet denoising on cross-
correlation with synchronization offset

nique in tolerating a large synchronization offset. The dot-
ted curve and vertical bars crossing it in Figure 17 are copied
from Figure 2, which shows the cross-correlation coefficients
without wavelet denoising. We processed the data used
in Figure 2 with our wavelet denoising, and plotted cross-
correlation coefficient versus synchronization offset. The
solid curve represents the mean cross-correlation coefficients,
and the vertical bars indicate the 5th and 95th percentile
values. Without wavelet denoising, the cross-correlation of
the delay sequences decays very fast with increase of syn-
chronization offset; with a 600 ms offset, the mean coeffi-
cient approaches the horizontal line representing the thresh-
old (0.512). This means that the cross-correlation technique
without denoising is only as good as random decision at this
point. However, the cross-correlation of the delay sequences
after wavelet denoising is less sensitive to the synchroniza-
tion offset, so that one can properly determine the state of
congestion even with a fair amount of synchronization off-
set between the data. On the other hand, for independent
congestion, the mean cross-correlation coefficients are not
affected by wavelet denoising and are almost zero regardless
of the synchronization offset.

Since synchronization offset may vary during delay mea-
surements, we also performed an experiment with a random-
ized synchronization offset. For a given value of average syn-
chronization offset m, the actual synchronization offset for a
particular pair of packets in the two sequences of an exper-
iment was chosen randomly over the interval [0, 2m]. The
mean cross-correlation results were almost the same as those
in Figure 17; the variances were larger due to the presence
of randomized synchronization offsets.

5.2.2 Threshold value and false positive/negative
We use the receiver operating characteristic (ROC) curves

to show the effect of the threshold value on false positive and
false negative ratio in the presence of synchronization offset.
ROC is a performance test methodology that measures the
probability of detection PD against the probability of false
positive PF [17]. In our application, they are defined as fol-
lows for a certain threshold value of cross-correlation TXCOR.

PD = P (XCOR ≥ TXCOR | shared congestion)
PF = P (XCOR ≥ TXCOR | independent congestion)

ROC performance can be graphically detected for all possi-
ble values of threshold TXCOR; as we move along an ROC
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curve from the lower-left corner to the upper-right corner,
the threshold varies from 1 to −1. The dashed straight line
is the characteristics of the worst case, where the detection
probability PD equals the false positive probability PF .

Figure 18 has two ROC curves drawn using the DCW sim-
ulation data for Figure 13. An offset of 600 ms was added
to one of the delay sequences of each experiment. The dot-
ted curve is an ROC curve before wavelet denoising, and
the solid curve is after denoising. Since our technique con-
verges in 10 seconds, delay samples for the first 10 seconds
were used to compute the cross-correlation coefficient. With
wavelet denoising, our technique shows an improved curve
(higher detection probability PD with the same false positive
probability PF ) compared with the curve without denoising.

Note that the area under the curve, called the ROC area,
provides a quantitative measure of performance for compar-
ison of different curves; the area of an ideal curve is 1, while
the area of a random decision maker is 1

2
. Figure 19 demon-
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Figure 19: ROC performance versus synchroniza-
tion offset with and without wavelet denoising

strates the effect of wavelet denoising for different synchro-
nization offsets using ROC area. Two curves show the ROC
area with and without wavelet denoising as the synchroniza-
tion offset increases. With tight synchronization, wavelet
denoising makes little difference. As the offset increases,
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Figure 20: Convergence of low-pass filtering and
wavelet denoising for independent congestion

however, the basic technique curve drops to 0.6 at an off-
set of 1 second, becoming close to random decision. On the
other hand, the technique with denoising degrades smoothly,
maintaining 0.8 at the 1 second offset.

5.2.3 Comparison with low-pass filtering
When congestion occurs on shared links, wavelet denois-

ing makes cross-correlation evaluation more robust by smooth-
ing delay data curves. We tested a simpler mechanism to
achieve this smoothing, namely a simple low-pass filter. With
suitable parameters, a moving average was able to provide
similar improvement as wavelet denoising for cases with shared
congestion. (We set the span of the moving average to
1.1 sec, which provides the same improvement as wavelet
denoising for the experiments of Figure 17.) The prob-
lem with this filter appears in experiments with indepen-
dent congestion. Figure 20 shows the convergence of the
cross-correlation coefficient for the moving average (MA)
and DCW when there is independent congestion in the ex-
periment of Figure 13(b). Each point is the mean coefficient
over 500 simulations; the bars show 5th and 95th percentiles.
The mean coefficient of the moving average at 100 seconds
is still 0.6, while that of DCW is almost zero from the be-
ginning. That is, a simple low-pass filter may over-smooth
transients at small scales, and thus require more delay sam-
ples to detect independent congestion. The ability of wavelet
denoising to preserve strong transients at both small and
large scales is critical for fast convergence in both shared
and independent congestion scenarios.

5.3 Multiple points of congestion
So far, queueing delay variation on non-congested links

was filtered out with wavelet denoising. However, if non-
congested links have significant queueing delay variation,
or there is more than one point of congestion, the delay
variation on such links cannot be eliminated, and makes
shared congestion detection more difficult. In fact, it is
unclear what ‘shared congestion’ should mean under such
conditions. Therefore, instead of deciding whether a tech-
nique detects shared congestion correctly, we investigate how
the technique responds as the degree of shared congestion
changes. One possible metric to represent the degree of
shared congestion is how large the loss rate on shared links
is compared with that on non-shared links. Hence, we de-
fine a new quantity called shared loss rate ratio. Let the loss



rate of the shared portion of two paths be Lshared, and the
loss rate of the non-shared portion of the first path to be L1

and the second path L2. Then the shared loss rate ratio is
defined as follows.

Ls =
Lshared

Lshared + max(L1, L2)
(9)

If Lshared > 0 and L1 = L2 = 0, then Ls becomes 1; if
Lshared = 0 and at least one of L1 and L2 is not zero, then
Ls becomes 0. If there is no loss at all, then Ls is defined
as 0, indicating no shared congestion.

In the following simulation, we used the topology in Fig-
ure 3. The number of ON-OFF CBR background flows on
each link was chosen uniformly between 81 and 100, result-
ing in loss rate between 0 and 12%, and delay samples were
collected for 100 seconds. Ls was computed from the actual
loss rates of the links. 1000 experiments were classified into
10 groups depending on the interval their Ls belonged to. If
Ls of an experiment is in [0, 0.1) then it is in the first group,
if in [0.1, 0.2) then the second, and so on. If Ls = 1, the
experiment is in the same group as those with Ls in [0.9, 1).
Positive Ratio (defined in Eq. 8) was calculated over all ex-
periments in the same group. The results for DCW, MP,
and BP are presented in Figure 21.
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Figure 21: Positive Ratio with multiple points of
congestion

Positive Ratio of DCW is only about 0.1 when Ls < 0.1,
but 0.8 or larger when Ls ≥ 0.3. Thus, DCW has a cut-off
at Ls = 0.2 differentiating shared and independent conges-
tion. MP shows very different behavior. Positive Ratio is
0 for most intervals, and only 0.1 for the last one. Since
we know that Positive Ratio of MP reaches 1 after 100 sec-
onds if Ls = 1, this indicates that MP answers positively
(meaning shared congestion) only when Ls is very close to
1. In other words, MP always gives a negative answer if
there are multiple points of congestion, regardless of the
degree of shared congestion. BP gives more and more pos-
itive answers as Ls increase, but does not have any sharp
increase as DCW has. Therefore, for those applications re-
quiring a cut-off in shared congestion detection, DCW is
preferred. However, the preferred cut-off value depends on
the application. DCW can be customized for applications
with different needs by adjusting its the threshold. Some
applications need to determine whether two paths share all
congested links [2], which corresponds to Ls = 1. In this
case, MP would be a good choice.

5.4 Internet Experiments
We applied our technique to a large-scale network, the

Internet. Our preliminary Internet experiments involved six
end hosts. Figure 22 shows their abstract topology. Note
that each hop in the figure may consist of multiple physical
hops. Three hosts, A1, A2, and A3, are located in Austin,
Texas, U.S.A. The other three hosts, K, T , and H, are
located in Korea, Taiwan, and Hong Kong, respectively.

K

T

H

A1

A2

A3

Figure 22: Experimental topology on the Internet

Delay samples were collected from the paths from A1 to
K and from A2 to T between October 28 and November
2, 2003. We can reasonably conclude that there was no
congested link because no probe packet was lost during mea-
surement. In order to create a shared bottleneck, we opened
40 TCP sessions between H and A3. The loss rate was about
5% while they were running. Since both paths experienced
a similar loss rate, we conclude that the congestion occurred
on one of the shared links.
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Figure 23: Convergence with Internet traces

Positive Ratio for shared congestion and independent con-
gestion (or no congestion in this case) is shown in Figure 23.
The delay samples were collected for 15 seconds, and time
was adjusted with measured clock difference between A1 and
A2 by exchanging packets between them. Each experiment
was repeated 100 times to calculate the Positive Ratio. The
result resembles what we obtained through simulations. The
accuracy of our technique exceeds 80% using the samples for
the first 3 seconds, and reaches 98% after 8 seconds.

This experiment shows that our technique works well with
real background traffic, and also that it diagnoses non-shared
congestion correctly even when there is no congestion. How-
ever, the experiment was performed with limited settings,
which included long-delay transpacific links and proximity
of source nodes. Additional experiments are needed for more
diverse environments.

6. CONCLUSION AND FUTURE WORK
Network resources are better utilized when multiple flows

cooperate. However, such cooperation is feasible only when



we can identify flows sharing a congested bottleneck. Previ-
ously proposed techniques had limitations, including a com-
mon endpoint and (sometimes) drop-tail routers. But they
are not effective under other conditions, such as RED queue-
ing, multiple points of congestion, or paths with different
sources and destinations.

We proposed a robust technique based on wavelet de-
noising and cross-correlation, namely DCW. The denoising
process effectively removes noise and makes our technique
more resilient to synchronization offset, which confuses other
techniques. In simulations with shared congestion, DCW
achieves faster convergence and broader application than
previous techniques, while using fewer probe packets. Pre-
liminary experiments on the Internet confirmed the simula-
tion results. We believe that applications requiring topology
construction in the application layer can benefit from our
delay correlation technique with wavelet denoising.

To validate DCW further, more extensive Internet ex-
periments are necessary. We are building an overlay net-
work to convey multimedia data, which will provide a large-
scale testbed for DCW. An actual deployment of DCW
for peer-to-peer applications running on this network is also
under study. In addition to validating DCW through exper-
iments, we are exploring other signal processing approaches
to improve robustness for different traffic patterns and net-
work scales; alternative denoising approaches and different
wavelets will be investigated.
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