
Eliminating Bottlenecks in Overlay Multicast?

Min Sik Kim, Yi Li, and Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin

{minskim,ylee,lam}@cs.utexas.edu

Abstract. Recently many overlay multicast systems have been pro-
posed to overcome limited availability of IP multicast. Because they
perform multicast forwarding without support from routers, data may
be delivered multiple times over the same physical link, causing a bot-
tleneck. This problem is more serious for applications demanding high
bandwidth such as multimedia distribution. Although such bottlenecks
can be removed by changing overlay topology, a näıve approach may cre-
ate bottlenecks in other parts of the network. In this paper, We propose
an algorithm that removes all bottlenecks caused by the redundant data
delivery of overlay multicast, detecting such bottlenecks using a wavelet-
based technique we recently proposed. In a case where the source rate
is constant and the available bandwidth of each link is not less than
the rate, our algorithm guarantees that every node receives at the full
source rate. Simulation results show that even in a network with a dense
receiver population, our algorithm finds a tree that satisfies all the re-
ceiving nodes while other heuristic-based approaches often fail.

1 Introduction

Recently, many overlay multicast systems have been proposed as alternatives to
IP multicast. Overlay multicast systems provide more flexibility in topology con-
struction, but consume more bandwidth of an underlying network because data
is often delivered multiple times over the same physical link, causing a bottle-
neck. This problem is more serious for applications demanding high bandwidth
such as multimedia distribution. One way to mitigate the problem is to limit
the fan-out of internal nodes in a multicast tree [1]. However, deciding the right
number of children is non-trivial; fan-out should be a function of the available
bandwidth to each child and the network topology. Furthermore, a bottleneck
may be caused by flows from different source (parent) nodes. In such a case,
fan-out has little to do with the bottleneck. Therefore, a better way to avoid
bottlenecks is to identify them by finding unicast flows in the multicast session
that traverse those bottlenecks, and remove them by changing the multicast
tree topology. We recently presented a wavelet-based technique, called DCW
(Delay Correlation with Wavelet denoising), which can be used to detect flows

? Research sponsored by National Science Foundation ANI-0319168 and CNS-0434515.
Published in Proceedings of IFIP Networking 2005, May 2005.

sharing bottlenecks (or congested links) [2]. While other techniques require that
flows should share a common end point [3–5], DCW can be used for any pair of
Internet flows with different sources and different sinks.

Identified shared bottlenecks should be eliminated by changing the overlay
tree topology. However, it should be done very carefully. When a tree edge is
cut, another edge must be added to maintain connectivity. But the newly added
edge may cause another bottleneck. Even worse, eliminating the new bottleneck
may reincarnate the old one, resulting in oscillation. The algorithm we propose
in this paper removes shared bottlenecks without incurring such oscillation. We
prove that the algorithm always terminates, and that on termination there is
no shared bottleneck in the multicast tree. In a case where the source rate is
constant and the available bandwidth of each link is not less than the source rate,
our algorithm guarantees that every node receives at the full source rate. We
implement our algorithm in a distributed fashion, and compare its performance
with other heuristically-built multicast trees. Simulation results show that even
in a network with a dense receiver population, our algorithm finds a tree that
satisfies all the receiving nodes while other heuristic-based approaches often fail.

The remainder of this paper is organized as follows. Section 2 presents our
network model. Section 3 proposes an algorithm to eliminate shared bottlenecks,
and Sect. 4 sketches the implementation of a distributed protocol based on the
proposed algorithm. Section 5 shows experimental results, and we conclude in
Sect. 6.

2 Model

Our network model consists of two layers. The lower layer represents the under-
lying traditional network with links and nodes, where routing between nodes is
done through the lowest-cost path. The upper layer is an overlay network, where
a subset of the nodes in the lower layer form a multicast tree.

2.1 Underlying Network

An underlying network is given as a directed graph G = (N,L), where N is a set
of nodes in the network, and L is a set of unidirectional links between two nodes
in N . Each link (m,n) ∈ L has two properties: B(m,n), the bandwidth of the
link available to overlay multicast, and c(m,n), the cost of the link. The cost is
a positive constant and used as a routing metric to compute shortest paths. We
assume symmetric routing, i.e. c(m,n) = c(n,m).

Given two nodes u and v in N , the shortest path between them is specified
as a set of links PL(u, v) = {(u, n1), (n1, n2), . . . , (ni, v)} chosen to minimize the
total cost of the links in the set. If there are more than one such paths, we
assume that the routing algorithm always selects the same path among them.

2.2 Overlay Multicast Tree

A multicast tree is built on top of the underlying network G, using a set of end-
hosts H. H is a subset of N , and consists of end-hosts participating the multicast

2

·

Ram(u) ·

·

u

· ·

·

·

Ram(u) u

· ·

·

Fig. 1. Ramification point

(a) (b)
u1

·

u2

v2 ·

·

v1

· ·

u1

v1

u2

v2 ·

·

·

· ·

Fig. 2. (a) Inter- and (b) intra-path shared bottlenecks

session. The multicast tree is represented as a set T = {(u, v)|u, v ∈ H, v is a
child of u in the tree}. We call each element of T an edge of the tree.

Similarly to PL, PT is defined as a path in a multicast tree T . Formally,
PT (u, v) = {(u, h1), (h1, h2), . . . , (hi, v)}, where PT (u, v) ⊂ T .

2.3 Bottleneck

We model multicast traffic as a set of flows; every edge of an overlay multicast
tree has an associated flow for data delivery. Each flow f has a source node
Src(f), a sink node Snk(f), and the rate of the flow Rate(f).

Let F (m,n) be a set of flows passing through the link (m,n) ∈ L. Formally,
F (m,n) = {f |(m,n) ∈ PL(Src(f),Snk(f))}. A link (m,n) is a bottleneck of the
multicast session if and only if B(m,n) <

∑
f∈F (m,n) Rate(f). The bottleneck

link (m,n) is also called a shared bottleneck if multiple flows are passing through
the link, or |F (m,n)| > 1, where the notation |S| denotes the number of elements
of a set (or vector) S.

3 Algorithm

The goal of our algorithm is to remove shared bottlenecks in a multicast tree,
so that they cannot throttle throughput. In the algorithm we assume that each
bottleneck shared by multiple flows can be detected accurately using a technique
such as DCW [2]. Before we describe the algorithm, we define notation to be
used in explanation.

– r ∈ H denotes the root node of a multicast tree.
– d(u, v) is the distance between u and v on T , namely d(u, v) = |PT (u, v)|.
– Parent(u) is the parent node of u in the tree.
– SLeaf (u) is one of the shallowest leaves in a subtree rooted at u. In other

words, SLeaf (u) is a leaf node closest to u in the subtree.
– Ram(u) is the node that has caused ramification of the branch of u in the

tree, or ∅ if there is no such node. Formally, Ram(u) is a node along the
path from r to u such that Parent(Ram(u)) has more than one child, and all
the nodes between Ram(u) and Parent(u), inclusively, have only one child.
See Fig. 1.

Shared bottlenecks need to be treated differently depending on their rela-
tive locations in the tree. There are two types of shared bottlenecks: intra-path

3

and inter-path shared bottlenecks, as shown in Fig. 2, where thick arrows rep-
resent flows sharing the same bottleneck. Suppose that a link (m,n) ∈ L is a
shared bottleneck. Then there exist two edges (u1, v1) and (u2, v2) such that
(u1, v1), (u2, v2) ∈ T and (m,n) ∈ PL(u1, v1) ∩ PL(u2, v2). Without loss of gen-
erality, we assume d(r, u1) ≤ d(r, u2). A shared bottleneck (m,n) is called an
intra-path shared bottleneck of (u1, v1) and (u2, v2) if (u1, v1) ∈ PT (r, u2), and
otherwise an inter-path shared bottleneck. In this section, we describe first the
algorithm for the more general case, inter-path shared bottlenecks, and then the
algorithm for intra-path shared bottlenecks. By applying these algorithms iter-
atively, we can remove all shared bottlenecks in finite iterations. To make sure
that it terminates, we will prove that the tree after each iteration is different
from any tree in previous iterations.

For proof, we define two properties of a multicast tree: the leaf distance vector
and total cost. The leaf distance vector is defined as D = (d(r, u1), d(r, u2), . . . ,
d(r, uk)), where u1, u2, . . . , uk are all the leaf nodes in T , and d(r, ui) ≤ d(r, ui+1)
for every i < k. Distance vectors are ordered as follows. For two distance vectors,
D and D′, D precedes D′ (D ≺ D′) if and only if (i) |D| > |D′|, or (ii) |D| = |D′|
and D precedes D′ in lexicographical order.

The second property, total cost C, is defined to be the sum of costs of all
edges in the tree, where the cost of an edge is the sum of all link costs along
the edge. Formally, C =

∑
(u,v)∈T

∑
(m,n)∈PL(u,v) c(m,n). For each link shared

by multiple edges, its link cost is counted multiple times.

3.1 Inter-path Shared Bottleneck

The algorithm to remove an inter-path shared bottleneck is shown in Fig. 3. See
also Fig. 2(a) for illustration. When an inter-path shared bottleneck is detected
between two edges (u1, v1) and (u2, v2), the edge farther from the root, (u2, v2),
is removed and the detached subtree rooted at v2 is moved to the subtree rooted
at v1. If the shallowest leaf in v1’s subtree is not deeper than v2, then it is
chosen as the node to which v2’s subtree is attached. In this way, we can avoid
increasing the fan-out of an internal node, which may affect flows from the node
to the existing child nodes. However, since we do not want the tree to become too
tall, we also avoid attaching v2 to a very deep node. Therefore, if the shallowest
leaf of v1 is deeper than v2, v2 is attached to a node on the path from v1 to its
shallowest leaf such that the depth of v2 increases at most by one.

If u2 becomes a leaf after removing (u2, v2), we relocate its branch (the path
from Ram(u2) to u2) under another leaf in Lines 8–10, because leaving behind
u2’s branch may cause oscillation. Suppose that the edge added to connect v2 to
the tree causes another shared bottleneck. Then it is possible that v2 is detached
once again and moved back to u2, if u2 is the chosen shallowest leaf in this case.
Thus the change made to remove the shared bottleneck between (u1, v1) and
(u2, v2) is reverted, and it revives the bottleneck that we removed earlier. By
relocating u2’s branch when u2 becomes a leaf, we can avoid such oscillations.
The following lemma states that the leaf distance vector before Remove-Inter-

Path-Shared-Bottleneck algorithm always precedes that after Remove-

Inter-Path-Shared-Bottleneck. The proof is in [6].

4

Remove-Inter-Path-Shared-Bottleneck

1 . (u1, v1) and (u2, v2) in T are sharing a bottleneck, and d(r, u1) ≤ d(r, u2).
2 if d(r, SLeaf (v1)) ≤ d(r, v2)
3 T ← T ∪ {SLeaf (v1), v2} − {(u2, v2)}
4 else

5 t← a node such that d(r, t) = d(r, v2) and ∃PT (u1, t) 6= ∅, PT (u1, t) ⊂ PT (u1, SLeaf (v1))
6 T ← T ∪ {(t, v2)} − {(u2, v2)}
7 if {(u2, x)|(u2, x) ∈ T} = ∅

8 u, v ← Parent(Ram(u2)), Ram(u2)
9 c← arg mini∈{w|Parent(w)=u,w 6=v} d(i, SLeaf (i))

10 T ← T ∪ {(SLeaf (c), v)} − {(u, v)}

Fig. 3. Removal of an inter-path shared bottleneck

Remove-Intra-Path-Shared-Bottleneck

1 . (u1, v1) and (u2, v2) in T are sharing a bottleneck, and d(r, u1) ≤ d(r, u2).
2 if SLeaf (v1) 6= SLeaf (v2)
3 Remove-Inter-Path-Shared-Bottleneck

4 else if Ram(v1) 6= Ram(v2)
5 u, v ← Parent(Ram(v2)), Ram(v2)
6 c← arg mini∈{w|Parent(w)=u,w 6=v} d(i, SLeaf (i))
7 if d(u, SLeaf (c)) ≤ d(r, u) + d(v, v2) + 1
8 T ← T ∪ {(SLeaf (c), v2)} − {(u2, v2)}
9 else

10 t← a node such that d(r, t) = d(r, u) + d(v, v2) + 1 and PT (u, t) ⊂ PT (u, SLeaf (c))
11 T ← T ∪ {(t, v2)} − {(u2, v2)}
12 if {(u2, x)|(u2, x) ∈ T} = ∅

13 T ← T ∪ {(SLeaf (c), v)} − {(u, v)}
14 else

15 T ← T ∪ {(u1, u2), (v1, v2)} − {(u1, v1), (u2, v2)}
16 ∀(x, y) ∈ PT (v1, u2), T ← T ∪ {(y, x)} − {(x, y)}

Fig. 4. Removal of an intra-path shared bottleneck

Lemma 1. Let D and D′ denote leaf distance vectors before and after Remove-

Inter-Path-Shared-Bottleneck respectively. Then we have D ≺ D′.

3.2 Intra-path Shared Bottleneck

Figure 4 presents the algorithm to remove an intra-path shared bottleneck. See
also Fig. 2(b) for illustration. Some intra-path shared bottlenecks may be treated
like inter-path shared bottlenecks, but others should be treated differently.

In the case of an intra-path shared bottleneck, the shallowest leaf of v1 may
be v2 itself or a node in its subtree. If v1’s shallowest leaf is not in v2’s sub-
tree, Remove-Inter-Path-Shared-Bottleneck is applied to attach v2 to
the shallowest leaf of u1. Otherwise, we have two cases in Line 4, depending
on whether there is any branch between v1 and v2. If there is, v2’s subtree is
attached under that branch similarly as in an inter-path shared bottleneck case.
Otherwise, it becomes a child of a node in the middle so that the depth of v2

in increased at most by one. As in Lemma 1, this ensures that the leaf distance
vector before Remove-Intra-Path-Shared-Bottleneck precedes that after
Remove-Intra-Path-Shared-Bottleneck.

If there is no branch between v1 and v2, edges (u1, v1) and (u2, v2) are re-
placed with (u1, u2) and (v1, v2), and the edges in the middle are reversed so
that the flow traverses in the opposite direction in Lines 15–16. Shortest-path
routing guarantees that this reduces the total cost.

5

From the two cases above, we conclude the following lemma. Its proof is in
[6].

Lemma 2. Let D and D′ denote leaf distance vectors before and after Remove-

Intra-Path-Shared-Bottleneck respectively, and C and C ′ be total costs

before and after Remove-Intra-Path-Shared-Bottleneck. Then we have

either D ≺ D′ or D = D′ and C < C ′.

3.3 Shared Bottleneck Elimination

Using the previous two lemmas, we prove that our algorithm removes all shared
bottlenecks from a multicast tree.

Theorem 1. By applying Remove-Inter-Path-Shared-Bottleneck or

Remove-Intra-Path-Shared-Bottleneck iteratively, all shared bottlenecks

will be removed in a finite number of iterations.

Proof. If there exists a shared bottleneck in a multicast tree, either Remove-

Inter-Path- or Remove-Intra-Path-Shared-Bottleneck can always be
applied to remove it. Each of them changes the leaf distance vector or decreases
the total cost while maintaining the same leaf distance vector by Lemma 1 and
Lemma 2. For a leaf distance vector D, there are only a finite number of leaf
distance vectors D′ such that D ≺ D′. And the total cost C can be reduced
only a finite number of times because it is lower-bounded, and each time the
amount of reduction is also lower-bounded by the minimum link cost, which is a
non-zero constant. Therefore, all shared bottlenecks are removed within a finite
number of iterations. ut

Note that our algorithms remove shared bottlenecks, providing that the avail-
able bandwidth B and cost c of each link remain constant. In practice, however,
since available bandwidth keeps varying and the set of participating hosts H

changes, the multicast tree that the algorithm converges to may also change.
Nevertheless, we believe that the algorithm that converges to the desired target
in a static environment is a good starting point for a dynamic environment, and
we will show empirically that the actual protocol based on our algorithm is in
fact able to adapt as available bandwidth and node membership changes occur.

4 Protocol Implementation

Our algorithm is based on assumptions that a shared bottleneck is detectable,
that information such as shallowest nodes and ramification points is available,
and that each execution of Remove-Inter-Path-Shared-Bottleneck or
Remove-Intra-Path-Shared-Bottleneck does not interfere with another
execution. In this section, we explain how these assumptions can be satisfied
in a protocol implementation. In addition, we briefly describe how our protocol
handles node joins and leaves in a dynamic environment.

6

4.1 Shared Congestion Removal

In real networks, a shared bottleneck is a congested link shared by multiple flows
belonging to the same multicast session. DCW [2] determines whether two flows
are sharing such “shared congestion” with high accuracy (> 95%) if one-way
delay for each flow is measured for 10 seconds with a sampling frequency of
10 Hz. It tolerates a synchronization offset up to one second between different
flows, which is achievable with loose synchronization among participating nodes
as follows.

For loose synchronization, each non-root node sends a packet to its parent
periodically, and the parent replies with a timestamp. On receiving the reply,
the node calculates the round-trip time and sets its clock to the timestamp plus
half the round-trip time.

Shared congestion is detected and removed on a round-basis. The start time
of each round is publicized by the root node; each node obtains information
on the epoch T0 and round interval Tr from its parent, and starts a round at
T0 + nTr with its local clock, where n is an integer. In every round, a node
performs the following three tasks sequentially. (i) At the beginning of each
round, one-way delay from a node to each of its children that are experiencing
congestion is sampled for 10 seconds with a frequency of 10 Hz as recommended
for DCW [2]. (ii) After measurement, a node waits for reports from all child
nodes; the reports contain delay samples of edges experiencing congestion in
the subtree of the corresponding child node. Once all reports are received, the
node selects edge pairs such that the edges in each pair share a bottleneck
link with each other. The node must ensure that executions of the bottleneck
removal algorithms do not interfere with each other. Since bottleneck elimination
relocates nodes in the subtree of Ram(v2) only, the node can select as many
pairs as it can, as long as such subtrees of selected pairs do not overlap. Then,
among all congested edges in its subtree, the node reports delay samples of those
edges that “would not interfere” with selected pairs. Because edges involved in
removing a bottleneck are (u1, v1) and those in the subtrees of Ram(v2) and v2

only, shared bottlenecks in other edges can be removed concurrently. Therefore,
the node sends to its parent the delay samples of those congested edges that are
not involved in removing a bottleneck of any selected pair. (iii) Finally, the node
removes shared bottlenecks in its subtree by running the algorithm for every
selected pair.

4.2 Information Update

The algorithm requires that each node v should know d(r, v), SLeaf (v), and
Ram(v). These values are updated at each node u by exchanging information
with its parent and with its child nodes when the values change. An information
update packet from a parent u and a child v contains d(r, u) and Ram(v), which
are used to update v’s local information on d(r, v) and Ram(v). Similarly, an
information update packet from a child v to its parent u contains SLeaf (v),
and u updates SLeaf (u), d(u,SLeaf (u)), SLeaf (v), d(u,SLeaf (v)), and the child
node whose subtree SLeaf (v) belongs to.

7

4.3 Membership Management

We assume that a joining node obtains the address of the root node through an
out-of-band channel, such as WWW. When it sends a join request to the root
node, it is accepted as a temporary child. If the new node does not experience
congestion during the next round, it becomes a permanent child. Otherwise it
is forwarded to one of the existing children of the root node. This procedure is
propagated along the tree until the joining node becomes a permanent child of
an existing node. One concern is that congestion caused by a temporary child
may affect other children. This can be avoided if a parent node uses a priority
queue for its outgoing flows, in which packets to the temporary child have lower
priority than others.

When a node leaves, its children become temporary children of the parent
of the leaving node. Then the temporary children are treated as joining nodes.
Node failures are handled in the same way.

5 Evaluation

To evaluate our protocol, we compare it against two heuristic-based schemes.
The first one optimizes the multicast tree using bandwidth estimation as in
Overcast [7]. Each node estimates available bandwidth from the grandparent,
parent and its siblings using 10 kB TCP throughput, and then relocates below
the one with the highest estimation. However, 10 kB TCP throughput does not
have very strong correlation with available bandwidth. Taking into account that
a path chosen using 10 kB TCP throughput provides only half of the bandwidth
of the best path [8], we optimistically assume that the bandwidth estimation has
maximum error of 20%.

The second heuristic scheme is based on delay measurement. It is similar to
the bandwidth-based one except that it selects the node with the shortest delay
instead of the highest bandwidth and that the number of children each node can
have is limited to four to avoid high fan-out.

For fair comparison, we also introduce errors in shared congestion detection.
Since our goal is to show that our protocol performs better than heuristic-based
ones, we conservatively assume that the detection error is 5%, which is higher
than actual error rate (almost zero when measurement interval is longer than
10 seconds) of DCW [2]. Then we measure performance of each scheme using a
flow-level simulator we wrote, where bandwidth allocation to flows is max-min
fair. The relationship between the tree performance and error rate will also be
presented.

5.1 Tree Performance Comparison

To demonstrate tree performance under heavy load, we run simulations on a
network with a dense receiver population. The network topology is generated
with GT-ITM [9]. There are 24 transit routers, 576 stub routers, and 1152 hosts
participating the multicast session. The bandwidth (Mbps) of each link is ran-
domly drawn from four different intervals: [300, 1400) between transit routers,

8

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

C
D

F

Link stress

Delay Heuristic Tree
Bandwidth Heuristic Tree

Bottleneck Free Tree

Fig. 5. Link stress distribution

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Link load

Delay Heuristic Tree
Bandwidth Heuristic Tree

Bottleneck Free Tree

Fig. 6. Link load distribution

[40, 70) between a transit and a stub router, [5, 15) between stub routers, and
[1, 5) between a stub router and an end host. The source rate is set to 1 Mbps.
Initially, the tree consists of the source (root) host only. All the other hosts then
join the tree.

We use the following metrics to evaluate a multicast tree.

Link stress The number of flows in a multicast session that traverse a physical
link. Defined in [10].

Link load The sum of required rates for all flows in a link divided by the
bandwidth of the link.

Relative delay penalty (RDP) The ratio of the delay from the root to a
node in a tree to the unicast delay between the same nodes. Defined in [10].

Receiving rate The max-min fair rate assigned to a flow from the root to a
node divided by the maximum rate of the flow (the source rate).

Below we show distributions of these metrics for trees built with the three differ-
ent schemes: delay heuristic, bandwidth heuristic, and our bottleneck-free tree
protocol. We run the bottleneck-free tree protocol until there is no shared con-
gestion. The delay heuristic scheme is run until the tree does not change any
more. However, the bandwidth heuristic may oscillate as shown in Overcast [7]
because changing tree topology affects bandwidth estimation. Since Overcast
becomes relatively stable after 20 rounds, we run the bandwidth heuristic up to
30 rounds.

Figure 5 shows the link stress distribution for links used by the multicast
session. Since the delay heuristic tends to build a tree well-matched with the
underlying topology, its link stress is far better than other schemes. Note that
the bottleneck-free tree shows the worst performance in terms of link stress.
However, this does not necessarily mean that it is abusing the network, because
having a large number of flows in a link (high link stress) is totally acceptable if
the link has available bandwidth to accommodate all of them. The next figure
shows this point clearly.

Figure 6 presents the distribution of link load, which is the amount of band-
width required to carry all flows traversing a link divided by the link’s available
bandwidth. Contrary to the previous result, the delay heuristic is the worst
among the three; on some links, the required bandwidth to support the mul-
ticast session is more than 3.5 times the available bandwidth. This is because

9

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Receiving rate

Delay Heuristic Tree
Bandwidth Heuristic Tree

Bottleneck Free

Fig. 7. Receiving rate distribution

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

RDP

Delay Heuristic Tree
Bandwidth Heuristic Tree

Bottleneck Free Tree

Fig. 8. RDP distribution

the delay heuristic often chooses a link with small bandwidth if the delay of a
path going through the link is short. Note that link load with the bottleneck-free
tree is always less than one. The bandwidth heuristic maintains similar perfor-
mance as the bottleneck-free scheme, but some links have load higher than one.
Since each of such links throttles receiving rates of the entire subtree connected
upstream through the link, even a few of them may affect a large number of
receiving nodes. In Fig. 7, the receiving rate distribution is shown. Due to high
link load, all the receiving nodes in the delay heuristic tree receive less than half
of the source rate. The distribution for the bandwidth heuristic shows the im-
pact of the few links with high load in Fig. 6; only less than 40% of the receiving
nodes can receive data at the full source rate. The other 60% experience quality
degradation due to bandwidth shortage. However, in the bottleneck-free tree,
100% of the receiving nodes receive at the full source rate since it maintains link
load less than one. Usually such gain in receiving rate comes with the cost of
longer delay. However, our algorithm is very careful in changing the tree topol-
ogy not to increase depth of a relocated node unnecessarily. As a result, its RDP
is only a little worse than the tree built with the delay heuristic, as illustrated
in the distribution of RDP in Fig. 8. Because the bandwidth heuristic pays little
attention to delay, its RDP is worse than the others.

We have to mention that this experiment regarding RDP is somewhat unfair
to the bandwidth heuristic; the relative delay of the bandwidth heuristic would
be better if rate allocation was TCP fair rather than max-min fair. That is
because TCP throughput is affected by round-trip time, and then by choosing a
path with high throughput, a short path is very likely to be chosen. Nevertheless,
since the 10 kB TCP throughput does not have strong correlation with round-trip
time [8], we do not expect significant improvement with TCP fair rate allocation.

5.2 Convergence Speed

The next aspect of our protocol to evaluate is its convergence speed. The protocol
defines a series of actions performed during each round, and thus we use round

as a unit to measure the convergence time. The length of a round interval is on
the order of tens of seconds, because delay measurements for shared congestion
detection take ten seconds.

Fig. 9 shows how long it takes for a tree to stabilize when n nodes join. The
convergence time increases linearly as the number of joining nodes increases.

10

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

R
ou

nd
s

Number of joins

Fig. 9. Convergence after nodes join

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

R
ou

nd
s

Number of leaves

Fig. 10. Convergence after nodes leave

0

10

20

30

40

50

0 5 10 15 20 25 30

R
ou

nd
s

Depth of the link

Fig. 11. Convergence after available
bandwidth change

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

R
ec

ei
vi

ng
 r

at
e

Rounds

Median 3-D
Average 3-D
Median 4-D

Average 4-D
Median 5-D

Average 5-D

Fig. 12. Receiving rate increase as a tree
converges

This presents an upper bound because in this scenario all the nodes first become
children of the root node resulting in shared congestion on most links close to
the root. The convergence time would be reduced if nodes are allowed to contact
a non-root node directly to join or the root node forwards the new node to a
random node, though the resulting tree might be taller.

Unlike joins, concurrent leaves can be handled relatively easily. In Fig. 10,
we plot the convergence time when n hosts leave the tree. Except for a few
outliers, most cases take less than 20 rounds. This is because shared bottlenecks
in different subtrees can be eliminated concurrently.

We plot in Fig. 11 the time it takes to remove bottlenecks with different
depth in the tree. A new shared bottleneck was created by reducing available
bandwidth. As we can expect, a bottleneck near a leaf (depth larger than 25)
can be removed within a couple of rounds. On the other hand, a bottleneck close
to the root takes longer—up to ten rounds with a few outliers.

Figure 12 demonstrates receiving rate changes as time elapses until the tree
converges to the bottleneck-free state. The initial trees are built randomly with
fixed degree. For each degree (3, 4, or 5), both median and average receiving
rates are plotted. Although it takes tens of rounds to converge, most receiving
rate increase is achieved within early half of the convergence time.

5.3 Effects of Measurement Errors

Since all the three schemes we evaluated in Sect. 5.1 depend on network mea-
surements, we also investigated the relationship between errors in measurements

11

and tree performance. For the bandwidth-heuristic tree, we changed the mea-
surement error from 0% to 32%, but the difference was insignificant. For shared
congestion detection, there are two types of errors: false positive and false neg-
ative. We changed these values from 0% to 6%, which is higher than the error
rates observed in measurements [2], but could not find noticeable changes in
terms of RDP and convergence speed. Detailed results are shown in [6].

6 Conclusion

In bandwidth-demanding multicast applications such as multimedia distribution,
it is critical for a user to receive at the full source rate not to experience quality
degradation. Though many heuristics to achieve high receiving rate have been
proposed, they often fail to provide required receiving rate. We proposed a new
tree construction algorithm that removes bottlenecks caused by the multicast
session, and proved that it removes every such bottleneck. If the available band-
width of each link is larger than the source rate, the algorithm guarantees that
all receiving nodes receive at the full source rate. Simulation results show that
our protocol maintains low link load and short delay penalty while providing the
maximum receiving rate.

References

1. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications 20 (2002) 100–110

2. Kim, M.S., Kim, T., Shin, Y., Lam, S.S., Powers, E.J.: A wavelet-based approach
to detect shared congestion. In: Proceedings of ACM SIGCOMM 2004. (2004)

3. Harfoush, K., Bestavros, A., Byers, J.: Robust identification of shared losses using
end-to-end unicast probe. In: Proceedings of the 8th IEEE International Confer-
ence on Network Protocols. (2000)

4. Katabi, D., Bazzi, I., Yang, X.: A passive approach for detecting shared bottle-
necks. In: Proceedings of the 10th IEEE International Conference on Computer
Communications and Networks. (2001)

5. Rubenstein, D., Kurose, J., Towsley, D.: Detecting shared congestion of flows via
end-to-end measurement. Transactions on Networking 10 (2002) 381–395

6. Kim, M.S., Li, Y., Lam, S.S.: Eliminating bottlenecks in overlay multicast. Techni-
cal Report TR–04–47, Department of Computer Sciences, The University of Texas
at Austin (2004)

7. Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., O’Toole, Jr., J.W.:
Overcast: Reliable multicasting with an overlay network. In: Proceedings of 4th
Symposium on Operating Systems Design and Implementation. (2000) 197–212

8. Ng, T.S.E., Chu, Y., Rao, S.G., Sripanidkulchai, K., Zhang, H.: Measurement-
based optimization techniques for bandwidth-demanding peer-to-peer systems. In:
Proceedings of IEEE INFOCOM 2003. (2003)

9. Calvert, K.L., Doar, M.B., Zegura, E.W.: Modeling Internet topology. IEEE
Communications Magazine 35 (1997) 160–163

10. Chu, Y., Rao, S.G., Seshan, S., Zhang, H.: A case for end system multicast. IEEE
Journal on Selected Areas in Communications 20 (2002)

12

