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Abstract

We present a protocol, named RadGRPM, which runs on

a distributed Delaunay triangulation of a set of nodes in Eu-

clidean space. Given coordinates of the source node and a ra-

dius, RadGRPM multicasts a message to all nodes within the

given radius from the source. Since the target nodes are all

within a spherical region centered at the source, RadGRPM

provides a special kind of geocast, which we call radius geo-

cast. A multicast tree is not explicitly maintained in Rad-

GRPM. Each node determines the next-hop nodes to forward

a message solely using local information (the coordinates of

its neighbors) together with the radius and coordinates of the

center carried in the message. We prove that RadGRPM deliv-

ers a message to all nodes within the given radius. RadGRPM

is also efficient in the sense that very few nodes within the

radius receive duplicate messages, and nodes outside the ra-

dius receive no message. Extensive experimental results are

presented to investigate the performance and characteristics

of RadGRPM. Furthermore, we show that RadGRPM can be

combined with unicast greedy routing to provide geocast to

any spherical region not centered at the source node.

Keywords: broadcast, geocast, multicast, distributed vir-

tual environment, Delaunay triangulation, Voronoi diagram,

peer-to-peer network, wireless network.

1. Introduction

In a distributed virtual environment, entities interact with

other entities in a shared virtual space. A popular example of

a distributed virtual environment is Second Life. Multiplayer

on-line games such as World of Warcraft and Lineage are also

examples of distributed virtual environments.

Supporting a large number of concurrent users in a dis-

tributed virtual environment is a great technical challenge, es-

pecially in the current server-based architecture. Note that en-

tities (or avatars of players in a game) interact with each other

by exchanging events. Thus messages containing the events

should be exchanged among users’ computers. In a server-

based architecture, when an entity generates an event, it is
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transmitted to the server. Then the server determines which

other entities are affected by the event and sends the event to

each of the affected entities.

Scalability is an inevitable issue in such a server-based ar-

chitecture. A straightforward solution is limiting the number

of concurrent users per server. Each server is a separate vir-

tual space and users of different servers cannot interact with

each other. Another approach is dividing the virtual space into

regions with one server per region. In that case it is difficult

to handle entities on a boundary.

A peer-to-peer approach is a solution to the above-

mentioned scalability problem [2,7,14,16].1 In a peer-to-peer

system, when a node joins, both supply and demand of re-

sources increase. The key to a peer-to-peer system design is

whether the role of a server can be distributed among peers.

In a distributed virtual environment, a major task of a server is

determining which entities should receive an event and trans-

mitting the event to the entities. Note that an entity in a dis-

tributed virtual environment interacts mostly with nearby en-

tities. For example, when an entity makes sound, the sound

will be heard by entities within a certain range in the virtual

space. In general, each entity has an area of interest (AOI),

which is typically a circle (in 2D) or sphere (in 3D) centered

at the entity. An entity needs to propagate events that occur at

itself to other entities within its AOI, and receive events that

occur within its AOI. Therefore if an entity can find its nearby

entities, the entity can exchange events with the nearby enti-

ties.

The problem of finding nearby entities has led to Delaunay

triangulation, which we will abbreviate as DT in this paper.

A DT-based entity-connection topology for distributed virtual

environments has been proposed by various authors includ-

ing [2, 7, 14]. A DT is constructed for a set of nodes in a

Euclidean space, in which each node is a point in the space.

An entity in a virtual space can be abstracted as a node. We

will use a node (on a DT) and an entity (in a virtual space)

interchangeably in this paper. A triangulation in a 2D space

means, for a given set of nodes, constructing edges between

pairs of nodes such that the edges form a non-overlapping set

of triangles that cover the convex hull of the nodes. DT in

1Though a peer-to-peer approach may address the scalability problem, it

raises other technical issues. For example, guaranteeing that every user ob-

serves events in a consistent order is a difficult problem in a fully distributed

system.



a 2D space is usually defined as a triangulation such that the

circumcircle of each triangle does not include any node other

than the vertexes of the triangle. DT can be similarly general-

ized for higher dimensions [6].

We note two interesting properties of DT. First, it connects

a node to other nodes that surround the node, which makes

it useful for finding nearby entities. Second, greedy routing

always succeeds on a DT [1]. In greedy routing, a node for-

wards a message to one of its neighbors that is closest to a

given destination node. Note that greedy routing on an ar-

bitrary graph is prone to the risk of being trapped at a local

optimum, i.e., routing stops at a non-destination node that is

closer to the destination than any of its neighbors. However,

on a DT it is guaranteed that greedy routing always succeeds

to find the destination node. Note that greedy routing does

not always find the shortest route. However, the quality of the

greedy route is often very good, since the length of an optimal

route between a pair of nodes on a DT is within a constant time

of the direct distance [3, 5, 8]. Definition of a distributed DT

and a discussion of its properties are presented in section 3.

We present a suite of protocols to construct and maintain a

distributed DT for a dynamic set of nodes in d-dimensional

space (d ≥ 2) in [10].

From the two properties of DT, we design a protocol,

named RadGRPM (Radius Greedy Reverse-Path Multicast),

which runs on a distributed DT of a set of nodes in Euclidean

space. Using the RadGRPM protocol, a node can send a mes-

sage to nodes within a circle (in 2D), sphere (in 3D), or hy-

persphere (in d-D) of a given radius from itself. Multicast to

nodes within a target region is called geocast in the wireless

networks literature [13]. RadGRPM provides a special kind

of geocast, which we call radius geocast, because the target

nodes are all within a spherical region centered at the source.

For distributed virtual environments, since an AOI is usually a

circle or sphere centered at an entity, RadGRPM is well suited

for propagating events. For other potential applications, such

as wireless networks and sensor networks, we will show that

RadGRPM can be combined with unicast greedy routing from

the source node to the center of a spherical region to provide

a general geocast service.

To design RadGRPM, we first design a broadcast protocol

on a distributed DT, called GRPB (Greedy reverse-path broad-

cast).2 To broadcast a message from a source node s, GRPB

uses the reverse path of a greedy-routing path from every node

u to s. Since greedy routing always succeeds on a DT, there

exists a greedy-routing path from every node u to s. Therefore

if GRPB forwards a message from s to all the reverse-paths of

greedy-routing paths to s, the message will be delivered to

every node u. In section 4, we prove that GRPB delivers a

message from a source node to all other nodes in the system.

Note that GRPB may be considered as a special case of Rad-

2GRPB and RadGRPM were first introduced in our prior work [11] as ex-

amples of applications of a distributed DT. In this paper we provide proof of

correctness as well as an extensive evaluation of their performance character-

istics.

GRPM, in which the radius is infinite.

GRPB is similar to HyperCast [12], which is also a broad-

cast protocol using reverse paths on a distributed DT. The

difference between the two protocols is that GRPB is based

on greedy routing in d-dimensional space while HyperCast is

based on compass routing in 2D space. The major advantage

of both approaches is that a broadcast tree does not need to be

explicitly maintained. A node can determine next-hop nodes

based on the coordinates of its neighbors, itself, and the source

node.

We observe that the distance from a source node to each

hop in GRPB monotonically increases, since the distance to

a destination node decreases in greedy routing. We utilize

this observation in designing the RadGRPM protocol. Rad-

GRPM is basically the same as GRPB, except that it addition-

ally checks whether the next-hop nodes are within the radius

from the source node. In section 4, we prove that RadGRPM

delivers a message from a source node to all nodes within a

given radius from the source node. RadGRPM also keeps the

advantage of GRPB in that a multicast tree is not explicitly

maintained.

We evaluate our protocols in terms of correctness and ef-

ficiency. We say that a protocol is correct if it delivers a

message to every target node. As was stated earlier, we have

proved correctness for both GRPB and RadGRPM. We define

efficiency of a protocol as the ratio of the number of target

nodes to the number of message transmissions. For example,

if a protocol uses 100 messages to reach 50 target nodes, its

efficiency is 50%. Ideally each target node needs to receive

exactly one message and non-target nodes should not receive

any message, in which case efficiency is 100%. Flooding a

message to all neighbors may achieve correctness, but its effi-

ciency will be very low. Both GRPB and RadGRPM achieve

high efficiency. In GRPB, very few nodes receive duplicate

messages. In RadGRPM, very few nodes within the radius

receive duplicate messages, and nodes outside the radius re-

ceive no message. A small number of duplicate messages are

sent due to limitation of local knowledge at some nodes. By

extensive simulation experiments, we investigate correctness

and efficiency, as well as other characteristics of our protocols

such as node outdegree and hop count.

The organization of this paper is as follows. In section 2,

we present our system model and assumptions. In section 3,

we introduce concepts and definitions of DT and distributed

DT. In section 4, we present our broadcast and geocast proto-

cols and prove their correctness. We present extensive exper-

imental results in section 5. Finally we conclude in section 6.

2. System model

A distributed virtual environment is a virtual space, in

which entities interact with one another. Each entity processes

and generates events, changing its state. An entity interacts

with other entities by generating events that will be processed



at other entities and processing events that were generated by

other entities. We assume that the virtual space is a Euclidean

space, usually 2D or 3D (actually our protocols in this paper

are proved correct for a d-dimentional space). Thus each en-

tity has its coordinates that represent its location in the virtual

space. Each entity is assigned to a networked computer, which

processes events for the entity and maintains the entity state.

The computers are connected with one another via a network,

so that an event generated at a computer x for an entity on

another computer y can be transmitted from x to y.

We assume that the entities form a distributed DT. That is,

each entity is a node on the distributed DT. For convenience’s

sake, we use an entity and a node interchangeably. In a dis-

tributed DT, a node maintains a set of its “neighbor” nodes.

We define a DT, a neighbor, and a distributed DT in the next

section.

Recall that nodes (entities) are associated with their coor-

dinates. When a node “knows” other nodes, it also knows

their coordinates. That is, a node knows its own coordinates,

coordinates of its neighbors, and the coordinates of any other

nodes that it knows such as the destination node in routing

and the source node in broadcasting. The distance between

any two nodes can be calculated from their coordinates.

Lastly, for simplicity of our protocol description, we as-

sume reliable delivery of protocol messages. In a real imple-

mentation, additional mechanisms such as ARQ can be used

to ensure reliable message delivery.

3. Concepts and definitions of Distributed DT

Consider a set of nodes. Conceptually, nodes are points in

a Euclidean space.

We first define Voronoi diagram of a set of given nodes and

then define DT as the dual of the Voronoi diagram. Note that

there is another way of directly defining DT using circum-

circles of triangles (or circum-hyperspheres of simplexes in

higher dimensions). Since the DT properties of interest to us

come from Voronoi diagrams, we believe that our approach is

appropriate in the context of this paper.

Definition 1. Consider a set S of nodes in a Euclidean space.

The Voronoi diagram of S is a partitioning of the space into

cells such that a node u ∈ S is the closest node to all points

within its Voronoi cell V CS(u).

That is, V CS(u) = {p | D(p, u) ≤ D(p, w), for any w ∈
S} where D(x, y) denotes the distance between x and y. Note

that a Voronoi cell in a d-dimensional space is a convex d-

dimensional polytope enclosed by (d−1)-dimensional facets.

Definition 2. Consider a set S of nodes in a Euclidean

space. V CS(u) and V CS(v) are neighboring Voronoi cells,

or neighbors of each other, if and only if V CS(u) and

V CS(v) share a facet, which is denoted by V FS(u, v).

Definition 3. Consider a set S of nodes in a Euclidean space.

The Delaunay triangulation of S is a graph on S where two

v

u

Figure 1. A Voronoi diagram (dashed lines)

and the corresponding DT (solid lines) in a 2-
dimensional space.

nodes u and v in S have an edge between them if and only if

V CS(u) and V CS(v) are neighbors of each other.

Figure 1 shows a Voronoi diagram (dashed lines) for a set

of nodes in a 2D space and a DT (solid lines) for the same

set of nodes. Note that V CS(u) and V CS(v) are neighbors

of each other. We also say that u and v are neighbors of each

other when V CS(u) and V CS(v) are neighbors of each other.

Also note that facets of a Voronoi cell perpendicularly bisect

edges of a DT. Therefore, a DT is the dual of a Voronoi dia-

gram.3 Let us denote the DT of S as DT (S).
By a distributed DT, we mean that each node u ∈ S main-

tains a set Nu of its neighbor nodes.

Definition 4. A distributed Delaunay triangulation of a set

S of nodes is specified by {< u, Nu >| u ∈ S}, where Nu

represents the set of u’s neighbor nodes, which is locally de-

termined by u.

Definition 5. A distributed Delaunay triangulation of a set S

of nodes is correct if and only if both of the following condi-

tions hold for every pair of nodes u, v ∈ S:

• if there exists an edge between u and v on the global DT

of S, then v ∈ Nu and u ∈ Nv,

• if there does not exist an edge between u and v on the

global DT of S, then v 6∈ Nu and u 6∈ Nv.

That is, a distributed DT is correct when for every node u,

Nu is the same as the neighbors of u on DT (S) [11].

4. Broadcast and geocast protocols

4.1. Broadcast using reverse greedy paths

As was discussed earlier, the greedy routing algorithm

finds a path from a source node to a destination. Consider

3In geometry, polyhedra are associated into pairs called duals, where the

vertices of one correspond to the faces of the other.
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Figure 2. Forward path and reverse path.

such paths from all nodes in S to a node s ∈ S. The union

of the paths is a tree rooted at s. Therefore by reversing the

direction of each path, we get a broadcast tree from a source

node s to every other node in S. Figure 2 illustrates an exam-

ple of a reverse path. In forward greedy routing, v selects u as

the next hop, since u is its closest neighbor to the destination

s. Thus in a reverse-path broadcast from the source node s, u

should forward a message to v, if u knows that u is the next

hop of v in the forward route. Note that s is the destination in

the forward greedy routing and the source in the reverse-path

broadcast. We introduce a simple broadcast protocol which

utilizes the reverse-path tree. Note that our protocol does not

require knowledge of the global triangulation over S. Each

node u is assumed only to know its set of neighbor nodes,

and determines to which node(s) it should forward a message

based on its local knowledge. Specifically, node u in the pre-

vious example may not know all the neighbors of v. u only

knows the neighbors of u, but still has to determine whether u

is the closest node to s among v’s neighbor nodes.

The idea of using reverse path for broadcast goes back to

as early as 1978 [4]. In the context of DT, HyperCast [12]

is the first system to introduce the idea. Our protocol is dif-

ferent in that it is based on greedy routing in an arbitrary di-

mension while HyperCast is based on compass routing in a

2D space. The major advantage of both approaches is that a

broadcast tree does not need to be explicitly maintained. A

node can determine next-hop nodes based on the coordinates

of its neighbors, itself, and the source node.

We name our broadcast protocol as GRPB (greedy reverse-

path broadcast). In GRPB, a node u maintains a local DT

of u and u’s neighbors. For each neighbor v, u forwards a

message from a source node s to v if both of the following

two conditions hold:

C1 u is closer to s than v is.

C2 In the local DT of u and u’s neighbor nodes, there does

not exist a node w 6= u such that: C2.1 w is closer to s than u

is, and C2.2 u, v and w are included in the same triangle (or

simplex in a d-dimensional space).

Condition C1 is easy to understand. Suppose C1 is true.

Then u does not forward to v if u is sure that another node,

say w, is the next hop of v in the forward greedy routing. The

necessary and sufficient conditions for such w are: C2.1 w is

closer to s than u, and C2.3 w is a neighbor of v on the global

DT. However, u does not have global information and cannot

s

u

v

w

x

s

u

v

w

Figure 3. An ambiguous situation due to limited
knowledge in GRPB.

check C2.3. Hence we specify condition C2.2 which includes

C2.3. C2.1 and C2.2 are necessary but not sufficient.

Note that in case of a tie between w and u in C2.1, u must

forward to v at the cost of possible duplication, since v may

or may not choose u as the next hop in the forward greedy

routing. Note also that even if node w appears to be v’s neigh-

bor in u’s local DT, w may not actually be v’s neighbor in the

global DT. Figure 3 illustrates an example in a 2D space. The

left graph shows u’s local DT, in which v and w are neighbors.

However, as shown in the right graph, there may exist a node

x outside u’s local knowledge and thus w may not actually

be a neighbor of v. Without including C2.2 in C2, u might

erroneously conclude that it does not need to forward to v,

since w appears to be the closest node to s among v’s neigh-

bors. C2.2 detects such ambiguous situations and requires

that u forwards to v at the cost of possible duplication. We

performed experiments to broadcast a message using GRPB

on a distributed DT of 200 randomly-placed nodes in various

dimensions. In the experiments, the number of duplicate mes-

sages was from 3% to 10% of the number of nodes. For fur-

ther experiments on message duplication, refer to Section 5.2.

The protocol pseudocode is presented in Figure 4.

The following theorem guarantees the correctness of

Start broadcast(msg) of node u

; u is a source node, loc is location of u

for all v ∈ Nu do

send BROADCAST(msg, loc) to v

end for

On u’s receiving BROADCAST(msg, loc)

; u is a recipient of a BROADCAST message

Deliver(msg)

for all v ∈ Nu do

if v satisfies conditions C1 and C2 from loc then

send BROADCAST(msg, loc) to v

end if

end for

Figure 4. GRPB protocol at a node u.



GRPB, namely it delivers a message to all nodes in the system.

Theorem 1. Let a set S of nodes form a correct distributed

DT. The GRPB protocol delivers a message from a source

node s ∈ S to all the other nodes in S.

Proof. We prove the theorem by showing that if there exists

an edge from u to v in the global reverse-path tree, the GRPB

protocol also forwards a message from u to v.

Our proof is by contradiction.

(1) Assume that the theorem is not true. Suppose a node u

fails to forward to its neighbor v, while there exists an

edge from u to v in the global reverse-path tree.

(2) v is a neighbor of u on the local DT of u, since the dis-

tributed DT is correct. [From Definition 5.]

(3) u is closer to s than v is, since there is an edge from u to

v in the global reverse-path tree.

(4) On the local DT of u, there exists a node w that is a

mutual neighbor of u and v, and the distance between w

and s is shorter than the distance between u and s. [From

(1), (2), (3), and conditions C1 and C2.]

(5) w is not a neighbor of v on the global DT. [If w were

a neighbor of v, the next hop of v in the forward path

should not be u since, from (4) , w is closer than u to s.]

(6) On the local DT of u, there exists a simplex that includes

u, v and w. Let the simplex be denoted by p. [From

condition C2.2.]

(7) p does not exist on the global DT, since w is not a neigh-

bor of v. [From (5).]

(8) On the global DT, the space of p is occupied by other

simplexes.

(9) Let x be one such simplex that includes u and v. Let

x1, ..., xk be the other nodes of x other than u or v.

(10) x1, ..., xk are neighbors of u on the global DT.

(11) x1, ..., xk are neighbors of u on the local DT of u, since

the distributed DT is correct. [From Definition 5.]

(12) There exists the same simplex x on the local DT of u,

since v and x1, ..., xk are neighbors of u. [From (2) and

(11).]

(13) It is impossible that x and p co-exist on the local DT of

u, since they overlap.

4.2. Radius geocast

Geocast is a special case of multicast in which a message

is delivered to all nodes in a given region. Our radius geocast

protocol, RadGRPM, is designed to deliver a message to all

nodes within a given radius from a source node.

We observe that in the GRPB protocol the distance of next

hop from the source monotonically increases, since the dis-

tance to the destination monotonically decreases in forward

greedy routing. We utilize this observation in designing Rad-

GRPM.

In RadGRPM from a source node s to all the other nodes

within a given radius r, s first sends the message to all its

Start radius geocast(msg, rad) of node u

; u is a source node, loc is location of u

for all v ∈ Nu within rad from loc do

send GEOCAST(msg, rad, loc) to v

end for

On u’s receiving GEOCAST(msg, rad, loc)

; u is a recipient of a GEOCAST message

Deliver(msg)

for all v ∈ Nu do

if v satisfies conditions C1, C2, and C3 from loc

then

send GEOCAST(msg, rad, loc) to v

end if

end for

Figure 5. RadGRPM protocol at a node u.

neighbors within r. Then, for each neighbor node v, a node

u forwards a message to v if the following condition holds as

well as C1 and C2 in GRPB:

C3 The distance from s to v does not exceed the radius r.

Essentially the protocol is the same as the original GRPB

protocol, except that forwarding stops when the distance from

the source exceeds the given radius (condition C3). Note that

no node outside the given radius receives any message, which

is one reason that RadGRPM is efficient. Pseudocode of the

protocol is presented in Figure 5. Theorem 2 guarantees that

RadGRPM delivers the message to all nodes within a given

radius.

Theorem 2. Let a set S of nodes form a correct distributed

DT. The RadGRPM protocol delivers a message from a source

node s ∈ S to all nodes within a radius r from s.

Proof. By Theorem 1, the GRPB protocol delivers a message

to all other nodes in S. Since the distance from s monotoni-

cally increases whenever a message is forwarded and the for-

warding stops when the distance from s exceeds r, all nodes

along the reverse greedy paths after stopping have distances

from s longer than r. Therefore the RadGRPM protocol de-

livers the message to all nodes within the radius r.

4.3. General geocast

Note that RadGRPM by itself is a special kind of geocast

in the sense that a source node is at the center of a spheri-

cal target region. RadGRPM can be combined with unicast

greedy routing to provide general geocast. That is, in case a

source node is not at the center of a spherical target region,

the source sends a unicast message to the center location us-

ing greedy routing; the message is then propagated within the

target region using RadGRPM, as described below.

If no node exists at the center of a spherical target region,

greedy routing towards the center (specified by its coordi-

nates) will succeed to forward the unicast message to a node



closest to the center (see Theorem 1 and its proof in [9]). For

clarity of explanation, let us assume for now that there is only

one node that is closest to the center point. The case where

there are two or more closest nodes is addressed below. Let c

denote the center point and c′ the closest node to c. As soon

as c′ receives a unicast message by greedy routing towards c,

c′ determines that it is a closest node to c among its neigh-

bors and starts RadGRPM. More specifically, it executes the

Start radius geocast() function in Figure 5 using the center’s

location for parameter loc instead of its own location. Start-

ing RadGRPM from c′ does not affect correct execution of

RadGRPM. Correctness of GRPB and RadGRPM is based on

the fact that greedy routing to a node always succeeds on a

DT. Since greedy routing towards c always succeeds to reach

the closest node c′, c′ is the root of the reverse-path tree of

greedy routing from every node towards c. Note that the same

greedy routing towards c is used, whether a node exists at c or

not. Therefore the same reverse-path conditions (C1 and C2)

can be used even if RadGRPM is started from c′. Also, the

distance from c monotonically increases in the reverse greedy

paths, allowing use of the same stopping condition (C3).

It is possible that there are two or more nodes closest to

the center. (These nodes are equidistant from the center.)

Greedy routing towards the center will forward the unicast

message to one of the closest nodes. Let c′1 denote the closest

node that receives the unicast message. Let c′
2
, ..., c′

k
denote

the other closest nodes, where k > 1. Note that the greedy

paths from all nodes form a forest of trees, the root nodes of

which are the closest nodes, c′
i
, 1 ≤ i ≤ k. When the uni-

cast message arrives at c′1 by greedy routing, c′1 determines

that none of its neighbors is closer to the center than itself,

which means c′
1

is one of the closest nodes, and it executes the

Start radius geocast() function in Figure 5 using the center’s

location for paramter loc instead of its own. In the function,

c′
1

sends a geocast message to each of its neighbors within

the radius of the center. Therefore if another closest node is

a neighbor of c′
1
, it will receive the geocast message; it also

determines that it is a closest node to the center and it executes

the Start radius geocast() function in Figure 5 using the cen-

ter’s location for parameter loc instead of its own. Thus, if the

set of closest nodes to the center and DT edges between them

form a connected graph, then all of the other closest nodes are

guaranteed to receive the geocast message. Subsequently, the

geocast message will be propagated in all reverse-path trees

of the forest and it will be delivered to all nodes within the

radius of the center location.

In the following Lemma, we prove that the set of nodes

closest to the center and DT edges between them form a con-

nected graph, which is sufficient to prove correctness of our

general geocast protocol described above.

Lemma 1. Let a set S of nodes form a correct distributed DT.

Let p denote a point in the space. Let c′1, c
′

2, ..., c
′

k
denote the

closest nodes to p in S, , k > 1. Then the subgraph of DT that

includes c′
1
, c′

2
, ..., c′

k
and edges between them is a connected

graph.

Proof. Our proof is by contradiction.

(1) Suppose the subgraph of DT is not a connected graph.

Without loss of generality, suppose that c′1, c
′

2, ..., c
′

h
are

connected, h < k, but they are not connected to c′
k
.

(2) Let Nc = Nc′
1
∪ Nc′

2
∪ ... ∪ Nc′

h
− {c′

1
, c′

2
, ..., c′

h
}. Let

nc be the closest node in Nc to p. Let ∆ = D(nc, p) −
D(c′

1
, p).

(3) Let p′ be a point that is ∆

4
away from p towards c′

k
.

(4) D(c′
k
, p′) = D(c′

k
, p) − ∆

4
.

(5) D(c′i, p
′) > D(c′i, p) − ∆

4
= D(c′

k
, p′), i 6= k. [c′i, i 6= k

cannot be in the same direction as c′
k

from p.]

(6) c′
k

is the only closest node to p′.

(7) D(c′i, p
′) ≤ D(c′1, p) + ∆

4
, 1 ≤ i ≤ h. [From (3) and the

assumption that D(c′
1
, p) = D(c′

i
, p), 1 ≤ i ≤ k.]

(8) D(c′1, p) + ∆

4
≤ D(n′

c, p) − ∆ + ∆

4
, n′

c ∈ Nc. [From

(2).]

(9) D(n′

c, p) − ∆ + ∆

4
< D(n′

c, p) − ∆

4
, n′

c ∈ Nc.

(10) D(n′

c, p) − ∆

4
≤ D(n′

c, p
′), n′

c ∈ Nc. [From (3).]

(11) D(c′
i
, p′) < D(n′

c, p
′), 1 ≤ i ≤ h, n′

c ∈ Nc. [From (7) –

(10).]

(12) Greedy routing from c′
1

towards p′ will be stuck at one

of the nodes c′1, ..., c
′

h
, and cannot reach c′

k
.

(13) Greedy routing from any node in S towards p′ always

succeeds to reach the closest node to p′, which is c′
k
.

[From (6) and Theorem 1 in [9].]

(14) (12) and (13) are contradictory to each other.

5. Experimental results

Using simulation experiments, we first evaluate our proto-

cols in terms of correctness and efficiency. Then we investi-

gate characteristics of our protocols in terms of node outde-

gree and hop count. In our experiments, 1000 nodes are ran-

domly placed in a 2D (or 3D) space, each axis of which has

a range of 0 to 9999. We run our protocols from each of the

1000 nodes and the average of the 1000 experiments is shown.

5.1. Correctness

We say that a protocol is correct if it delivers a message to

every target node. That is, GRPB should deliver a message

to all nodes in the system and RadGRPM should deliver a

message to all nodes within the given radius. Recall that both

GRPB and RadGRPM are proved to be correct by Theorem 1

and Theorem 2, respectively. In every one of many thousands

of experiments we conducted, GRPB and RadGRPM always

worked correctly, namely, delivered a message to every target

node.

5.2. Efficiency

We define efficiency of a protocol as the ratio of the number

of target nodes to the number of message transmissions. For
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Figure 6. Distribution of number of messages

delivered at a node.

example, if a protocol uses 100 messages to deliver to 50 tar-

get nodes, its efficiency is 50%. Ideally each target node needs

to receive exactly one message and non-target nodes should

not receive any messages, in which case efficiency is 100%.

There are two sources of inefficiency: (a) a non-target node

receives a message and (b) a target node receives a message

more than once. Our protocols are carefully designed such

that non-target nodes do not receive any message and very

few target nodes receive duplicate messages. A small num-

ber of duplicate messages are sent due to limitation of local

knowledge at some nodes.

Figure 6(a) shows the distribution of number of messages

delivered at a node in GRPB. The solid line represents the

result in 2D and the dashed line represents the result in 3D.

In both results, most of nodes receive the broadcast message

exactly once. Most of the other nodes receive the message

twice. The efficiency is 96.1% in 2D and 88.3% in 3D.

Figure 6(b) shows the distribution of number of messages

delivered at a node in RadGRPM. The results of radius 1000

in 2D, radius 3000 in 2D, radius 2000 in 3D, and radius 5000

in 3D are shown. The average number of target nodes in each

case is 28.2, 215.4, 26.3, and 280.2, respectively. The effi-
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Figure 7. Efficiency and number of target

nodes.

ciency in each case is 99.4%, 98.0%, 99.3%, and 94.6%, re-

spectively.

Figure 7 shows a trend that efficiency decreases as the num-

ber of target nodes increases. However, the efficiency is still

very high for hundreds of target nodes.

5.3. Node outdegree and hop count

Node outdegree and hop count are important characteris-

tics of a broadcast/multicast tree.4 The outdegree of a node is

the number of other nodes to which the node sends a message

in a broadcast/multicast. A low node outdegree is preferred

since a node has limited resources, especially in a peer-to-

peer environment. A low hop count is also preferred to reduce

delay. There is a trade-off between node outdegree and hop

count. That is, a tree cannot have a low node outdegree and a

low hop count at the same time.

Figure 8(a) shows the distribution of node outdegree in

GRPB. The solid line represents the result in 2D and the

4Even though our protocols do not explicitly maintain a broad-

cast/multicast tree, the graph consisting of all message-forwarding paths is

called a tree. Note that, to be strict, the graph may not be a tree due to dupli-

cate messages delivered to a node.
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dashed line represents the result in 3D. The average node out-

degree is higher in 3D than 2D, which is expected since a node

has more neighbors in a higher-dimension DT. Both in 2D and

3D, very few nodes have outdegree of four or higher.

Figure 8(b) shows the distribution of node outdegree in

RadGRPM. The results of radius 1000 in 2D, radius 3000 in

2D, radius 2000 in 3D, and radius 5000 in 3D are shown. In

all cases, very few nodes have outdegree of four or higher.

Figure 9(a) shows the distribution of hop count in GRPB.

The solid line represents the result in 2D and the dashed line

represents the result in 3D. The average hop count is 14.8 in

2D and 5.6 in 3D, which is smaller in 3D since the average

node outdegree is higher in 3D.

Figure 9(b) shows the distribution of hop count in Rad-

GRPM. The results of radius 1000 in 2D, radius 3000 in 2D,

radius 2000 in 3D, and radius 5000 in 3D are shown. The

average hop count in each case is 2.3, 5.8, 1.5, and 3.2, re-

spectively.

Figure 10 shows that the average hop count increases as

the number of target nodes increases. Since the average node

outdegree is higher in 3D than 2D, the average hop count in-

creases faster in 2D. This is due to the planar nature of a DT.

That is, a DT does not have a shortcut that connects a node to

a faraway node. If necessary, the average hop count may be
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reduced by introducing additional shortcut edges to a DT. Cor-

rectness GRPB and RadGRPM is not affected by forwarding

additional messages over shortcut edges. Efficiency decreases

in exchange for a decreased average hop count, since the addi-

tional messages are redundant. Tsuboi et al. [17] recently pro-

posed Skip Delaunay Network (SDN), which is a hierarchy of

DTs and enables a unicast and a geocast protocol with log(N)
hop counts. Their geocast protocol (GeoMulticast) delivers a

message to a rectangular region. A hierarchy of DTs is also

mentioned in [12].

6. Conclusions

Distributed virtual environments are gaining popularity in

recent years. In a distributed virtual environment, an entity

communicates with its nearby entities. To support that opera-

tion, we design and investigate a radius geocast protocol, Rad-

GRPM, which is derived from our broadcast protocol, GRPB.

Our protocols run on a distributed DT of a set of nodes in Eu-

clidean space. A suite of protocols to construct and maintain

a distributed DT for a dynamic set of nodes in d-dimensional

space (d ≥ 2) is presented in our prior work [10].

GRPB and RadGRPM take advantage of two properties of

DT: (i) DT connects an entity with its nearby entities and (ii)
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Figure 10. Average hop count and number of

target nodes.

greedy routing always succeeds on a DT. Neither of our pro-

tocols requires an explicit broadcast/multicast tree.

Our protocols can be used for a network of nodes with

known coordinates in a Euclidean space. Other potential ap-

plications of our protocols are sensor networks and wireless

ad hoc networks, where nodes are equipped with GPS de-

vices or nodes use signal strengths, message delays, and/or

signal directions to determine locations. Typical applications

of geocast include querying nodes within a region of a sensor

network and sending an emergency warning to users within a

region of a wireless ad hoc network [13, 15].

We evaluate our protocols in terms of correctness and effi-

ciency. We prove that both of our protocols are correct, which

means that no target node fails to receive a message. In all

simulation experiments we conducted, GRPB and RadGRPM

worked correctly. Simulation experiments also show that our

protocols are highly efficient in the sense that the number of

messages used for a broadcast/multicast is not much more

than the number of target nodes, which is the lower bound.
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