PROTOCOL CONVERSION--CORRECTNESS PROBLEMS*

Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Abstract

Consider the problem of providing a logical channel for
message exchange between two user processes in a network en-
vironment. When is protocol conversion needed? To answer
this question, we first define a model of layered architectures.
Specifically, three stepwise refinement rules are given. Any ar-
chitecture that can be obtained by a sequence of applications of
the stepwise refinement rules is said to be well-structured. We
show that this class of well-structured architectures has several
correctness properties. It is also very general and includes
many well-known networking and internetworking architec-
tures in the literature. Logical connectivity in such an ar-
chitecture is defined recursively. As a result, to determine if a
logical channel can be provided between two user processes, it
is sufficient to examine peer protocols specified for each level of
the architecture’s hierarchy of processes one at a time. Thus
the original problem reduces to the problem of determining if a
set of processes will interoperate.

When protocol conversion is needed to achieve inter-
operability between processes that implement different
protocols, how should it be done? How does one prove that a
conversion is correct? What is meant by a correct conversion?
We propose the use of projections and image protocols
{previously developed by Lam and Shankar for protocol
verification [10]) for specifying conversions and for reasoning
about the correctness of conversions. Given two processes im-
plementing different protocols P and Q, our objective is to find
the largest protocol that is an image protocol of P as well as
Q. The correctness of the conversion is a consequence of the
correctness properties of image protocols.

* .
This work was supported by National Science Foundation
Grant No. ECS 83-04734.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1986 ACM 0-89791-201-2/86/0800-0019 75¢

19

There are several open problems. Most importantly,
heuristics are used for finding the necessary image protocol for
conversion. Although, an image protocol common to both P
and Q can always be found, it may not be easy to find one
with useful functionality. There are also some implementation
and design issues to be addressed, such as: the construction of
converters that are transparent and converters that add
functionality to an image protocol common to P and Q.

1. Introduction

With the proliferation of network architectures and com-
munication protocols, it becomes increasingly difficult to en-
sure that users connected to different networks can communi-
cate. It may be argued that the solution to this problem is
simply to agree upon one worldwide standard protocol architec-
ture, say Open Systems Interconnection {17], or one internet-
ting protocol, say TCP/IP or X.25/X.75, to be used by all sup-
pliers of hardware and software [2, 5, 16]. In a recent article,
Green [6] reviewed the protocol conversion problem from the
architectural point of view, reviewed current ad hoc solutions,
and argued convincingly that protocol conversions will be a
permanent fact of life. He gave two main reasons. First, it is
already too late to try to get everyone to adhere to the same
standard. There is an installed base of over 20,000 IBM SNA
networks, over 2000 DECnet networks, several hundred DoD
TCP/IP networks, as well as many other vendor-specific net-
works. Second, convergence to a global standard implies that
all tradoffs are understood and all inventions are made and as-
similated, which is obviously not the case in the relatively
young field of computer communications.

Even in the absence of architectural mismatches, the
problem of achieving interoperability between different
variants of the same protocol is a nontrivial task. Many
protocol standards developed with the intention of fostering
compatibility ended up as families of different standards |1, 2].
A standard as basic as RS-232 has many variants [11]. The
data link protocol standard HDLC has many siblings: SDLC,
ADCCP, LAP, LAP B, LAP B Multilink, etc. Even HDLC it-
self defines, in addition to a basic repertoire of commands and
responses, a wide variety of optional capabilities for implemen-
tors to pick and choose from (thus fostering incompatibility be-
tween independently implemented versions of the protocol) (8,
9].

To date, there have been a few protocol conversions at-
tempted [6, 7]. However, there is no theory for understanding
the protocol conversion problem. When is a conversion
feasible? Correct? Useful? Acceptable? Or Successful? How
do we synthesize a conversion?

We shall limit our attention to networks that implement
layered protocol architectures and employ the method of en-
capsulation for the interaction of peer processes and maintain-
ing data transparency. In today’s networks, these requirements
are quite reasonable and not at all restrictive. To tackle the
protocol conversion problem in general, Green [6] discussed two
kinds of mismatches that have to be considered: architectural
mismatches and protocol mismatches. We shall address both.

In Section 2, we present a model of layered architectures.
In this model, checking for architectural mismatches becomes
checking for logical connectivity of the access path between
two user processes. Since logical connectivity is defined recur-
sively in the model, it is sufficient to examine peer protocols in
an architecture one at a time. Architectures in this model have
several correctness properties and are said to be well-
structured. The class of well-structured architectures is very
general and includes many well-known internetworking ar-
chitectures. In fact, the concept of logical connectivity in this
model eliminates any need to make a distinction between ar-
chitectures for networking and internetworking. Section 3 il-
lustrates this point. In Section 4, we address the problem of
synthesizing a conversion between processes that implement
different protocols. A formal model is introduced. The model
is based upon protocol projections and image protocols
previously developed by Lam and Shankar for protocol verifica-
tion {10]. The model is well suited for reasoning about matches
(or mismatches) between different protocols and also about the
meaning of a correct conversion. Some design issues and open
problems are discussed in Section 5.

2. A Model of Layered Architectures

Layering has been used as the basis for almost all com-
puter network architectures. It is a powerful “structured
programming” technique. Layering allows the allocation of
network functions to different layers. Program modules in a
layer can be implemented and subsequently modified independ-
ent of the details in the implementation of other layers. There
is generally some duplication of functions in different layers of
an architecture. However, it is fairly clear that any loss of ef-
ficiency due to functional duplication is outweighed by the ad-
vantages of modularity and hierarchical construction.

We shall present a model in which a layered network ar-
chitecture is specified by a hierarchy of processes together with
a set of protocols. Processes in the hierarchy are intercon-
nected in some fashion by physical channels. We say that a set
of processes will tnferoperate or a process-channel pair will in-
teroperate if there is a protocol specified in the architecture for
their interaction. (However, we do not need to know the func-
tional specification of the protocol at this time.) The processes
at one level of the hierarchy together with the protocols
specified for them constitute one layer of the architecture.

20

An architecture is constructed recursively by applying
several stepwise refinement rules. The class of architectures
constructed in this fashion is general enough to include many
well-known network and internetwork architectures. Our
layering concept is not new. Our formal approach, however, is
helpful for writing down unambiguously the requirements for
processes to communicate across a network or across an inter-
connection of networks, for understanding what is meant by
protocol conversion, and for determining if protocol conversion
is necessary for a given architecture. (Our model is an elabora-
tion of an earlier attempt by us in [9].) It is clear from reading
Green’s paper that a formal model of structured protocols is
needed for understanding the protocol conversion problem.

Let us begin by considering Figure 1 showing two

processes interconnected by a {full-duplex) channel. P1 sends

messages from a message set into the channel to be delivered to
P2. P2 sends messages from a message set into the channel for
delivery to P,. In order for P| and P, to communicate, three
protocols are necessary. Obviously, a protocol is needed be-
tween Pl and P2. Since Pl and P2 interact by messages, this
protocol can be specified by specifying an event for the sending
and receiving of each message by the processes. (Additionally,
some internal events not associated with the sending and
receiving of messages are also needed, e.g., timeouts.) Each
event is specified by its enabling condition and the action of
the process during the event execution. Such enabling con-
ditions and actions define operationally the protocol between
Pl and P2. For the purposes of this section, it is not necessary

to know what the specific protocol functions are.

process process

channel

Figure 1. Two communiceting processes.
Two other protocols are also necessary in Figure 1, one
each for P1 and P2 to interoperate with their channel inter-

faces. The specification of these protocols depends upon the
channel. If Pl and P2 reside in the same node and the in-

tranode channel is provided by some interprocess communica-
tion (IPC) facility, these protocols are simply some IPC send
and receive operations. If P1 and P2 are processes in different

nodes interconnected by a physical link, then these protocols
may be realized in the form of signals on a set of interface
wires [11].

(In our figures, we use a rectangular box to denote 2
channel. Such a channel may be realized as a physical channel,
intranode or internode, or as a logical channel. We use a
dashed line to denote a logical channel and a solid line to
denote an intranode physical channel.)

Next, we define some stepwise refinement rules with
which we can generate protocol architectures beginning with
the configuration in Figure 1.

Abstraction rule. A logical channel between P, and P,

provided by a protocol in a lower layer replaces a channel. Ap-
plying the abstraction rule transforms the configuration in
Figure 1 to the configuration in Figure 2.

lower layer

channel

Figure 2. Replacing 8 physical chennel with a
fogical chennel.

Refinement rule. A channel (in Figure 1 or Figure 2) is
refined to be a network of processes. The network can have
the same configuration as the one in Figure 1. Or it can be a
store-and-forward network with a mesh topology, a ring net-
work, a coaxial cable network and others. The only require-
ment for it is the existence of a path between P, and P, con-

sisting of a single process or a sequence of processes intercon-
nected by channels as shown in Figure 3. Such a path may
change adaptively for each message travelling between P1 and

P2. It may be cyclic as long as it is finite. Given this refine-
ment, P1 (P2) actually interacts with a process rather than in-

teracting with a channel interface; such a process shall be
referred to as a boundary process of the network realizing the
channel. The boundary process that P, (P,) connects to is as-

sumed to reside in the same node as P, (P,) and they interact

by IPC operations. As part of this refinement step, a new
protocol is specified for the set of processes in the network to
interoperate. Protocols are also specified for each process in
the network to interoperate with channels that it sends into or
receives from.

boundary boundary
process process

Figure 3 A network psth.

Recursion rule. Each channel in a network of processes
generated by the refinement rule can be replaced by a logical
channel by applying the abstraction rule. Each channel in the
hierarchy of processes under construction can be refined into a
network of processes.

Starting with either the configuration in Figure 1 or the
one in Figure 2, and by applying the above three rules in some
order, a very general class of structured protocol architectures
can be generated.

A protocol specified for a network of processes generated
at a reflinement step is said to be a peer protocol. (These
processes are peers because they are at the same level of the
process hierarchy being constructed, i.e., they are within the
same layer in the protocol architecture.) These processes inter-
act by sending messages to one another. The method of encap-
sulation is assumed in our model for the delivery of these
protocol messages. Encapsulation is the method used in prac-
tically all layered architectures that we know of. It is described
next.

21

Consider a peer protocol implemented by a network of
processes such as shown in Figure 4. Messages given by an ex-
ternal user process to a boundary process in the network for
delivery will be referred to as service data units (SDUs) of the
protocol. Each SDU is treated as transparent data, i.e., a se-
quence of bits which is not interpreted by any process in the
protocol. Each SDU received by a boundary process for
delivery is "wrapped® with a header (and possibly a trailer as
well). Control messages that processes in the peer protocol
send to one another are encoded in the header. A wrapped
SDU is referred to as a protocol data unit (PDU) of the peer
protocol. Let SDU_ and PDU_ denote a SDU and a PDU of a
protocol named x. Let H, denote the header wrapped by
protocol x on its SDUs. We define the following notation:

PDU = HX(SDUX)

We also define the unwrapping of a PDU by the two functions:

Header(PDU,) = H_

Data(PDU,) = SDU_

Note that some PDUs may not have any SDU wrapped
inside and are created solely by the protocol processes for their
own interaction. In this case, Header(PDU) = H_ and
Data(PDUx) At each intermediate process along the
path of a PDU, the PDU is unwrapped so that Header(PDU)
can be read and interpreted. Header(PDU) may be updated
prior to delivery to the next process in the path. At the des-
tination boundary process, Data(PDU) is delivered to the des-

tination user process.

nil.

user
process

user
process

%

ONO-O-OOFO

user user
process process

peer protocol

Figure 4 A peer protocol implemented by e
network of processes

A peer protocol provides a logical channel between user
processes in a higher layer and/or user processes in the same
layer as the protocol. Note that processes within the same
layer of an architecture may be connected by physical channels
(intranode or internode) or by logical channels. Such a logical
channel is itself realized by a lower-layer protocol or by a mul-
tilayered architecture. Thus, if two processes in protocol x are
connected by a logical channel provided by a lower-layer
protocol named y, then we have

SDU_ = PDU

y x
and

PDU, = H(SDU,) = H,(PDU,) = H (H (SDU,))

As a message from P, travels to P, through the hierar-
chy of processes that realizes the channel in Figure 1, wrapping

and unwrapping of different protocol headers will occur many
times.

We state several properties of protocol architectures con-

structed by applying the stepwise refinement rules in any finite
sequence.

Property 1 (Freedom from unspecified receptions).

(i) I 2 message is delivered to P,, the message was
sent by Pl'

(ii) Whenever a process unwraps a PDU, Header(PDU)
is for a protocol specified in the architecture for a
set of processes including this process.

Note that Property 1 is a safety property. Progress of
messages and PDUs are not guaranteed. (That is why the
protocol function and network topology need not be specified
in applying the refinement rule.) Property 1 is also a fairly
weak safety property because it does not preclude losses,
duplications, and reorderings in the delivery of messages and
PDUs. 1t is, however, a property of the architecture. Progress
and the stronger safety properties are the responsibilities of the
protocols which have been specified for logical connectivity in
the architecture but not yet specified functionally. Property 1
implies that the method of encapsulation can be used safely in
this class of architectures.

Property 1 can be proved in a straightforward manner
using induction with the bottom layer in the architecture as
the base case. It is necessary to assume that physical channels
do not deliver PDUs with undetected errors. (If a PDU is cor-
rupted by errors, the corruption is detected and the PDU is
lost.) Also, processes and physical channels do not generate
spurious messages.

Property 2 (Physical connectivity).

There is a finite sequence of processes between P, and P,
and all adjacent processes in the sequence including P1 and P2
are connected by physical channels (intranode or internode).

This property is rather obvious since the initial con-
figuration in Figure 1 has physical connectivity if the channel
is realized by a physical channel. And each application of the
stepwise refinement rules preserves physical connectivity.

Recall that a set of processes and channels in an architec-
ture are said to interoperate if the same protocol is specified in
the architecture for their interaction.

Definition. For two processes connected by a physical chan-
nel, as shown in Figure 1, we say that they are logically con-
nected if (1} the processes interoperate, and (2) each process in-
teroperates with its channel interface.

Definition. For two user processes connected by a network of
processes, as shown in Figure 4, we say that they are logically
connected if (1) the user processes interoperate, (2) the
processes of the network interoperate, (3) each user process is
logically connected to a boundary process in the network, and
(4) there is a sequence of processes in the network with the
boundary processes at the beginning and end of the sequence,
wherein adjacent processes are logically connected.

22

Property 3 (Logical connectivity).
Pl and P2 are logically connected.

Again, this property is obvious given that the initial con-
figuration in Figure 1 has logical connectivity. Logical connec-
tivity is preserved by each application of the stepwise refine-
ment rules. ‘

A protocol architecture is sald to be well-structured if it
can be obtained by a sequence of applications of the stepwise
refinement rules.

(It should be clear that although we use Figure 1 as the
initial configuration for stepwise refinement, we can just as
easily use Figure 5 as the initial configuration. By considering
two processes instead of N processes, we can represent a net-
work by a path in the refinement step. Thus, we avoid having
to draw three-dimensional pictures for process hierarchies.)

A simple application of the above method to generate a
well-structured architecture is illustrated in Figure 6. The
hierarchy of processes is generated by 3 successive applications
of the abstraction rule followed by an application of the refine-
ment rule to get the processes labeled 5. The abstraction rule
is then applied twice to each channel connecting processes
labeled 5. As each rule is applied, peer protocols are specified;
processes that are specified to implement the same peer
protocol are labeled by the same number. Protocols are also
specified for the interaction of process pairs or process-channel
pairs joined by a solid line in the hierarchy picture.

Most readers probably recognize the architecture in
Figure 6 to be the OSI architecture [17]. But why have we
labeled the layers from the top down instead of from the bot-
tom up? We have purposely deviated from convention here to
make the following point. For an architecture to be well-
structured, the magic number 7 and the symmetry of the OSI
architecture are both unnecessary. (Of course, the OSI ar-
chitecture is still a good thing to have as a framework for stan-
dards activities.) Take a look at Figure 7. Logical connec-
tivity between the user processes is assured by the peer
protocol at level 5 given that adjacent processes at level 5 are
logically connected. However, logical channels between
processes at level 5 can be provided by vastly different
protocols or layered architectures, i.e., each logical channel can
be realized by any well-structured architecture. For example, 7
and 7' denote two different physical layers, 6 and 6' denote
processes that implement different data link protocols, 6"
denotes processes that implement not a data link protocol but
a peer protocol that uses a network for message delivery. The
architecture in Figure 7 is well-structured. It is hard to say
how many layers it has since the network in the bottom layer
may in turn have a multilayered architecture (obtained by a se-
quence of stepwise refinements). It also illustrates why it is
more natural, for the class of well-structured architectures, to
count layers from the top down rather than from the bottom
up. The flexibility in the architecture of Figure 7 is not with-
out some cost. For logical connectivity, three protocols are
needed over intranode channels between processes in layer 5
and layer 6 as compared to a single protocol in Figure 6. And
more such protocols are needed between layers 6 and 7.

channel

Figure S. N communicating processes.

user
process

user
process

() (S)

® ©& & ©®
= [z 1 [z

Figure 6. A seven-layer architecture

@
€
@
®
®

| fo—o—0—0—6

user
process

user
process

Figure 7. An ssymmetric erchitecture.

As we shall see in Section 3, most internetworking ap-
proaches are aimed at making the combined architecture of the
interconnected networks into one that belongs to the class of
well-structured architectures, so that the internetwork has the
above three properties, in particular, the logical connectivity
property. To show that a given architecture is well-structured,
it is sufficient to demonstrate a sequence of applications of the
stepwise refinement rules whereby the architecture can be
derived. We shall do so for some internetworking architectures
in Section 3.

user
process

e 6 €3
jb—— network | ———s¢——— network 2 ——

host

When is conversion needed in an architecture? Recall
that a protocol architecture in this paper is specified by a
hierarchy of processes (connected by both intranode and inter-
node physical channels) together with a set of protocols; each
protocol is specified for a subset of processes and channels in
the hierarchy. The hierarchy provides physical connectivity
while the protocols provide logical connectivity. Suppose we
are examining the internetworking of two different protocol ar-
chitectures. And suppose the two hierarchies of processes can
be merged into a single hierarchy that can be derived by a se-
quence of applications of the stepwise refinement rules. (This
should not be difficult starting with architectures that are
layered.) Then protocol conversion is needed if the combined
set of protocols do not provide logical connectivity to user
processes. Note that our definition of logical connectivity is
recursive. Thus, to determine how and where to perform con-
version to achieve interoperability among subsets of processes,
it is sufficient to examine the process hierarchy, one level at a
time and one protocol at each level at a time. This is highly
desirable. Because of this structured approach, the original
protocol conversion problem reduces to the problem of achiev-
ing interoperability between processes that implement different
protocols. We shall address this latter problem in Section 4.

3. Internetworking

Our concept of logical connectivity eliminates the need tc
make a distinction between architectures for networking and
internetworking. The basic solution to providing logical con-
nectivity in an internetworking architecture is self-evident from
Figure 7. It is sufficient to have a peer protocol "spanning"
the internet providing "host-to-host logical connectivity."
Logical connectivity between pairs of processes in the peer
protocol can then be provided by different networks. This ap-
proach makes use of the recursive definition of logical connec-
tivity. It is the basis of both of the prominent internetworking
architectures in use today. We illustrate these architectures in
Figures 8-11.

In Figure 8, we show the basic architecture of an
X.25/X.75 internetwork [16]. All the X.25 and X.75 processes
interoperate to provide host-to-host logical connectivity. (The
X.75 processes constitute two halves of a gateway and have
some gateway functions as well.} Figure 9 illustrates a refine-
ment of the basic architecture. The logical connectivity of
channel A and channel E in Figure 8 are provided by data link
and physical layer protocols, e.g., LAP B and X.21 respectively.
The logical connectivity of channel C in Figure 8 is also
provided by data link and physical layer protocols, e.g., LAP B
Multilink and V.35 respectively. The logical connectivity of
channel B and channel D in Figure 8 are provided by layered
architectures of two different public data networks.

user
process

Figure B. Basic architecture of X 25/X.75 internetwaorks

23

e 1 |
host f—— network 1 —He—— network 2 —| host

Figure 9. A refinement of the basic X.25/X.75 srchitecture.

In Figure 10, we show the basic architecture of a TCP/IP
internetwork [5]. The IP processes interoperate to provide
host-to-host logical connectivity. The logical connectivity be-
tween different IP process pairs can then be provided by dif-
ferent networks with different architectures. A refinement of
the basic architecture is shown in Figure 11. For example,
CSNET is a logical network that spans several physical net-
works and it uses the TCP/IP protocol for internetworking.
As described in [4], network A in Figure 11 is Arpanet, network
B is Telenet, host 1 is an Arpanet host, host 3 is a CSNET
user, host 2 is both an Arpanet host and a CSNET user.
(Please note that the example in Figure 11 represents the ar-
chitecture of a single logical path in CSNET only and should
not be mistaken as the entire CSNET architecture.)

Figure 10 Besic erchitecture of TCP/IP
networks

In both internetworking architectures, many additional
protocols are needed between intranode processes to achieve
logical connectivity between the user processes. In Figure 9,
for example, protocols are needed for the interaction of the
X.25 and B3 processes in network 1, and the interaction of the
X.25 and D3 processes in network 2. In Figure 11, for example,
protocols are needed for the interaction of the IP and B3
processes, and the interaction of the IP and A3 processes.
These protocols are between processes residing in the same
node and can be implemented with IPC operations. We do not
consider them to be protocol conversion problems.

Referring back to the CSNET example and Figure 11,
process B3 in host 3 is one that implements the X.25 packet-
level protocol. The implementation of a protocol between this
process and the IP process as a set of procedures in the operat-
ing system of the CSNET user is described in [4].

24

user .
process

®3))

 oov— Y i S—
network_.i host
B 3

Figure 11. A refinement of the basic TCP/IP
architecture.

host nelwurk_‘i host 2
A (g

1 steway)

In both the above internetworking approaches, a single
peer protocol (X.25/X.75 or IP) is used throughout the inter-
network. In [15], the coexistence of two internetworking
protocols, the IP protocol of Darpa and the Pup protocol of
Xerox, is considered. Each protocol serves a subset of the com-
munity of users while some users implement both protocols. In
such an environment, three solutions are possible. First, one
can try to perform conversion between the two peer protocols
to achieve some degree of interoperability between processes
that implement these protocols. We shall return to this
problem in Section 4. Second, one can apply the abstraction
rule one more time to the overall architecture to insert a peer
protocol above IP and Pup. This new protocol spans the entire
internetwork while using the IP and Pup protocols for logical
connectivity of its processes.

Shoch et al. proposed a third solution [15], called mutual
encapsulation. Their solution illustrates that we do not have
to use the same protocol architecture for all users of the inter-
connected networks. For some user pairs, the IP protocol is
used as the peer protocol for internetworking with the Pup
protocol providing logical connectivity to IP processes. In this
case, we have PDUPup = HPup(PDUIP) . For some other user
pairs, the Pup protocol is used as the peer protocol for inter-
networking with the IP protocol providing logical connectivity
to Pup processes. In this case, we have PDUIP =
HIP(PDUPup)‘ Since both types of PDUs coexist in the inter-
network, the method is called mutual encapsulation. This par-
ticular solution is consistent with our model of protocol ar-

chitectures and our concept of logical connectivity between
user process pairs.

An illustration of mutual encapsulation is shown in
Figure 12. For communication between the TCP processes in
Figure 12(a), the IP processes provide the host-to-host logical
connectivity. For communication between the BSP processes
in Figure 12(b), the Pup processes provide the host-to-host logi-
cal connectivity. Consider host A which has both IP and Pup
processes. These processes exchange roles in the two different
logical connections.

I+ Host A |
G,
()

6w

[netD]

(&

(15 @@ G
[net ij\

(8) Logical connectivity between two
TCP processes.

net A [netc]

[Host A |

(b) Logicel connectivity between two
BSP processes

Figure 12. Anillustration of mutusl
encepsutation

4. Protocol Conversion

In a hierarchy of processes with a set of peer protocols
specified for subsets of processes at each level of the hierarchy,
protocol conversion is necessary when the user processes do not
have logical connectivity. Given the recursive definition of
logical connectivity for a peer protocol, we need only examine
peer protocols at each level of the hierarchy of processes, one at
a time, to determine if logical connectivity exists.

If the architecture is that of an interconnection of net-
works with different architectures, then it is likely that dif-
ferent protocols have been specified for some processes which
must interoperate to provide logical connectivity between some
other processes. We consider two cases: protocols for two
processes, and protocols for more than two proceses.

First, if the number of processes is two and the processes
implement different protocols, then conversion is necessary.
The configuration in Figure 13(a) may occur anywhere in the
architecture’s process hierarchy, and will be replaced by the
peer protocol in Figure 13(b) with the addition of a converter
process. The objective of the converter process is to allow P1
and Q2 to interoperate. (The meaning of this conversion will
be explained more formally below.)

25

(8)

(b}

Figure !3. Conversion to achieve interoperability
between w0 processes.

Second, if the number of processes is more than two, then
conversion may be performed such as illustrated in Figure 14.
(The logical problem is similar to that of conversion between
two processes. But the practical problem is a lot harder.)
Now, suppose the set of processes does partition into subsets of
two or more processes as shown in Figure 14(a) and the
processes within each subset interoperate. Then there is an
easier solution that we have seen several times already: Ex-
ploit the recursive definition of the logical connectivity of a
peer protocol, i.e., apply the abstraction rule to create a new
peer protocol as shown in Figure 15. The new peer protocol
provides the logical connectivity desired of the set of processes
in Figure 14(a). The existing protocols provide the logical con-
nectivity between processes in the new protocol.

& -E GO ©
&} @&

Figure 14. Conversion to achieve interoperability
between two sels of processes.

Figure 1S. Avoiding conversion by applying the
sbstraction rule.

In what follows, we shall introduce a formal mode] that
can be used for synthesizing conversions and for reasoning
about the correctness of such conversions. For ease of exposi-
tion, we shall consider two-process protocols only.
(Conceptually, our model and definitions can be extended to N-
process conversion problems, but at the expense of much more
complex notation and definitions.)

Let us consider peer protocols in which processes interact
by exchanging messages. Protocol mismatches in this context
refer to differences in the syntax and semantics of messages
that can be sent and received in different protocols. The con-
version problem can be stated as follows. Consider two
protocols P and Q (see Figure 16). In the first protocol, the
sets of messages that can be sent by entities P1 and P2 are M1
and M2 respectively. In the second protocol, the sets of mes-
sages that can be sent by entities Q,; and Q, are N; and N,
respectively. Now suppose we want P, to interoperate with Q,
with the help of a protocol converter Cl as shown in Figure
17(a). (The converter may be a process or a protocol layer in
the path between P, and Q,.) Obviously, one task of the con-
verter is to perform syntax transformations of messages that
P, and Q, can send to each other. The next question is: How
does the converter map messages in M1 and N, into N, and
M2 respectively? Messages that are related by the mapping
have to be semantically equivalent in the two protocols. What
does semantical equivalence mean? And how does one check it?
Obviously, the level of functionality that can be achieved by
the protocol conversion is determined by the subsets of seman-
tically equivalent messages.

M
@i
—
M2
Ny
O O
—
N2
Figure 16. Protocols P and Q
M Ny
—’ '* (@)
— —
M2 N2
N, M,
— —
------ ------ O
-— —
N2 M2

Figure 17 Protoco! conversions

The semantics of messages in a message-passing protocol
such as P or Q can be found in the reachability graph of the
protocol. To avoid the use of reachability graphs (which may
be infinite for many protocols) in our reasoning, we propose the
use of projections and image protocols, previously developed by
Lam and Shankar for protocol verification, for specifying con-
versions and for reasoning about semantical equivalence. Be-
fore proceeding further with the conversion problem, we shall
digress and give a brief overview of image protocols and their
properties. The reader is referred to [10] for details.

26

Our discourse shall be based on the abstract state
machines model in [10] for protocols. Consider Figure 16(a).
Let S, (S,) denote the set of states of process P (Py) 8, and
S2 may be finite or infinite. (Thus our model is applicable to
protocols specified by state variables and a programming lan-
guage notation, as in [12].) FEach process is event-driven.
Events of Pl are specified for sending messages in M1 and for

receiving messages in M,. Additionally, some events not as-

sociated with the sending and receiving of messages can be
specified. These are called internal events and they are used to
model timeouts and the peer protocol’s interaction with its user
processes. If the channels can have errors, then they are
modeled as processes; errors are modeled by specifying internal
events for these channel processes.

The state of the protocol is described by the four-tuple
(51,52;m1,m2) where s, is the state of P, and m, is the se-
quence of messages in the channel from P, to P,; so and m,

are similarly defined. Let G denote the global state space of
the protocol. At any state g in G, a set of events are enabled,
the occurrence of one of these enabled events, chosen nondeter-
ministically, will take the protocol to some state h in G. Given
an initial state gy let R denote the protocol’s reachability
graph.

So far in this paper, the meaning of "specifying” a
protocol for a set of processes is very weak. The existence of
such 2 protocol in the architecture implies that the processes
interoperate or "understand the meanings of each other’s
messages." Specifying the message sets and event sets of P,
and P2 will now define operationally the protocol’s behavior.
It is generally useful to specify a protocol functionally rather
than defining its behavior operationally. The functional
specification of the protocol can be in the form of safety and
liveness assertions about the behavior of the protocol.
Abstractly, a safety assertion is a predicate on G. The salety
assertion is an invariant property of the protocol if the safety
predicate is true at gg and at each state of the protocol reach-
able from gy A liveness assertion is a predicate on the set of
paths in G. A liveness assertion is a property of the protocol if
the liveness predicate is true on all paths in R. Verification of
these properties may be carried out by state exploration (in the

case of a small finite R), or by proof techniques for parallel
programs [13].

We are now in a position to introduce the concept of the
resolution of a protocol that is central to the theory of projec-
tions. Consider again the protocol in Figure 16(a). Since the
protocol state is the tuple (sl,sz;ml,mz), the resolution of the
protocol is, roughly speaking, given by the number of states in
S1 and S2 and the number of messages in M, and M,. Suppose
the protocol performs many functions, but we are only inter-
ested in verifying an assertion about the protocol’s performance
of one or a subset of its functions. Then, in the verification,
the observable resolution of the protocol can be much smaller
than the protocol’s actual resolution. This gives rise to the
idea of constructing an image protocol with a resolution lower
than that of the original protocol for verifying the assertion.

Consider the image protocol in Figure 18. Let S’1 and S’2
be the sets of states of P’1 and Pé. They are obtained as fol-
lows. Partition S1 and S2. Each partition subset of states in
S; defines a single state in S{, fori=1and 2. (We shall some-
times refer to this operation as aggregation.) How to do the
partitioning requires ingenuity and insights into the meanings
of the process states. If the state of Pi is given by the values of
a set of state variables, then one way to realize a partitioning
of Si is by retaining in the image protocol a subset of the state
variables in the original protocol. Generally, the meanings of
state variables in protocols specified by a programming lan-
guage notation are more self-evident than the meanings of
states in finite state machines. (See [10, 12] for illustrations.)

Figure 18. Image protocol

Aggregating states in Si to define states in Sg gives rise to
an equivalence relation on the message sets M1 and M24
Specifically, two messages in M1 are equivalent if their recep-
tions cause identical state changes in the image state space S’2;
a similar definition applies to messages in M2. Furthermore,
messages in Mi whose receptions do not cause any state change
in the image state space of the receiving process are said to
have a null image. There are more definitions and details
necessary for the construction of image protocols. We shall

refer the reader to our previous work for a complete treatment
[10].

By its very definition, an image protocol has a resolution
lower than that of the original protocol. Given an image
protocol, suppose that a second image protocol is obtained by
partitioning S’1 and S’2 of the first image protocol. Then, the

second image protocol has a lower resolution than the first.
Thus, we can talk about a sequence of image protocols with
decreasing (or increasing) resolution.

It is important to note that an image protocol is specified
like any other protocol, i.e., it can be implemented. We shall
next state two very useful properties of image protocols from
[10]:

Image Protocol Property 1. If a safety assertion holds in-
variantly for an image protocol, it also holds invariantly for
the original protocol.

Image Protocol Property 2. For an image protocol with
well-formed events, a liveness assertion about the image
protocol holds for the image protocol if, and only if, the same
assertion holds for the original protocol.

27

Again, we shall refer the reader to [10] for the definition
of well-formed image events and for proofs of these properties.
The proof of Image Protocol Property 2 assumes fair schedul-
ing of events in the protocol processes and that each message
sent into a channel will eventually be received or deleted (also
a fairness assumption).

Consider a protocol that is an image protocol of protocol
P and also protocol Q. Such a protocol is called a common im-
age protocol of P and Q. We can now state our basic approach
to solving the protocol conversion problem formulated earlier:
Find a common image protocol of P and Q having the highest
resolution. (By contrast, in protocol verification, we desire an
image protocol with the lowest resolution adequate for proving
an assertion.) Suppose such an image protocol common to
both protocols P and Q is found. Let it be as specified in
Figure 18. Let us consider the protocol conversion in Figure
17(a). What C1 provides is a mapping function. A message

sent by l’-’1 with a nonnull image, say m’ in M’ is transformed
by C, into a message in Nl with image m' for delivery to Qq
similarly, messages in N, are mapped into M,. What this con-

version accomplishes is an implementation of the image
protocol. If this image protocol is one common to both P and
Q with the highest resolution, then it implements the most
functionality that is common to both P and Q. By Properties 1
and 2 of image protocols, the logical properties of the peer
protocol obtained by conversion are also logical properties of
each of P and Q. Thus the correctness of the conversion is
guaranteed. It is also a very rigorous definition of correctness.
The advantage of this approach is that it is possible to estab-
lish semantical equivalence without having to reason with or
about any of the reachability graphs.

This approach requires a heuristic search for an image
protocol with useful properties. Note that an image protocol
common to both can always be found. Specifically, if we ag-
gregate the set of states in each process in Figure 16 to a single
state, we have an image protocol common to P and Q. But it is
an image protocol with no useful property. Any difficuty in
the heuristic search may not necessarily be the fault of the
method however; it could be due to the fact that protocols P
and Q have very little in common to begin with. Obviously,
the job of synthesizing a conversion will be easier if protocols P
and Q are quite similar to each other, such as, they are
variants of the same protocol. The example that we have tried
using the above method is that of a conversion between a ver-
sion of IBM’s BSC protocol and an alternating-bit (AB)
protocol. BSC has the basic structure as AB but differs from it
in a number of details.

5. Discussions

Given a conversion so that processes P, and Q2 inter-
operate, the peer protocol including the converter is considered
by us to provide logical connectivity. The common image
protocol, however, may not have enough functionality for a
particular application. One way to add functionality to the
peer protocol in Figure 17(a) is to add a state machine in C,.
For example, consider the BSC protocol. Although it has the
same structure as the AB protocol, BSC data messages do not

carry a sequence .number (0 or 1). But in a AB receiver, a se-
quence number is expected in each data message received. - The
common image protocol will not have a sequence number in its
data messages. As a result the common image protocol does
not have the desired logical property of the AB protocol. This
shortcoming can be remedied by a two-state finite state
machine in the converter that inserts a sequence number into
each message that it sends to the AB receiver. In this case, the
set of messages sent by the converter has a higher resolution
than the set of messages it receives. To preserve the correct-
ness of the conversion, as defined by us, we will insist that the
image protocol that is common to protocols P and Q is also an
image protocol of the peer protocol including the converter
(Figure 17(a)). This line of reasoning can be extended so that
even more functionality is added to the common image
protocol by replacing the converter process in Figure 17(a) by a
peer-protocol converter as shown in Figure 19. We are now
faced with a protocol construction problem very similar to
those studied in [3, 14], i.e., given a protocol, how do we con-
struct from it a protocol with more functionality such that the
given protocol is an image protocol of the constructed protocol.
We sometimes refer to this problem as inverse projection.

Q, (@)
M T|] Nz T

[converter J

Figure 19. Replacing the converter
by & peer protocol

Should the conversion be transparent to the processes P1
and Q, in Figure 17(a)? Recall that messages in M; with a
nonnull image are translated by C1 into messages in N,. What
about those messages in Ml’ if any, that have a null image in

the common image protocol? In Section 4, we have implicitly
assumed that P1 will not send these messages. Hence the con-
version is, in general, not transparent to Pl' P1 is aware that
it is interacting with a partner implementing a different
protocol and that certain messages should not be sent. Such a
requirement may be an acceptable price to pay to achieve logi-
cal connectivity. It is possible for the conversion to be trans-
parent to Pl if the common image protocol satisfies the follow-
ing condition: The sending of each null-image message does
not cause any state change in S’l. In this case, any null-image

message sent by Pl can simply be discarded by the converter.
If this condition is not satisfied, then transparency will have to

be achieved by adding functions to the converter as discussed
earlier.

In conclusion, we have shown that the class of architec-
tures generated by our stepwise refinement rules is very general
and includes many well-known networking and internetworking
architectures. We show that these architectures have several
correctness properties and they are said to be well-structured.

28

Our concept of logical connectivity eliminates the need to dis-
tinguish between architectures of networks and internetworks.
The recursive definition of logical connectivity reduces the
protocol conversion problem, as posed by Green [6], to the
problem of achieving interoperability between processes that
implement different protocols. The theoretical framework of
projections and image protocols is found to be very suitable for
reasoning about semantical equivalence of messages in different
protocols and about the correctness of a conversion. However,
many design issues remain to be addressed.

Acknowledgements. This paper has benefited from com-
ments by Ken Calvert and Ambuj Singh. The use of a two-
state finite state machine in a converter between the BSC and
AB protocols was suggested by Ken Calvert.

6. References

1] ANSI/IEEE Standards for Local Area Networks, 802.2,

802.3, 802.4, and 802.5, IEEE, 1984.

CCITT, Draft Revised CCITT Recommendation X.25,
Computer Communication Review, January/April 1980.

C. H. Chow, M. G. Gouda, and S. S. Lam, "A Discipline
for Constructing Multiphase Communication Protocols,"
ACM Transactions on Computer Systems, November
1985.

[4] D. Comer and J. T. Korb, "CSNET Protocol Software:
The IP-t0-X.25 Interface," Proc. ACM SIGCOMM ’83
Symp., University of Texas at Austin, March 1983.

DoD Standard Internet Protocol and DoD Standard
Transmission Control Protocol, Computer Communica-
tion Review, October 1980.

P. Green, "Protocol Conversion," IEEE Trans.

Commaunications, March 1986.

on

[7] I Groenback, "Conversion Between TCP and ISO Trans-
port Protocols as a Method of Achieving Interoperability
Between Data Communications Systems," IEEE J. on
Sel. Areas Commun., March 1986.

8] 8. 8. Lam, ®Data Link Control Procedures," in
Computer Communications, Vol. 1, ed. W. Chou, Pren-
tice Hall, Englewood Cliffs, 1983, pp. 81-113.

9] S. S. Lam, Principles of Communication and Network-
ing Protocols, IEEE Computer Society Press, 1984, Chap-
ter 1.

[10] S. S. Lam and A. U. Shankar, “Protocol Verification via
Projections," IEEE Trans. on Software Engineering,
July 1984.

[11] J. E. McNamara, Technical
Communications, Digital, 1977.

Aspects of Data

12|

(13]

4

(15]

(16]

[17]

A. U. Shankar and S. S. Lam, "An HDLC protocol
specification and its verification using image protocols,"

ACM Transactions on Computer Systems, Vol. 1, No. 4,
pp. 331-368, November 1983.

A. U. Shankar and S. S. Lam, “Time-Dependent Com-
munication Protocols," Principles of Communication
and Networking Protocols, (ed. S. S. Lam), IEEE Com-
puter Society Press, 1984.

A. U. Shankar and S. S. Lam, "Construction of Sliding
Window Protocols," Technical Report TR-86-09, Dept. of
Computer Sciences, University of Texas at Austin, March
1986.

J. F. Shoch, D. Cohen, and E. A. Taft, "Mutual Encap-
sulation of Internetwork Protocols," Computer
Netlworks, 1981, pp. 287-300.

M. S. Unsoy and T. A. Shanahan, "X.75 Internetworking
of Datapac and Telenet," Proc. 7th Data Comm. Symp.,
1981, pp. 232-239.

H. Zimmerman, "OSI Reference Model—The ISO Model
of Architecture for Open Systems Interconnection,”
IEEE Trans. on Commun., Vol. COM-28, No. 4, April
1980.

29

