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Abstract

The performance predictions of the open queueing network model
and two closed queueing network models are compared with results from a
realistic simulator of store-and-forward communication networks. The com-
parisons indicate that closed network models are far superior to the open
network model. In particular, one of the closed network models is found to
be better than any of the others considered. We then consider network
design problems based upon a closed network model and present a solution
to the optimal capacity assignment problem. We also describe a heuristic
algorithm that makes use of a steepest descent criterion encountered in the
optimal solution to search for optimal capacities. Being a heuristic, it can
be used for a realistic model, i.e., 3 model with discrete capacity values,

nonlinear cost functions, and upper bounds on the mean delays of virtual
channels.

1. Introduction

A store-and-forward communication network consists of a set of
switching nodes interconnected by communication channels. Host comput-
ers and terminals constitute sources and sinks of data messages to be tran-
sported by the network (Figure 1). The basic unit of data transfer within
the network is called a packet. Each packet traverses from its source node
to its destination node through a series of nodes and communication chan-
nels along its path (route). Queues of packets are formed, inside switching
nodes, {or transmission over communication channels.

Tools for the analysis and design of store-and-forward communication
networks have been based primarily on the open queueing network model of
Kleinrock [4]. In practice, almost all such communication networks have
end-to-end flow control mechanisms for logical connections, to be referred
to in this paper as virtual channels, between pairs of communicating sources
and sinks. Such networks are more accurately modeled as closed queueing
networks than as open queueing networks; each routing chain in a closed
network model represents a flow-controlled virtual channel with the chain
population size equal to the virtual channel window size [5,7,12]. The obs-
tacle that currently prevents closed network models from being widely used
by analysts and designers is the large computational time and space it
requires to calculate network performance measures (throughputs and mean
end-to-end delays of virtual channels). Some progress has been made to
reduce these computational requirements and the solution of networks with
many virtual channels is feasible [8,10]. Nevertheless, the computational
requirements of closed network models are still substantially larger than
those of the open network model.

The open network model, however, is unrealistic because it assumes
that the number of packets traveling in a network, and belonging to the
same virtual channel, is unlimited. In other words, virtual channels have
no input control whatsoever. As a result, the open network model is accu-
rate only for networks that are lightly utilized (when input control mechan-
isms have little or no effect on network performance).

* This research was aupported by National Science Foundation Grant No.
ECS-8304734.
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Fig. 1. A store-and-forward communication network.

In Section 2, we give an overview of the open network mode} and of
closed network models. In Section 3, we examine the accuracy of these
models by comparing the throughputs and mean delays of virtual channels
in an 8-node network given by the models and by simulation. The results
indicate that closed network models are far superior to the open network
model. In particular, we found a closed network mode! that is better than
any of the others considered. In Section 4, we consider network design
problems based upon a closed network model and employing the tree con-
volution algorithm {8,10] for its solution. In particular, we present a solu-
tion to the optimal capacity assignment problem for a closed network
model given assumptions of continuous capacities and linear cost functions.
However, evaluation of the optimal capacities requires the numerical solu-
tion of nonlinear equations. We then describe a heuristic algorithm that
makes use of a steepest descent criterion encountered in the optimal solu-
tion to search for optimal capacities. Being a heuristic, it can be used for a
very realistic model, i.e.,, 8 model with discrete capacity values, nonlinear
cost functions, and upper bounds on the mean delays of individua! virtual
channels. The algorithm can also be easily adapted to perform various net-
work topology optimizations (eg., adding and deleting communication
links).  On the other hand, the optimal solution is not guaranteed. But
empirical results indicate that its capacity assignments are substantially
different from, and better than, the square-root capacity assignment in [4].

2. Open snd Closed Network Models

In a store-and-forward communication network, communication chan-
nels and nodal processors can be modeled as FIFO servers with exponen-
tially distributed service times. We shall assume that the network has
sufficient buflers so that blocking due to buffer overflow has negligible pro-
bability. (The problem of buffer requirements and loss probabilities has
been considered in [6]) Also, the independence assumption of Kleinrock |4)
is needed for both open and closed network models.

Suppose that there are K uni-directional virtual channels between
source-sink pairs  Packets in the same virtual channel follow a fixed route

(Actually, the models do not preclude choosing such a route
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probabilistically from a finite set of available routes between the source and
sink )

Open network model

Each virtual channel is represented as an open routing chain, ie.,
the external packet arrivals to the source node of virtual channel ¥ consti-
tute a Poisson process at a known constant rate of +; packets per second.
It is assumed that all arrivals to a virtual channel are accepted into the net-
work without any input control. Let the rate of all packet arrivals to a
server in the network, say server m, be X, packets/second. The work rate
of server m is C bits/second and the average length of a packet is 1/p
bits. The traffic intensity of server m is defined to be pu = A /(4Cu ).
Given that p, < 1 for all m, the throughput of each virtual channel is
the same as its external input rate. And the mean end-to-end delay of its
packets is the sum of the mean delays of the servers along its route. The
mean delay of server m is given by the M /M /1 mean delay formula and
is equal to 1/(4Cpn~Am). Thus, both the throughputs and the mean
end-tc-end delays of virtual channels can be obtained very easily for the
open network model.

Closed network models

The flow-control window size of a virtual channe} limits the max-
imum number of packets that it can have in transit within the communica~
tion network at the same time. Let there be K virtual channels and let
N; denote the window size of virtual channel &, for k=12 K. We
model the generation of external arrivals to a virtual channel with an
additional FIFO server, called the source server of the virtual channel. It
has an infinite supply of packets and works at a rate of y; packets/second.
(See Figure 2.) However, whenever the number of packets in transit within
the virtual channe! is equal to its window size, its source server is blocked
and cannot work. A blocked source server is later unblocked when an
end-to-end acknowledgement (ack) returns from the sink indicating receipt
of a packet. Thus, the actual input rate of virtual channe! k is equal to 4;
when its source server is unblocked and is equal to zero whenever its source
server is blocked.
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Fig. 2. A closed queueing network model of a store-and-forward
communication network

The blocking behavior of a flow-controlled virtual channel is modeled
in a queueing network by a closed routing chain with a fixed number of
circulating customers. Each customer corresponds to an access token,
Initially, N, tokens are placed at the source server of virtual channel k.
Each packet admitted into the network carries a token with it. When
there is no more token at the source server, it is blocked. A packet arriv-
ing at the sink node of the virtual channel releases its token which is
then carried back by an end-to-end ack to the source server to be reused
again. Thus, the N} circulating tokens of a virtual channel correspond
to the N, circulating customers of a closed chain.

We mode! the delay incurred by the return of an end-to-end ack
from the sink of the packet being acknowledged to its source by an
infinite-server (IS) service center {7,12]. For such IS servers, only mean
delay values necd to be specified and these mean values may be different for
different virtual channels. It is not really important to model the stor-
ing and forwarding of the acks explicitly because these ncks either are
encoded in data packets travelling in the reverse direction of the virtual
channel or, if sent separately, are very short. Thus, they consume rela-
tively small amounts of buffer and channel resources in the network,
which may be neglected or may be accounted for separately. The mean
delays of end-to-end acks are not known a priori and can only be estimated.
Fortunately, these estimates do not have to be highly accurate because the
delay of end-to-end acks for a virtual channel impacts the network’s perfor-
mance only some of the time; in particular, it affects the actual inpul rate
of the virtual channel only when its source server is blocked.

How should we estimate the mean delays of end-to-end acks? We
considered two alternatives. First, suppose every ack is encoded (pig-
gybacked) in a data packet that travels in the reverse direction of the vir-
tual channel. Then, the ack delay is approximated by the delay of the vir-
tual channel in the opposite direction. In this case, the closed network
mode! has to be solved iteratively, i.e., start with some initial estimates of
ack delays, calculate virtual channel delays and use them as new estimates
for ack delays. We shall refer to this model as the iterative closed model.
We have tried this iterative approach for several examples. In each case,
the iteration converges to a consistent set of delay values. We did not
attempt to prove convergence because, for reasons to be said below, we
shall not adopt this model for our use.

It i3 well-known that an ack should be sent as a standalone packet
whenever there is no data packet waiting to travel in the reverse direction
(to avoid deadlocks). Our simulation results indicate that most end-to-end
acks travel as standalone packets. (A somewhat surprising result! Of course,
the exact percentage depends on the network traffic load.) Since standalone
acks are very short and are given higher priority in our simulation than
data packets, mean delays of end-to-end acks used in the iterative closed

model are too high in eomparison with simulation results. Further, itera-
tive solutions are computationally expensive.

A second approach is to use a fixed estimate for the mean delay of
end-to-end acks of each virtual channel. Obviously, this mean delay is pro-
portional to the number of channels in the route of the acks (assuming that
all channels have the same capacity). Hence, a reasonable estimate is:
(number of channels in route)x 7, where 7 is a parameter to be determined.
Obviously, 7 must be larger than the transmission time of a standalone ack.
We have found experimentally that setting 7 equal to the transmission time
of a data packet in the closed network model gives quite accurate perfor-
mance predictions. (See Section 3.) It does specify mean values for ack
delays that are too high when the network load is light (when almost all
end-to-end acks travel as standalone packets). But in a hightly loaded net-
work, the network performance is highly insensitive to end-to-end ack
delays.

To calculate the performance measures of a closed network model
(throughputs and mean end-to-end delays of virtual channels), the com-
putational time and space requirements of both the (sequential) convolu-
tion algorithm [11] and the MVA aIgonLth[lS] grow exponentially with

K; specifically, they are proportional to J](Ni+1). These requirements
k=)

are beyond the limits of present computers when network models with
10 or more virtual channels are considered.

The tree convolution algorithm, developed by Lam and Lien
{8,10], is intended for the solution of networks i which chains do not visit
all servers in the network. In models of communication networks , it is
often the case that chains visit only a small fraction of all queues mm the
network (sparseness property) Furthermore, chains are often clustered m
certain parts of the network and their routes are consttummned by the net-
work topology (locality property). By making use of the 1outing mforma-
tion of chains, the time and space requirements of the tree convolution
algorithm can be made substantially less than those of the (scquential)
convolution and MVA algorithms. The number of closed chains that can
be handled varies depending upon the extent of sparseness and locality
present in their routes. We have solved numerically many network
examples with 32-50 routing chains. In some extreme cases, the solution of
networks with up to 100 routing chains has been found to be possible
[10].
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3. Comparlson of Modecls

In this section, we compare the performance predictions of the open
network model and the two closed network models with those given by a
network simulator developed by Lam and Lien previously {5. The simula-
tor implements most, if not all, of the important elements of a real net-
work. In particular, it implements a data link protocol. The storing and
forwarding of end-to-end acks, both standalone and piggybacked, are simu-
lated. Virtual channels have a window mechanism for flow control. The
length of a packet is sampled from any given probability distribution and
remains constant {or the entire journey of the packet through the network.

Key differences among the models are shown in Table 1 below.
Simulator Closed Model | Open Model
Link-level acks yes no no
End-to-end acks yes abstraction no
Window flow control | yes yes no
lndepenqlence o yes yes
assumption
Packet length Exponential :
tial E ential
distribution or any other Exponentia xpon

Table 1. Comparison of model features.

As we can see from Table 1, there remain significant differences
between the closed network model and the simulator. Yet preliminary
results from our experimental study indicate that the closed network model
is quite accurate at all traffic levels. The experimental results for a specific
network will be shown next.

The network used for the following comparison of models has 8
switching nodes and 20 full-duplex links. It has 18 virtual channels, in 9
symmetric pairs, randomly selected between pairs of nodes. The window
size of each virtual channel is equal to the number of channels in its route.
The capacity of each communication channel is JOK bits/second and the
mean packet length is 1K bits.

Simulation results were obtained for three other packet length distri-
butions in addition to the exponential distribution assumed in both open
and closed network models.

hyper a hyperexponential distribution with a coeflicient of variation
equal to 1.40

burst, a distribution with 0.3 probability at 100 bits, 0.3 probability at
1900 bits, and a coeflicient of variation equal to 0.77

burst; a distribution with 0.4 probability at 50 bits, 0.4 probability at

1950 bits, and a coefficient of variation equal to 0.88

Note that the exponential distribution has a coefficient of variation equal to
one. The mean value is the same in all cases. Additional details of the net-
work example and packet length distributions can be found in {9].

The service time of the source server of each virtual channel modeis
the packet generation time of the external source of the virtual channel.
We used exponentially distributed packet generation times in our simula-
tions, the same as what is assumed in queueing network models. All vir-
tual channels in the network example have the same packet generation rate,
or external packet arrival rate, denoted by ~.

Network throughput

Packet
arrival closed model open simulation model

rate iter | fixed | model | exp | hyper | burst; | burst,
y=1/2 8.64 8.66 9 8.81 875 8.64 8.80
v=12/3 | 11.32 | 11.36 12 11.75 11.68 11.62 11.67
=1 16.25 | 16.41 18 16.82 16.39 17.21 17.00
=2 27.09 | 2827 36 2920 | 27.14 29.67 29.25
¥==3 33.21 | 35.71 54 36.34 | 34.08 38.27 37.19
vy =4 36.81 40.38 64 40.45 37.26 43.04 41.59

Table 2. Network throughputs given by different models
for different values of .

Mean end-to-end virtual channel delay
Packet
arrival closed model open open simulation model
model
rate iter fixed model (ideal) | exp | hyper { burst, | burst,
r=1/2 | 0.24 0.24 0.240 0.244 0.245 | 0273 0.238 0.246
1:—2/3 0.25 0.25 0.251 0.255 0.262 0.285 0.249 0.242
= 027 0.271 0.279 0.281 0.270 | 0.305 0.266 0.271
=2 0.316 | 0.325 0.426 0.366 0.341 0.383 0313 0.328
y=3 |0340 | 0362 | 1.214 | 0449 | 0368 | 0.391 | 0344 | 0.359
=g 0353 [ 0385 | oo 0517 | 0387 | 0418 | 0366 | 0.379
Table 3. Mean end-to-end delays given by different models
for different values of +.
Average channel utilization
Packet
arrival closed model open simulation model
rate iter | fixed | model | exp | hyper | burst; | bursty
y=1/2 | 0093 { 0.093 | 0.095 0.094 | 0.093 0.092 0.095
Yy=12/3 10122 { 0123 | 0.127 { 0127 | 0.125 0.125 0.123
T=1 0.177 | 0.178 | 0.190 | 0.180 | 0.176 0.186 0.183
=2 0297 | 0310 | 0380 | 0.316 | 0.291 0.321 0.318
=3 0.363 | 0.392 0.570 | 0.391 | 0.383 0.415 0.402
7y == 4 0.400 | 0.441 0.667 | 0.432 | 0.392 0.485 0.445

Table 4. Average channe! utilizations given by diferent models
for different values of .

As 7 is increased, the load on the network increases. In Tables 2-4,
we compare the various models for v = 1/2, 2/3, 1, 2, 3 and 4
packets/second. Network throughputs given by the models are shown in
Table 2. Mean network delays are shown in Table 3. Average utilizations
of communication channels are shown in Table 4. Generally, the predic-
tions of all models are very close to each other when 7 i3 small. As 4
increases, the predictions of the open network model begin to deviate
significantly from those of the other models (because it does not model flow
control). At 4=4, it actually predicts that the mean network delay is
infinite because in the open network model, in the absence of input control,
some of the communication channels have a traffic intensity of one. In
Table 3, there is a model referred to as open model (ideal). It is an open
network model where the throughputs of the virtual channels are made
equal to the throughputs of virtual channels in the best available closed
network model. This is called an ideal model because it is not leasible
without solving a closed network model first. Yet, as we can see from Table
3, the ideal open model still overestimates mean network delays
significantly for large values of «.

Let us use the simulation model with expounentially distributed
packet lengths as the benchmark for comparison. Comparing the two
closed network models with this benchmark, we see that the closed model
with fixed estimates for ack delays is excellent. (r was set equal to the
transmission time of a data packet.) It underestimates network
throughputs and delays slightly when « is small because, as explained ear-
lier, it overestimates the ack delays when the network is lightly loaded.
The iterative closed network model is not as good and it underestimates
network throughputs and delays at al! levels of network load (because it
generally overestimates ack delays). Referring to Table 1, the above obser-
vations indicate that the accuracy of closed network models does not seem
to be significantly affected by the independence assumption and their
abstraction of the end-to-end acks
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Next, let us look at the results in Tables 2-4 given by the simulator
for other packet length distributions. We observe that the network perfor-
mance does depend to some extent on the coeflicient of variation of the
packet length distribution. Not surprisingly, the network performance is
better (i.e., larger throughputs and smaller delays) for a smaller coeflicient
of variation. For the range of coefficients of variation considered, 0.77 to

1.40, we consider the predictions of the closed network model (fixed) to be
sufficiently robust.

Virtual Throughput of virtual channel
closed model open simulation model
channel —
iter. | fixed | model | exp. | hyper. | bumst, burst,
ve, 2.04 2.20 3 2.13 213 2.44 2.22
VC, 1.71 1.78 3 2.00 1.91 2.14 1.95
VC, 2.11 2.25 3 2.23 1.96 2.27 2.29
Ve, 1.59 1.70 3 1.76 1.80 1.88 1.84
VC, 1.71 1.78 3 2.04 1.95 201 1.92
VC, 1.89 2.09 3 2.03 1.84 217 2.14
VC, 1.7 1.93 3 1.94 1.71 209 1.97
VCy 2.04 2.20 3 2.12 1.95 2.26 2.21
VC, 175 1.93 3 1.81 1.65 202 1.89
VCy 2.04 2.20 3 2.14 2.10 2.34 2.19
VCy, 1.71 1.78 3 1.98 1.95 2.00 2.01
VCig 2.11 2.25 3 2.41 203 237 233
VCis 1.59 1.70 3 1.80 182 1.84 189
VC.y, 1.71 1.78 3 2.04 197 1.94 2.06
VCy 1.89 2.09 3 2.05 1.86 21 2.10
VCie 175 1.93 3 1.99 177 2.10 1.96
VCy 2.04 2.20 3 2.09 1.95 2.32 2.27
VCis 1.75 193 3 1.79 1.73 198 1.97
Total 33.21 | 3571 54 36.34 34.08 38.27 37.19

Table 5. Virtual channel throughputs given by diferent models
for ¥=3 packets/second.

4. Capacity Assigniment and Network Design

The open network model has a closed-form delay formula which
encapsulates the parameters of the model and which plays a central role in
network design and optimization procedures [2]. In a closed network model
we made the observation that the tree of arrays in the tree convolution
algorithm for solving closed network models can play a similar role in net-
work design problems [9]. Due to space limitation, we shall consider only
the channel capacity assignment problem in the balance of this paper,

The capacity assignment problem, in general, may be {ormulated as
follows:

Given: Network topology, routes and window sizes of virtual
channels :
Total network throughput T ()

Channel capacities C,, { =1,2,. .M

Maximize:

Design variables:

M
Subject to: Cost = 33d,(C;)+F, <D us
=i
D, (N )< maximum allowable delay of virtual channel
E k=12, K
C;>0for all i==1,2,. M
where

F, is a fixed cost for installing channel s,
d,(-) is a cost function that is proportional to channel capacity,
I is the vector of window sizes,

and Di (X ) is the mean end-to-end delay of virtual channel & .

The capacity assignment problem based upon the open network
mode! was solved by Kleinrock [4] using the method of Lagrange multi-
pliers. In Section 4.1 we review the product-form solution for closed queue-
ing networks. In Sectign 4.2 we provide a solution to the capacity assign-
ment problem based upon a closed network model. In Section 4.2, we

present a heuristic algorithm for capacity assignment.
Mean end-to-end delay

closed model open open simulation model

: model rpodel N arst.] buret 4.1. Product form solution for closed networka

iter fixed (ideal) exp yper ursh | burste In a closed queueing network with M service centers, K routing
ve, 0456 | 0482 1 1.286 | 0571 | 0.536 | 0.529 | 0.474 | 0.491 chains and N; customers, k=12, ..., K, for chain k, the product-form solu-
Ve, 0125 } 0.127 | 0250 | 0.168 | 0125 | 0.131 | 0.128 | 0.125 |yiop i [17]
VCs 0.430 | 0.444 0.750 0.512 0.458 | 0.530 | 0.468 0.462
Ve, 0.148 | 0.156 1.000 0.225 0.155 | 0.162 | 0.154 0.169
Ve, 0125 | 0127 | 0250 | 0.168 | 0.122 | 0.124 | 0.131 | 0.131 ”ﬂF%
VC, 0.529 | 0.571 2.250 0.705 0.596 | 0.668 | 0.544 0.562
Ve, 0.346 | 0.372 2.000 0.4%0 0372 | 0402 | 0333 0.389
VCq 0.456 | 0.482 1.143 0.571 0.523 | 0.570 0.471 0.487 pia 1)172(1!2) C P (ﬂM ) M‘
Ve, 0346 | 0372 | 2000 | 0490 | 0362 | 0418 | 0.365 | 0382 = ) for m}:lnm =N m
VCio 0.456 | 0.482 1.286 0.571 0.517 | 0.522 | 047} 0.495
vey, 0.125 | 0.127 0.250 0.168 0.123 | 0.125 | 0.122 0.112
VCy, 0.430 | 0444 | 0750 | 0512 | 0.461 | 0.562 | 0.432 | 0.450 |where N=(Ny,Nq, ..., Ng}is the vector of chain population sizes,
VCis 0.148 1 0.156 1.000 0225 | 0.163 | 0.153 | 0.147 0.161 fmt , Mm=12,. .M, k=12, K, is the number of chain k custo-
VC,, 0.125 | 0.127 0.250 0.168 0.130 | 0.141 0.124 0.125 mers at service center m
VCys 0.529 | 0.571 2.250 0.705 0.611 § 0.639 | 0.545 0.566 !
VCis 0346 | 0.372 { 2.000 | 0490 | 0.369 | 0.404 | 0.328 | 0.370 Bn=(nm1,fmg - -, Bk ), m =12, M,
VCy 0456 | 0482 | 1.143 | 0571 | 0.496 | 0.540 | 0.456 | 0.481 8=(av82 ..., 8u),

HEE;VC 0346 | 0372 | 2.000 0450 1 0385 | 0386 | 0346 | 0354 p(n ) is the improper product-form probability density function,

Average | 0.340 | 0.362 1.214 0.449 0.368 | 0.391 0.344 0.359

Table 6. Mean delays of virtual channels given by different models for
=3 packets/second.

In Tables 5 and 6, we show the throughputs and mean delays of indi-
vidual wvirtual channels predicted by the various models for v =3
packets/second. The best model, closed model (fixed), gives predictions

that differ from simulation results (all four cases) by less than 10 percent in
most cases and less than 15 percent with only a few exceptions. (These
exceptions arise when we compare it with the hyper and burst; models
having coeflicients of variation far away from unity.) For individual virtual

channels, we consider such predictions to be very good and the model
robust.

Gl)= %
ell feasible states
tion vector [N, and the improper probability density function of

queue lengths at service center m is given by

p(n ) is the normalization constant for popula-

Ami »

mt
Ktk C )
P (Bm )= 1 ] =22
& ==l Rt |

@
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where  fp =, 4+ Regt  * * +0x,

Am¢ i3 the relative arrival rate of chain k customers to service
center m

C, is the capacity in bits per second of channel m

and Bmi Con i3 the service rate of channel m for chain k¥ packets in
packets per second.

The chain throughput T, (A} in terms of normalization constants is
given by

- G{(N-1:)

TN )

N2> L, k=12 K 3)

where [N -1, is the population vector resulting from subtracting one from
the kth element of . Also, the relative arrival rate of customers to the
source server of virtual channel k is set equal to 1 for every k. The net-
work throughput is obtained by summing over all chains.

xS GN-L)
T(N)~A¥1 G(N) @

From Little's formula, the chain delay is given by

Ny ==N,G([y)

RO vy R raryy s)

and the average network delay is

K
o= 7oy () ©

4.2. Optimality condition for capacity assignment

As in the case of the open network model, the Lagrange multipliers
method is used. For the analysis that immediately follows, we assume that
channel capacities are available for any positive vélue as well as linear cost
functions 4,(C,)=d, C;. Additionally, the end-to-end delays of virtual
channels are not constrained. The following expression is to be minimized

Y= T8[54 C-Doni] Y
Take the derivative of Y with respect to C,
oY _ _8T(N )

N 3¢, P (8)

Since T'(N) is a function of normalization constants the partial
derivative of G(N) with respect to C, is first derived. By observation,
G(lN) and other performance measures of the closed network model are
continuous functions of C;. Diflerentiating the normalization constant with
respect to C,, and after some simplifications, we get

—a—g—éf—[lﬂ'—(%'—&lq. (A) (9)

X
where ¢,(N )== 37 ¢4 () is the mean queus length of service center i.
LY
The partial derivative of total throughput with respect to C, is
derived to be

in(N)q.(N-h)

AT(N)_ T(N _ia
5C, “‘%J “() T

= 20 [0 @) - 7] (10)

where 7, (X ) is the mean queue length of service center § if one cus-
tomer, from any chain, is removed from the network.

Put 8T (N )/0C, into Eq. (7),

oy TW) [a.u;u- 0 (t0)] wpi—o

C d =

; ()

Summing Eq. (11) over all channels

§C‘d'=-27(u)[q‘.;u)—q,(u)} o
- T(N)i [E(N)-q,(]y)]
g = v o=l

D rmax

Put 8 into Eq. (11), we obtain the following condition for optimal
network throughput

Do [1.8)-0.(20)]
4 3 (1o )]

-]

Ci=

(12)

Note that in Eq. (12), the right hand side is a function of
C;,§=12,,M. Thus to get the set of optimal capacities, a numerical
solution of the set of equations given by (12) is required. A more detailed
derivation of the equations in this section can be found in {9].

4.3. Heuristic algorithm

In the design of a real network, channel capacities are only available
in certain discrete values, channel capacity cost functions are not linear,
and it is often desirable to upper bound the mean delays of some or all of
the virtual channels. We have developed a heuristic algorithm for finding

optimal channel capacities. Let l.==léM '3 (N)—I.(N)]. i, represents

the change in the mean network throughput resulting from & small change
in the channel capacity C,. The algorithm, presented in [9] , basically
performs a search of the parameter space using /, as the steepest descent
criterion. It includes the following two key steps:

1. Select an initial capacity assignment that is feasible.

2. Repeat the following until no more improvement can be made: Select a
pair of channel capacities using I, as metric; deviate capacity from one
channel to another to increass network throughput.

The tree convolution algorithm is used to evaluate i, and network
throughputs.
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We considered the assignment of channei capacities to a network
example with 6 nodes, 9 full-duplex links, and 18 virtual channels in 8 sym-
metnic pairs (details can be found in 9] } Each virtual channel has a win-
dow size of two. In order to compare with the square root capacity assign-
ment {4] , we assumed linear cost functions and continuqus capacity 'values,
We started with three different sets of feasible capacities and applied the
heuristic algorithm. With each set of initial capacities, the heuristtig algo-
rithm found a set of final capacities. The three sets of final capacities are
almost identical. (See Table 7.) Furthermore, upon algorithm termmat}ltm,
the !, values, §==1,2,.,M are approximately equal and the final capacities
were found to satisfy the optimality condition in (12). We do not know
whether this is the global optimum or just a local optimum. We also calcu-
lated the capacities given by the square root capacity mignmept. These
capacities are shown in column 4 of Table 7 and we were aumr\u§ to see
bow different they are from the capacities given by the method h.erem. For
each set of capacities, the network throughputs and mean delays in ".he bot-
tom rows of Table 7 were calculated using the tree convolution algorithm.

1 2 3 4°
Initial capacities
C, 27200 3200 200
Ca 200 3200 200
C, 200 3200 200
C4 200 3200 200
Csg 200 3200 27200
Ce 200 3200 200
Cq 200 3200 200
Cq 200 3200 200
Co 200 3200 200
Final capacities
C, 2857.15 2855.16 28554 2901.67
C, 5503.12  5501.7 5502.3 424417
Cs 4354.17  4350.87 4352.2 424417
Ce 2819.35 2819.65 2820.1 2901.67
Cs 994.28 997.6 996.2 2901.67
Ce 994.54 996.97 995.7 2901.87
C, 2819.45 2820.94 2819.38  2901.67
Cs 2819.64 2820.82 2819.3 2901.67
Cy 5638.3 5635.81 5639.5 2901.67
Total throughput 58.54 58.54 58.54 50.2
Average ETE delay 0.15 0.15 0.15 0.18

¢ the throughput and average end-to-end virtual channel delay are
computed for a closed network model using capacities according
to the square root assignment.

Table 7. Total throughputs for different initial capacity assignments

The heuristic algorithm can be very easily adapted to perform vari-
ous network topology optimizations (e.g., adding and deleting communica-
tions links). The adaptation has not been done but is something we plan to
do in the future. We are also investigating improvements to the speed of
the algorithm by using bounds and approximations for estimating

throughputs [3] instead of using the tree convolution algorithm at every
step.
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