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ABSTRACT Keywords

Measurement studies indicate a high rate of node dynamics in p2pHypercube routing,K-consistency, failure recovery, sustainable
systems. In this paper, we address the question of how high a rate ofchurn rate, peer-to-peer networks
node dynamics can be supporteddiyucturedp2p networks. We
confine our study to the hypercube routing scheme used by several
structured p2p systems. To improve system robustness and facili-l' INTRODUCTION
tate failure recovery, we introduce the propertyfofconsistency Structured peer-to-peer networks are being investigated as a plat-
K > 1, which generalizes consistency defined previously. (Con- form for building large-scale distributed systems [7, 9, 11, 13]. The
sistency guarantees connectivity from any node to any other node.)primary function of these networks is object location, that is, map-
We design and evaluate a failure recovery protocol based uponping an object ID to a node in the network. For efficient routing,
local information for K -consistent networks. The failure recov- €ach node maintair@(log n) pointers to other nodes, to be called
ery protocol is then integrated with a join protocol that has been neighbor pointers, where is the number of network nodes. To
proved to construci -consistent neighbor tables for concurrent locate an object, the average number of application-level hops re-
joins. The integrated protocols were evaluated by a set of simu- quired isO(logn). Each node stores neighbor pointers in a table,
lation experiments in which nodes joined a 2000-node network and called itsneighbor table The design of protocols to construct and
nodes (both old and new) were randomly selected to fail concur- maintain “consistent” neighbor tables for network nodes that may
rently over 10,000 seconds of simulated time. In each such “churn” join, leave, and fail concurrently and frequently is an important
experiment, we took a “snapshot” of neighbor tables in the network foundational issue.
once every 50 seconds and evaluated connectivity and consistency Of interest in this paper is the hypercube routing scheme used to
measures over time as a function of the churn rate, timeout value achieve scalable routing in several proposed systems [7, 9, 13]. Our
in failure recovery, and¢. Storage and communication overheads first objective is the design of a failure recovery protocol for nodes
were also evaluated. We found our protocols to be effective, effi- t0 re-establish consistency of their neighbor tables after other nodes
cient, and stable for an average node lifetime as low as 8.3 minuteshave failed." Neighbor table consistency guarantees the existence
(the median lifetime measured for Napster and Gnutella was 60 Of at least one path from any source node to any destination node in
minutes [10]). the network [6]. Such consistency however may be broken by the
failure of a single node. To increase robustness and facilitate the
design of failure recovery, we introdud€-consistency X' > 1,

Categones and SUbJeCt Descrlptors which generalizegonsistencypreviously defined [6]. We design
C.2.2 [Computer-Communication Networks]: Network Proto- and evaluate a failure recovery protocol, which includes recovery
cols; C.2.4 Computer-Communication Networks]: Distributed from voluntary leave as a special case, forconsistent networks.
Systems; C.4Rerformance of Systemp Fault Tolerance The protocol was found to be highly effective f&f > 2. From
2,080 simulation experiments in which up to 50% of network nodes
failed at the same time, we found that all “recoverable holes” in
General Terms neighbor tables due to failed nodes were repaired by our protocol
Performance, Design, Reliability, Experimentation for K > 2, that is, the neighbor tables recoverEBdconsistency

after the failures ireveryexperiment fork” > 2. Furthermore, the
*Research sponsored by National Science Foundation grant no.vast majority of the holes in neighbor tables were repaired with no
ANI-0319168 and Texas Advanced Research Program grant no.communication cost. The protocol uses only local information at
003658-0439-2001 each node and is thus scalable to a large
Our second objective is integration of the failure recovery pro-

tocol with a join protocol that has been proved to constrifet

consistent neighbor tables for an arbitrary number of concurrent
Permission to make digital or hard copies of all or part of this work for joins in the absence of failures and also shown to be scalable to a
personal or classroom use is granted without fee provided that copies are|argen [3]. Such integration requires extensions to both the failure
not made or distributed for profit or commercial advantage and that copies recovery and join protocols. For a network with concurrent joins
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tween nodes that are still in the process of joining, called T-nodes, from 980 simulation experiments. In Section 6, we present results
and nodes that have joined successfully, called S-nodes. The joinfrom long-duration churn experiments in which nodes join and fail
protocol, on the other hand, needs to be extended with the ability continuously. In Section 7, we investigate storage and communica-
to invoke failure recovery and to backtrack. Furthermore, when a tion overheads of our protocols as a functioriaf We conclude in
node is performing failure recovery, its replies to some join proto- Section 8.

col messages must be delayed. We ran 980 simulation experiments

in which the number of concurrent joins and failureswas upto 50% 2 FOUNDATION

of the initial network size. We found that, féf > 2, our protocols

constructed and maintaindd-consistent neighbor tables after the 2 1 Hypercube routing scheme

concurrent joins and failures gveryexperiment.

Our third objective is to explore how high a rate of node dy-
namics can be supported by the integrated protocols for hypercube
routing. We performed a number of (relatively) long duration ex-
periments in which nodes joined a 2000-node network and nodes
(both old and new) were randomly selected to fail concurrently. In Hereafter, we will use:. 1D to denote the ID of node, zi] theith
each suclechurn experiment, we took a snapshot of neighbor tables .~ " ; ) -
in the network once every 50 seconds and evaluated network con-.OIIgIt in z.ID, andx[z N 1]"'75[.0] a suffix Of.x'.ID' .We co_unt digits

g . . . in an ID from right to left, with the Oth digit being theghtmost
nectivity and consistency measures over time as a function of thedi it. See Table 1 for notation used throughout this paper
churn rate, timeout value in failure recovery, akid Our protocols git. 9 paper.

In this section, we briefly review the hypercube routing scheme
used in PRR [7], Pastry [9], and Tapestry [13]. Consider a set of
nodes. Each node has a unique ID, which is a fixed-length random
binary string. A node’s ID is represented &yligits of base, e.g.,

a 160-bit ID can be represented by 40 Hex digits( 40, b = 16).

were found to be effective, efficient, and stable for a churn rate up [Notation Definition
to 4 joins and 4 failures per second. By Little’s Law, the average | (V. N(V)) a hypercube networkv” is the set of nodes in the network,
lifetime of a node was 8.3 minutes at this rate. For comparison, the N(V) is the set of neighbor tables

. . . 4] the se{0, ...,¢ — 1}, £ is a positive integer
median lifetime measured for Gnutella and Napster was 60 min- [~ the number of digits i a node’s 1D
utes [10]. b the base of each digit

We also found that, for a given network, its sustainable churn rate |_z[i] theith digitin . 7D -
is upper bounded by the rate at which new nodes can join the net-2li — 1I..-2[0] | suffixofs.ID; denotes emply string if = 0
. x.table the neighbor table of node

work successfu!ly_ (becom_e S-nodes). We refer to this upper bound| =3 digit j concatenated with suffoo
as the network’goin capacity. We found that a network’s join ca- [w] the number of digits in suffiw
pacity decreases as the network’s failure rate increases. For a given N= (¢, 5) the set of nodes i(i, j)-entry ofx.table, also referred

; ; e ini _ as the(i, j)-neighborsof nodex
failure rate, we found two ways to improve a network’s join capac N(7. 77 Jorst | the firstnode V.. (7, 7)

ity: (i) use the smallest possible timeout value in failure recovery, ~csur(e;.ws) | the longest common suffix o; andws
and (ii) choose a smallek value. Since improving a network’s V] the number of nodes in s&t
join capacity improves its sustainable churn rate, our observation Table 1: Notation

that a smallerk (less redundancy) leads to a higher join capacity Given a message with destination node LD, the objective

is consistent with the conclusion in [1]. Furthermore, we found that . o .
of each step in hypercube routing is to forward the message from its

a network’s maximum sustainable churn rate increases at least lin- t nod i t nod h that the suff tch
early withn (the number of network nodes) farfrom 500 to 2000. current node, say, 1o a next node, say, such that the suflix matc
betweeny.ID andz.ID is at least one digit longer than the match

This validat jecture that tocols’ stability i ) T
thelsn\llfr‘r:bgrec; 2?:;&‘;‘; ?rﬁh ean e(i\ljvrorr)lr(oir?cizss:sa lity Improves as betweenz.ID andz.ID.? If such a path exists, the destination is
Among related work, both Pastry [9] and Tapestry [13] make reached |rO(lo_gb n) steps on the average aﬂ]dsteps_ln the worst
useof hypercube routin, Pasry s pprosch for i recovery s 52 WPETS e umber of etuor oces Fiure 1 dows
diff t from th in thi . In addition t ighb ) .
vety cirerent o e one In This paper. In ardrion to a Reignuor node 03231 = 4, d = 5). Note that the ID of each intermediate

table for hypercube routing, each Pastry node maintains a leaf set ) Lo
of 32 nearest nodes on the ID ring to improve resilience. Leaf set node_ in the path maiches 03231 by at least one more suffix digit
than its predecessor.

membership is actively maintained. Pointers for hypercube rout-

ing, on the other hand, are used as shortcuts and repaired lazily. R

Tapestry’s basic approach for failure recovery is similar to ours in ‘

that it also stores multiple nodes in a neighbor table entry. However, Figure 1: An example hypercube routing path

the property off{-consistency is not defined and thus not enforced  1g jmplement hypercube routing, each node maintainsigh-

in Tapestry. Furthermore, Tapestry's join and failure recovery pro- o aplethat hasd levels withb entries at each level. Each table

tocols are based upon use of a lower-layer Acknowledged Multicast entry stores link information to nodes whose IDs have the entry’s

protocol supported by all nodes [2]. Our protocols do not require required suffix, defined as follows. Consider the table in nede

such reliable multicast support and are very different. Lastly, s Therequired suffixor entry;j atleveli, j € [b], i € [d], referred to

we revised this paper, we found two recent papers that address thes the {, j)-entry ofx.table, is j - z[i — 1]...z[0]. Any node whose

problem of churn in structured p2p networks [5, 8. _ ID has this required suffix is said to becaalified node for the
The balance of this paper is organized as follows. In Section 2, (; jy.entry of z.table. Only qualified nodes for a table entry can

we present an overview of the hypercube routing scheme and de-pg stored in the entry.

fine K-consistency. In Section 3, we describe our failure recovery  Note that node: has the required suffix for the, @[i])-entry,i €

protocol and present results from 2,080 simulation experiments. In (71 of its own table. For routing efficiency, we fill each node’s table
Section 4, we present our join protocol that has been proved to con-gych that, (i, z[i]) first = x forallz € V, i € [d]. Figure 2

struct and maintaid-consistent networks for concurrent joins. In

Section 5, we describe how to extend the join and failure recovery I this paper, we follow PRR [7] and use suffix matching, whereas

protocols to handle concurrent joins and failures and present resuitsOter Systéms use prefix matching. The choice is arbitrary and con-

ceptually insignificant.




shows an example neighbor table of node 21233. The string to the3. BASIC FAILURE RECOVERY

right of each entry is the required suffix for that entry. An empty

In this section, we present a basic failure recovery protocol for

entry indicates that there does not exist a node in the network whose i _consistent networks and demonstrate its effectiveness. We con-

ID has the entry’s required suffix.

Nodes stored in thei(j)-entry of z.table are called thdi, j)-
neighborsof z, denoted byN. (¢, j). Ideally, these neighbors are
chosen from qualified nodes for the entry according to some prox-
imity criterion [7]. Furthermore, node is said to be aeversef, j)-
neighborof nodey if y is an ¢, j)-neighbor ofz. Each node also
keeps track of its reverse-neighbors. The link information for each
neighbor stored in a table entry consists of the neighbor’s ID and IP

sider the “fail-stop” model only, i.e., when a node fails, it becomes
silent and stays silent. If some neighbor in a node’s table has failed,
we assume that the node will detect the failure after some time,
e.g., timeout after sending a periodic probe. Note that the failure of
a reverse-neighbor affects neith&rconsistency nor consistency
of a neighbor table. Therefore, if a reverse-neighbor has failed,
the reverse-neighbor pointer is simply deleted without any recov-
ery action. Hence, the protocol being designed is for recovery from

address. For clarity, IP addresses are not shown in Figure 2. Hereygjghbor failures only.

after, we will use “neighbor” or “node” instead of “node’s ID and
IP address” whenever the meaning is clear from context.

Neighbor table of node 21233 ( b=4, d=5)

~ 01233 | 10233 | 0233 | 31033 | 033 | 22303 |03 | 01100 |0
11233 | 11233 | 21233 | 1233 | 03133 |133 | 13113 |13 | 33121 |1
21233 [21233| A~ 2233 | 21233 233 | 00123 |23 | 12232 |2

A 31233 | 03233 | 3233 A 333 | 21233 |33 | 21233 |4
level 4 level 3 level 2 level 1 level 0

Figure 2: An example neighbor table

2.2 K-consistent networks

Constructing and maintaining consistent neighbor tables is an
important design objective for structured peer-to-peer networks.
Consider a hypercube routing network/, N'(V')), whereV de-
notes a set of nodes aud (V) the set of neighbor tables in the
nodes. (Hereafter, we will use “network” instead of “hypercube
routing network” for brevity.) Consistency was defined in [6] as
follows: A network, (V, N'(V')), is consistentif and only if the
following conditions hold: (i) For every table entry iV (V), if
there exists at least one qualified nodé/inthen the entry stores at
least one qualified node. (ii) If there is no qualified nod&ifor a

Consider a network of. nodes that satisfie&-consistency ini-
tially. Supposef out of then nodes (chosen randomly) fail at the
same time or within a short time duration. Our objective in this
section is to design a protocol for each remaining node to repair
its neighbor table such that some time after fhiailures have oc-
curred, neighbor tables in the remaining— f nodes satisfyK -
consistency again.

Suppose a node in the network, gayhas failed and; has been
stored in the 4, j)-entry of the table of node. We say that the
failure of y leaves &olein the ¢, j)-entry ofx.table. To maintain
K-consistencyz needs to find gualified substitute for y, i.e.,x
needs to find a qualified nodefor the entry, such that has not
failed andu is not already stored in the entry. (It is possible that
u fails later andx needs to find a qualified substitute for) To
determine whether or not the network of— f remaining nodes
satisfiesK -consistency, we distinguish betwertoverable holes
and irrecoverable holes A hole in the ¢, j)-entry of x.table is
irrecoverable after thef failures if a qualified substitute does not
exist among thes — f remaining nodes.

The objective of failure recoverys to find a qualified substi-
tute for every recoverable hole in neighbor tables of all remaining
nodes. Irrecoverable holes, on the other hand, cannot possibly be
filled and do not have to be filled for the neighbor tables to sat-

particular table entry, then that entry must be empty. In a consistent isfy K-consistency. The main difficulty in failure recovery is that

network, any source nodecan reach any destination nogeising
hypercube routing ik steps,k < d. More precisely, there exists
a neighbor sequencedth), (uo, ..., ux), k < d, such thatu is z,
ug ISy, andu; 1 € Ny, (¢, y[7]), ¢ € [k].

If nodes may fail frequently in a network, an excellent approach
to improve robustness is to store in each table entry multiple qual-
ified nodes. For this approach, we generalize the definition of con-
sistency toK-consistency as follows. A networkV, N'(V)), is
K-consistentif and only if the following conditions hold: (i) For
every table entry inV(V), if there existH qualified nodes i/,

H > 0, thenthe entry stores at least M) qualified nodes. (ii)

If there is no qualified node il for a particular table entry, then
that entry must be empty. (A more formal definition is presented in
the Appendix.)

It is easy to see that, faK' > 1, K-consistency implies con-

individual nodes do not have global information and cannot distin-
guish recoverable from irrecoverable holes. (If the network is not
partitioned, a broadcast protocol can be used to search all nodes to
determine if a hole is recoverable. A broadcast protocol, of course,
is not a scalable approach.)

The recovery process for each hole in a node’s table is designed
to be a sequence of four search steps executed by the node based
on local information(its neighbors and reverse-neighbors). After
the entire sequence of steps has been executed and no qualified
substitute is found, the node considers the hole to be irrecoverable
and the recovery process terminates. The effectiveness of our fail-
ure recovery protocol is evaluated in a large number of simulation
experiments. In a simulation experiment, we can check how fast
our failure recovery protocol finds a qualified substitute for a re-
coverable hole. Furthermore, we can check how often our failure

sistency (in particular, 1-consistency is the same as consistency).fecovery protocol terminates correctly when it considers a hole to

Furthermore, for a given set of nodds;consistent neighbor tables
exist for any realization of node IDs (recall that IDs are generated
randomly). In Section 4, we will present a join protocol that gener-
atesK -consistent tables for an arbitrary number of concurrent joins
to an initially K -consistent network (which may be a single node).
Multiple neighbors stored in each table entry provide alternative

be irrecoverable (since we have global information in simulation).

3.1 Protocol design

Suppose a node;, detects that a neighbay, has failed and left
a hole in the {, j)-entry,i € [d], j € [b], in x.table. Letw denote
the required suffix of thei(j)-entry inx.table. To find a qualified

paths from a source node to a destination node, and some of thenmsubstitute for with reasonable cost, we propose a sequence of four

are disjoint. We have proved thatré-consistent network provides
at leastK disjoint paths to every source-destination pair with a

search steps, (a)-(d) below, based upon ndsléocal information.
At the beginning of each step, except step ¢a3ets a timer. If the

probability approaching one as the number of nodes in the network timer expires and no qualified substitute fohas been found, then

increases [3].

x proceeds to the next step.



To determine whether some nodds a qualified substitute for ~ for 84 out of the 180 experiments; a Poisson process was used to
y,  needs to know whether has failed. In our protocok; makes generate failures in the balance of the experiments, with half of the
this decision also based uptortal information More specifically, experiments at the rate of 1 failure per second and the other half at
x maintains a list of failed nodes it has detected sd faraccepts the rate of 1 failure every 10 seconds. For comparison, the timeout
u as a qualified substitute far if » is not on the listu has the value used to determine whether a neighbor has failed was 5 sec-

required suffixw, andu & N, (i, 7). onds, and the timeout value used in each of the protocol steps (b)-
Step (a)xz deletesy from its table, then searches its neighbors (d) was 20 seconds. Therefore, most failure recovery processes ran

and reverse-neighbors to find a qualified substitutesfor concurrently even when the Poisson rate was slowed to one failure
Step (b)x queries each of the remaining neighbors in the)¢ every ten seconds. For 4000-node experiments and each spécific

entry of its table (if any). In each query,includes a copy of nodes  value, thef nodes failed at the same time in 104 out of the 116 ex-

in N;(i,7). When a node, say, receives such a query from it periments, with a Poisson process at the rate of 1 failure per second

searches its neighbors and reverse-neighbors to find a node that hassed in the balance of the experiments.

suffix w and is not inV; (4, j). If one is found,z replies tox with We conducted simulations for different combination$,ai, K,

the node’s ID (and IP address). n andf values. For each network efnodesy € {1000,2000,4000,

Step (c) x queries each of its neighbors at levefall entries) 8000}, four pairs of §, d) were used, namely: (4,16), (4,64), (16,8),
including neighbors in the (5)-entry, using a protocol same as the and (16,40f. Then, for each¥ d) pair, K was varied from 1 to
one in step (b). 5. For each, b, d, K) combination, f was varied fron0.05n

Step (d)x queries each one of its neighbors (all levels) including to 0.1n, 0.15n, 0.2n, 0.3n, 0.4n, and0.5n (1540 experiments
neighbors at level; using a protocol same as the one in step (b).  were run forf = 0.05n to f = 0.2n, with approximately the

When the timer in step (d) expires and no qualified substitute same number of experiments for each; 540 experiments were run
has been foundy terminates the recovery process and considers for f = 0.3n to f = 0.5n, with 180 experiments for each).
the hole left byy to be irrecoverable. The earlier a hole is repaired  To construct the initialK-consistent networks for simulations,
with a qualified substitute, the less is the communication overhead we experimented with four approaches to choose neighbors for
incurred. If a hole is repaired in step (a), there is no communica- each entry: (i) choos& neighbors randomly from qualified nodes,
tion overhead. If a hole is repaired in step (b), at mi{gt’ — 1) (ii) choose K closest neighbors from qualified nodes, (iii) choose
messages are exchangdd,— 1 queries andX — 1 replies. If a K neighbors randomly from qualified nodes that are within a mul-
hole is repaired in step (c), there are at m2kth messages, plus tiple of the closest neighbor’s distance, (iv) use our join protocol
the messages exchanged in step (b). If a hole is repaired in step (d)in Section 4 to construct & -consistent network. We conjecture
approximately2 Kb log, n messages, plus the messages in steps (b) that a K -consistent network constructed by approach (iii) would

and (c), are exchanged. be closest to a real network whose neighbor tables have been op-
i i . timized by some heuristics. As shown below, we found that for
3.2 Simulation experiments K > 2, our failure recovery protocol was very effective irrespec-

Methodology To evaluate the performance of our failure recov- tive of the approach used for initial network construction. (All four
ery protocol, 2,080 simulation experiments were conducted on our approaches were used for different experiments in the set of 2,080
own discrete-event packet-level simulatowe used the GITM experiments.)
package [12] to generate network topologies. For a generated topol- Results Table 2 shows a summary of results from 2,080 sim-
ogy with a set of routers; nodes (end hosts) were attached ran- ulation experiments. In a simulation, if all recoverable holes are
domly to the routers. For the simulations reported in Table 2, three repaired (thusk-consistency recovered) at the end of the simula-
topologies were used. The 1000-node and 2000-node simulationstion, it is recorded as perfect recoveryn Table 2. In the 2,080
used a topology with 1056 routers. The 4000-node simulations simulation experiments, every simulation f&r > 2 finished as a
used a topology with 2112 routers. The 8000-node simulations perfect recovery, i.e., every recoverable hole was repaired with a
used a topology with 8320 routers. We simulated the sending of qualified substitute. Thus ik -consistent networks, fok™ > 2,

a message and the reception of a message as events, but abstractedr failure recovery protocol is extremely effective.
away queueing delays. The end-to-end delay of a message from its

source to destination was modeled as a random variable with mean X,n | Numberof | Numberof || K,n | Numberof | Number of
value proportional to the shortest path length in the underlying net- simulations | perfect simulations | perfect
5 recoveries recoveries
work. ) _ _ _ 1,1000 | 100 51 1,2000 | 180 96
In each simulation, a network of nodes with K-consistent 2,1000 | 100 100 2,2000 | 180 180
neighbor tables was first constructed. Then a numpeaf ran- 3,1000 | 100 100 3,2000 | 180 180
; ; 4,1000 | 100 100 4,2000 | 180 180
domly chosen nodes failed. For 1000-node and 8000-node simula: 10001100 00 =000 1180 150
tions, thef nodes failed at the same time. For 2000-node simula- 1’4000 116 o 1’ 3000 | 20 1a
tions and each specifi€ value, thef nodes failed at the same time 2.4000 | 116 116 2.8000 | 20 20
o - - ) . 3,4000 | 116 116 3,8000 | 20 20
Inimplementation, a failed node only needs to stay in the listlong [77,4000 | 116 116 4,8000 | 20 20
enough for all its reverse-neighbors to detect its failure. To keep [ 54000 | 116 116 5,8000 | 20 20
the list from growing without boundy can delete nodes that have
been in the list for a sufficiently long time. Table 2: Results from 2,080 simulation experiments f

“These 2,080 experiments together with the 980 experiments to bewas0.05n, 0.1n, 0.15n, 0.2n, 0.3n, 0.4n or 0.5n)

presented in Section 5 required several months of execution time . . .

on several workstations. A typical experiment took several hoursto  Table 3 presents results from ten simulations for a network with
run on a Linux workstation with 2.66 GHz CPU and 2 GB memory. 4,000 nodes and 800 failures, where the initial neighbor tables were
Each simulation experiment for 8,000 nodess 16, and K > 3 constructed using approach (iii), described above. The results show
shown in Table 2 took 40 - 72 hours to run. the cumulative fraction of recoverable holes that were repaired by
°The maximum end-to-end delay in 8000-node simulations was
969 ms. 5In Tapestryp = 16 andd = 40. In Pastryp = 16 andd = 32.




the end of each step in the recovery protocol. For instance, for the| - /& | Total [ lrreco- Number of recoverable
. . . number | verable holes repaired at each step
simulation with parameters = 4, d = 64 and K' = 2, more ofholes | holes [ step Step | Step | step | moires
than 66.8% percent of recoverable holes were repaired by the end (a) (b) (©) (d) | overed
of step (a), 93.8% were repaired by the end of step (b), 99.8% were| 4,64, 1 | 13125 | 1484 | 5257 | 0 5464 | 907 | 13
: h 4,64,2 | 28616 | 3660 | 16675 | 6737 | 1496 | 48 | O
repaired by the end of step (c), and all were repaired by the end
. 4,64,3 | 43323 | 5798 | 28527 | 8613 | 339 | 46 | O
of step (d). From Table 3, observe that step ((_j) in our recovery [z 64 4 | 57462 | 7997 | 40370 | 8988 | 70 37 10
protocol was rarely used. There was a dramatic improvement in[4,64,5 | 70798 | 10174 | 51626 | 8945 | 37 16 | 0
the recovery protocol’s performance whinwas increased from 1 16,40,1] 29803 | 4442 | 11505 | O 13833 23 | O
to 2. Also observe that the fraction of recoverable holes that were 1? 38’3 gi%; g;ié 22282 Eigé 3223 Z 8
repaired after each step increases with _ 16, 40, 4 | 107547 | 10500 | 75028 | 21804 | 215 [0 | 0
Aside from being extremely effective, our failure recovery proto- s, 40,5 132257 | 10696 | 100157 | 21336 | 68 0 0

col is also very efficient because recoverable holes repaired in step
(@) incur no communication cost, while each hole repaired in step Table 4. Total number of holes, irrecoverable holes, and re-
(b) incurs a communication cost of at m@§tK — 1) messages.  coverable holes repaired at each step, = 4000, f = 800
Table 3 shows that, foK > 2, the majority of recoverable holes

were repaired in step (a) and almost all of them were repaired by 4,  JOIN PROTOCOL FOR K-CONSISTENCY
the end of step (b). Note that if a recoverable hole is repaired in We present in this section a join protocol that constructs and

step (a), its recovery time is (almost) zero. The time required for L . iahb bles f bi ber of
each subsequent step ((b)-(d)) is at most the step’s timeout value mamtamsK_— consistent neighbor tables for an arbitrary number o
‘concurrent joins [3]. In the next section, we will show how to ex-

Fo_r the timeout value of 20 seconds per step, the average_tlme to "®tend the failure recovery and join protocols to handle concurrent
pair a recoverable hole was less than 5.88 seconds-fi#, d=40, ioins and failures
and K=3 in Table 3. For a timeout value of 5 seconds per step, J :

; - In designing a protocol for nodes to join netwdik A (V)), we
the average time to repair a recoverable hole was found to be less ke the followi ions: (i) % 0 and (V. \' Sk
than 1.45 seconds fé=16,d=40, andK =3 from a different set of make the following as__sumpthn_s._m # D and{V, N(V)) isaK-
experﬁnents ' ' consistent network, (ii) each joining node, by some means, knows

a node inV initially, (iii) messages between nodes are delivered
reliably, and (iv) there is no node leave or failure during the joins.

b,d, K ste| . .
s 0'4';1(2)94 3"2';1(%4 gt'g%‘;)ﬁ 5 gfggégé 5 Then, the tasks of the join protocol are to update neighbor tables of
Z64.2 | 0.668176] 0.938131] 0.998077 | 1.000000 nodes inV" and construct tables for the joining nodes so that some
4,64,3 | 0.760213| 0.98974 | 0.998774| 1.000000 time after the joins, the network &-consistent again.

4,64,4 | 0.816133| 0.997837| 0.999252| 1.000000 Each node in the network maintains a state variable nasteed
‘112363'051 g-j:;)zz; g.i:z;ig g-ggggzg 1-888888 tus which begins incopying then changes tevaiting, notifying

16, 40, 2| 0.633784| 0.932868| 0.999854 | 1.000000 andln_systemn_ tha_t (_)rder. A node_ In status._systems callgd_an
16.40 3| 0.716517 | 0.089295] 0.099986 | 1.000000 S-node otherwise, it is a-node Briefly, in statuscopying a join-
16,40, 4| 0.77311 | 0.997785] 1.000000| 1.000000 ing node, sayr, copies neighbor information from other nodes to
16, 40,5] 0.823924] 0.999441| 1.000000| 1.000000 fill in most entries of its table. In statwgaiting, « tries to “attach”

itself to the network, i.e., to find an S-nodg,that will store it as a
neighbor. In statusotifying x seeks and notifies nodes that share
a certain suffix withz, which is also a suffix shared by andy.

Table 4 shows the total number of holes, the number of irrecov- L@stly, when it finds no more node to notify, changes status to
erable holes, as well as the number of recoverable holes repairedn-Systemand becomes an S-node. L -
at each step for the same simulation experiments shown in Table 3. Figure 3 presents the state variables of a joining node and the join
Observe from Table 4 that wheii was increased, even though the ~ Protocol messages. Note that each node stores, for each neighbor
total number of holes increased, the number of recoverable holes!n its table, the neighbor’s state, which can$édicating that the
repaired in step (b) did not increase much with the number of neighbor is aS-node orT" indicating itis aI_“-node. Once a node
holes repaired actually declined in steps (c) and (d). Thus while has become af-node, the state variables in the second part of the
increasingk’ causes the number of recoverable holes repaired in liStare no longer needed. ) o
step (a) to increase, these repairs are performedzeithcommu- Next, we desc_:rlbe the join protocol informally. (A speC|f|cat|qn
nication cost. of the protocol in pseudocode and a correctness proof are given

Nevertheless, the communication cost of failure recovery increase8 [3]-) In statuscopying a joining node, fills in most entries of
with K because the number of irrecoverable holes increases with IS table, level by level, as follows. To construct its table at leyel-

K. Note that for each irrecoverable hole, all four steps of failure ¢ € [d], # needs tofind an S-node node, that shares the rightmost
recovery are executed. 1 digits with it and send &pRstMsgto g; to request a copy of

gi.table. We assume that each joining node knows a nodé.ihet
this node begjo for z. x begins withgy. Fromgg.table, = copies
3.3 \Voluntary leaves level-0 neighbors ofjo, finds a nodey; that shares the rightmost
Avoluntary leave can be handled as a special case of node failuredigit with it, if such a node exists and is an S-node, and requests
if necessary. When a node, say leaves, it can actively inform gi.table from gi. Fromg, .table, = copies level-1 neighbors af
its reverse-neighbors and neighbors. To each reverse-neighbor, and tries to find;z, and so on.
suggests a possible substitute for itself. When a node receives a In statuscopying each time after receiving@RIlyMsgx checks
leave notification fronx, for each hole left by, it checks whether whether it should change statuswmiting. Supposer receives a
the substitute provided by is a qualified substitute. If so, the hole  CpRIyMsgfrom y. Then the condition for: to change status to
is filled with the substitute; otherwise, failure recovery is initiated waiting is: (i) there exists an “attach-level” far in the copy of
for the hole left byz. y.table included in the reply, or (ii) an attach-level does not exist

Table 3: Cumulative fraction of recoverable holes repaired
by the end of each stepp = 4000, f = 800



State variables of a joining node:

z.status € {copying waiting, notifying in_systen}, initially copying
N, (3, j): the set of {, j)-neighbors ofr, initially empty

z.state(y) € {T, S}, the state of neighbay stored inz.table.

R, (3, j): the set of reverse( j)-neighbors ofz, initially empty

x.att_level: an integer, initially 0.

Q,: asetof nodes from which waits for replies, initiallyempty
Q@ asetof nodes has sent notifications to, initiallgmpty

Q;: asetof nodes that have sena JoinWaitMsg initially empty
Qsr, Qsn: asetof nodes, initiallgmpty

Messages exchanged by nodes:

CpRstMsgsent byz to request a copy of receiver’s neighbor table.

CpRIyMsgft.table), sent byz in response to €EpRstMsg

JoinWaitMsg sent byz to notify receiver of the existence afand request
the receiver to store, whenz. status is waiting.

JoinWaitRlyMsgk, ¢, =.table), sent byx in response to doinWaitMsg
whenz. status is in_systemr € {negative, positivg, i: an integer.

JoinNotiMsg¢, =.table), sent byz to notify receiver of the existence of,
whenz. status is notifying <: an integer.

JoinNotiRlyMsgt, Q, x.table, f), sent byx in response to doinNotiMsg
r € {negative, positivg, Q: a set of integersf € {true, falsg-.

InSysNotiMsgsent byx whenz. status changes tan_system

SpeNotiMsgt, y), sent or forwarded by a node to inform receiver of the
existence ofy, wherez is the initial sender.

SpeNotiRlyMsg(, y), response to 8peNotiMsg

RvNghNotiMsgy{, s), sent byz to notify y thatx is a reverse neighbor af,
s €{T,S}.

Jj <i < lesuf(xz.ID, z.1ID)|, searches:.table for new neighbors
to updatez’s table, and then replies to with z.table. From the
reply, z may find more nodes that share the rightmjodigits with
it and sendloinNotiMsgto these nodes. Meanwhile searches the
copy ofz.table for new neighbors to update its own table.

Whenz has received replies from all nodes it has notified and
finds no more node to notify, it changes statusneystemand
becomes an S-node. It then informs all of its reverse-neighbors,
i.e., nodes that have storedas a neighbor, that it has become an S-
node. Ifz has delayed processidginWaitMsgfrom some nodes,
it should process these messages and reply to these nodes at this
time.

5. PROTOCOL DESIGNFORCONCURRENT
JOINS AND FAILURES

In this section we describe how to integrate the basic failure re-
covery protocol presented in Section 3 with the basic join protocol
presented in Section 4. Such integration requires extensions to both
protocols.

Consider aK-consistent network{V, N'(V)). Suppose a set
of new nodesJ¥, join the network while a set of nodes;, fail,

F CcVUW andV — F # (. Our goal in this section is to design

RvNghNotiRlyMsg{), sent byz in response to & NghNotiMsgs = S if
x.status isin_systemotherwises = T'.

extended join and failure recovery protocols such that eventually
the join process of each node W — F' terminates and(V U
W)—F,N((VUW)—F))is aK-consistent network. In general,
designing a failure recovery protocol to provide perfect recovery
is an impossible task; for example, consider a scenario in which
for z and nodeu is a T-node, where, = N, (k, z[k]).first and an arbitrary nt_meer pf nodes i U W fgil. On the other hand,
k = |esuf (z.ID, y.ID)|. (A precise definition of attach-level is ~ We observed in Section 3 that the basic failure recovery protocol
given in the Appendix.) If the condition is satisfied, thenhanges ~ achieved perfect recovery fdt-consistent networks, fok™ > 2,
status towaiting and sends doinWaitMsgto y (case (i) holds) or in which up to 50% of the nodes failed. This level of performance,
to u (case (i) holds). Otherwise; remains in statusopyingand we believe, would be adequate for many applications.
sends &CpRstMsdo . Design of extended join and failure protocols in this section fol-
In statuswaiting, the main task of: is to find an S-node in the ~ lows the approach in [4] on how to compose modules. The ser-
network to storer as a neighbor by sending albinWaitMsg an- vice provided by a composition of the two protocols herein is con-
other task is to copy more neighbors into its table. When a npde, ~ Struction and maintenance éf-consistent neighbor tables. The
receives aloinWaitMsgfrom z, there are two cases. #fis not an extended join protocol is designed with the assumption that the ex-
S-node, it stores the message to be processed after it has become danded failure recovery protocol provides a “perfect recovery” ser-
S-node. Ify is an S-node, it checks whether there exists an attach- Vice, thatis, for every hole found in the neighbor table of a node, the
level for z in its table. If an attach-level exists, say leyiely stores node calls failure recovery and within a bounded duration, failure
x into level-j through levelk, k = |csuf (z.ID, y.ID)|, and sends recovery returns with a qualified substitute for the hole or the con-
a JoinWaitRlyMs(positive j, y.table) to z, to inform z that the clusion that the hole is irrecoverable at that time. To avoid circular
lowest levelz is stored is levelt. Level-j is then the attach-level ~ reasoning [4], we ensure that progress of the failure recovery pro-
of z in the network, stored by in z.att_level. If an attach-level ~ tocol does not depend upon progress of the join protocol. Thus in
does not exist forr, y sends a negativéoinWaitRlyMsginclud- the extensions to be presented, failure recovery actions are always
ing y.table to . After receiving the reply (positive or negative), —executed before join actions.
x searches the the copy gftable included in the reply for new 51 Protocol extensions

neighbors to update its own table. If the reply is negativlas to
For networks with concurrent joins and failures, the failure re-

send anothedoinWaitMsg this time tou, u = N, (k, z[k]).first.
This process may be repeated for several times (at ahdistes covery protocol needs to distinguish between nodes that are still in
since each time the receiver shares at least one more digitewith the process of joining (T-nodes) and nodes that have joined suc-
than the previous receiver) uniilreceives a positive reply, which  cessfully (S-nodes). The join protocol, on the other hand, needs to
indicates that has been stored by an S-node and therefore attachedbe extended with the ability to invoke failure recovery and to back-
to the networkz then changes status totifying track. Furthermore, when a node is performing failure recovery, its
In statusnotifying x searches and notifies nodes that share the replies to some join protocol messages must be delayed. A more
rightmostj digits with it, j = x.att_level, so that these nodes will  detailed description follows.
update their neighbor tables if necessarystarts this process by We specify extensions to the basic join protocol in Section 4 and
sendingJoinNotiMsg which includesj and a copy ofc.table, to basic failure recovery protocol in Section 3.1 as a set of eight rules.
its neighbors at levej-and higher levels. EacloinNotiMsgserves Rule 0 extends the basic join protocol with the ability to invoke
as a notification as well as a request for a copy of the receiver’s failure recovery. Rule 1 is an extension that applies to both the basic
table. Upon receiving doinNotiMsg a receiver,z, storesz into failure recovery and join protocols. Rules 2 to 7 are extensions to
all (¢, z[i])-entries that are not full with' neighbors yet, where  the basic join protocol.

Figure 3: State variables and protocol messages



Rule 0 Each node, S-node or T-node, starts an error recovery ing, and sending doinWaitMsgto g;_1 to inform g;_; about the
process when it detects a hole in its neighbor table left by a failed failed node(s) and requegt_: to storex into g;—1.table. If g;—1

neighbor. has also failed, them contactsg; 2, and so on. If: backtracks to

Rule 1Infilling a table entry with a qualified node, do not choose go andgo has also failed, thes has to obtain another S-node from
a T-node unless there is no qualified S-node. the network to start joining from the beginning again.

Rule 1 extends the basic failure recovery protocol as follows:  Rule 4 A T-node must wait until its status rsotifying before it
When a nodez, locates a qualified substitute for a holedrable can sendRvNghNotiMsdo its neighbors, which will then store it as
using step (a), (b), (c), or (d) of the failure recovery protocaol, if the areverse-neighbor. (This is to prevent a T-node from being selected
qualified substitute is an S-node, thefills the hole with it and ter- as a substitute for a hole before it is attached to the network.)

minates the recovery process. However, if the qualified substitute Rule 5When a T-node receives a reply with a substitute node for
is a T-nodex saves the T-node in a waiting list for the entry and a hole in its table, if the T-node is in statnstifyingand the substi-
continues the recovery process. Only when the recovery processtute node should be notifigdthen the T-node sendslainNotiMsg
terminates at the end of step (d) without locating any S-node as ato the substitute, even if the substitute is not used to fill the hole.
qualified substitute, wilk remove a T-node from the entry’s wait- Rule 6 A T-node cannot change statusitosystem(become an
ing list to fill the hole (provided that the list is not empty). Also, S-node) if it has any ongoing failure recovery process.
because of Rule 1, when a node searches among its neighbors and Rule 7 When a T-node changes statusiiosystemit must in-
reverse-neighbors to find a qualified substitute in response to a re-form all its reverse-neighbors (by sendimgysNotiMsy in addi-
covery query from another node, it does not select a T-node as longtion to its neighbors, that it has become an S-node.
as there are S-nodes that are qualified. . .

Rule 1 extends the basic join protocol as follows: Consider a 5.2 Simulation results

node,z, that discovers a new neighbar, for one of its table en- We implemented the extended join and failure recovery proto-
tries after receiving a join protocol message from another nade. cols and conducted 980 simulation experiments to evaluate them.
can storey in the table entry, if the table entry is not full with Each simulation began with &-consistent network{V, N'(V)),
neighbors yet ang is an S-node, according to the following steps. of n nodes ¢ = |V'|). Then a setV of nodes joined and a sét of

First, z checks if there exists any vacancy among éslots” of randomly chosen nodes failed during the simulation. Each simula-
the entry that is not a hole for which failure recovery is in progress. tion was identified by a combination éfd, K, n, and|W| + | F|

If there exists such a vacanayiis filled into it; otherwisey (an values, whergW| + |F| is the total number of join and failure

S-node) is filled into a hole in the entry and the recovery process events. K was varied from 1 to 5,i( d) values were chosen from

for the hole is terminated. On the other hand, if the new neighbor (4,16),(4,64), (16,8) and (16,40), and three values, 1600, 3200 and
y is a T-node, thery can be stored in the entry if the total number 3600, were used for the initial network size) ( For 3200-node and

of neighbors and holes in the entry is less ti&n Otherwise,y 3600-node simulations, all joins and failures occurred at the same
(a T-node) is saved in the entry’s waiting list and may be stored time. For 1600-node simulations, join and failure events were gen-
into the entry later when the recovery process of a hole in the entry erated according to a Poisson process at the rate of 1 event per

terminates. second in 220 experiments, 1 event every 10 seconds in 180 ex-
Rule 2 Each node, S-node or T-node, cannot repl€iRstMsg periments, 1 event every 20 seconds in 60 experiments, and 1 event

JoinWaitMsgor JoinNotiMsg if the node has any ongoing recovery  every 100 seconds in 60 experimenkS-consistent neighbor tables

process at the time it receives such a message. for the initial network were constructed using the four approaches
When a nodez, receives &CpRstMsgJoinWaitMsgor JoinNo- described in Section 3.2.

tiMsg, if = has at least one recovery process that has not terminated, At the end of every simulation, we checked whether the join pro-
x needs to save the message and process it later. Each time a resesses of all joining nodes that did not fail (node8lin- F’) termi-
covery process terminates,checks whether there is any more re- nated. We then checked whether the neighbor tables of all remain-
covery process still running. If nog;, can process the above three ing nodes (nodes i U W — F') satisfy K-consistency. Table 5
types of messages it has saved so far. presents a summary of results of the 980 simulation experiments.
Rule 3When a T-node detects failure of a neighbor in its table, We observed that, foK" > 2, in everysimulation, the join pro-
it starts a failure recovery process for each hole left by the failed cesses of all nodes iV — F' terminated and the neighbor tables of
neighbor according to Rule 0 with the following exception, which all remaining nodes satisfidd-consistency. Each such experiment
requires the T-node to backtrack in its join process. is referred to in Table 5 as a simulation with perfect outcome.
Consider a T-node, say. In order to backtracky keeps a list of

nodes, §o, ..., gi), to which it has sent &pRstMsgr a JoinWait- 6. CHURN EXPERIMENTS

ngfo'ﬂo?l\:ﬁg ggr?ceii;]iilgg ;'gl]gssj E;(i;;(ti;agt(gt]gslcso|roey(iqu1“gr?/\(/jaliftigge of Our S|m_ulat|on results in the previous sectlon_show thaKo]__>

for a CpRIyMsgfrom g:, and hz;ls detected the failure gf (i) o 2, K-consistency was recovered in every experiment some time af-

is In statuswaiting waitzi‘ng for aJoinWaitRlyMsgrom g, and has ter the simultaneous occurrence of_masswe joins and failures. Such

detected the failu’re ofi: (iil) « is in statusotifying anz(;i whene convergence td<-consistency provides assurance that our proto-
v cols are effective and error-free. For a real system, however, there

deitse\i};ittirr]]e ]:‘?)Irluaﬁo(i)zﬁ;?Q?eMnseI%rr]t:/(v)gér?r ?eggg/eesfrg?ewglt?:e may not be any quiescent time period long enough for neighbor
r 9 yMsg * 9 tables to converge t& -consistency after joins and failures. Pro-

JoinNotiRlyMsgx finds that it has no live reverse-neighbor left and tocols designed to achiev§-consistencyk > 2, provideredun-

itis not expecting any mordoinNotiRlyMsg dancyin neighbor tables to ensure that a dynamically changing net-

In cases (i) and (ii)x has not been attached to the network (no . - .
. . work is alwaysfully connectedi.e., there
S-node has stored it as a neighbor). In case fiii¥, detached from ysiuly die., exists at least one path

the network and has no prospect of attachment since it is not ex- ‘Let = denote the T-node in statusotifying and y the sub-
pecting aJoinNotiRlyMsg In each casey backtracks by deleting ~ Stitute node received. ~ The condition far to notify y is

from its table the failed node(s) it detected, setting its statustt lic,\‘;zg(t”ééD’ y-ID)| = w.att level andz has not sent doinNo-




K=1 K =2,3,4,5
n No. of events No. of | No. of sim. | No. of | No. of sim.
(W[ +|F|) sim. w/ perfect | sim. w/ perfect
outcome outcome
1600 | 200 (38+162) 16 16 64 64
1600 | 200 (110+90) 16 16 64 64
1600 | 200 (160+40) 12 12 48 48
1600 | 400 (85+315) 12 10 48 48
1600 | 400 (204+196) | 12 11 48 48
1600 | 400 (323+77) 12 12 48 48
1600 | 800 (386+414) | 24 22 96 96
3600 | 400 (81+319) 16 13 64 64
3600 | 400 (210+190) | 16 15 64 64
3600 | 400 (324+76) 12 12 48 48
3600 | 800 (169+631) | 12 9 48 48
3600 | 800 (387+413) | 12 11 48 48
3600 | 548 (400+148) | 12 10 48 48
3200 | 1600 (780+820) 12 9 48 48

Table 5: Results for concurrent joins and failures

Figure 4 plots the total number of nodes (S-nodes and T-nodes)
and the number of S-nodes in the network at each snapshot, for
experiments with\ = 0.5, A = 1, andA = 1.5, andK = 3. Fluc-
tuations in the curves are mainly due to fluctuations in the Pois-
son processes for generating join and failure events. ditfier-
ence between the two curves of each experingetiite number of
T-nodes. With\join = Afair = A, @ stable number of T-nodes over
time indicates that our protocols were effective and stable. Observe
that some time after 10,000 seconds, all T-nodes became S-nodes
(the two curves converged). Experiments illustrated on the left side
and the right side of Figure 4 used timeout values of 10 seconds
and 5 seconds, respectively. For the samehe average number
of S-nodes is larger and the average number of T-nodes is smaller
in experiments with 5-second timeouts than those with 10-second
timeouts. This is because join duration is much smaller with 5-
second timeouts than with 10-second timeouts, which suggests that
the timeout value in failure recovery should be as small as possible.

from any node to every other node in the network. In this section,
we investigate the impact of node dynamics on protocol perfor-
mance. In particular, we address the question of how high a rate
of node dynamics can be sustained b a&onsistent network and,
more specifically, what are the limiting factors?

To simulate node dynamics, Poisson processes with Pgies
and s are used to generate join and failure events, respectively.
For each join event, a new node (T-node) is given the ID and IP ad-
dress of a randomly chosen S-node to whom it sen@pRstMsg
to begin its join process. For each failure event, an existing node,
S-node or T-node, is randomly chosen to fail and stay silent. In ex-
periments to be presented in this section, we\sgh, = A = A,
which is said to be thehurn rate. Periodically in each experi-
ment, we took snapshots of the neighbor tables of all S-nodes. In-
tuitively, the set of S-nodes is the “core” of the network. The pe-
riodic snapshots provide information on network connectivity and
indicate whether our protocols can sustain a large stable core for a
particular churn rate over the long term. The time from when a new
node starts joining to when it becomes an S-node is said to be its
join duration . Note that each new node can get network services
as a “client” as soon as it has the ID and IP address of an existing
S-node. However, it cannot provide services to others as a “server”
until it has become an S-node.

Each experiment in this section began with 2,000 S-nodes, where
b = 16, d = 8, and K was 3 or 2. Neighbor tables in the ini-
tial network were constructed using approach (iii) as described in
Section 3.2. The underlying topology used in the experiments had
2,112 routers. Of the average end-to-end delays, 23.3% were be-
low 10 ms and 72.2% were below 100 ms, with the largest average
value being 596 ms. Thémeout value for each step in failure
recovery (see Section 3.1) was 10 seconds or 5 seconds. We ran
experiments for values of ranging from 0.25 to 4 joins/second
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(also failures/second). By Little’s Law, at a churn ratedof 4,
the average lifetime of a node in a 2000-node network is 8.3 min-

Figure 4: Number of nodes and S-nodes in the networkiX’ = 3
In general when the failure rate of a network increases, join dura-

utes. (For comparison, the median node lifetime in Napster and tion increases. In our protocol design, to avoid circular reasoning,
Gnutella was measured to be 60 minutes [10].) Each experimentfa”Ufe recovery actions have priority over join protocol actions.

ran for 10,000 seconds of simulated tifhéfter 10,000 seconds,

More specifically, when a node has an ongoing failure recovery

no more join or failure event was generated, and the experiment Process, it must wait until the process terminates before it can reply
continued until all join and failure recovery processes terminated. 0 certain join protocol messages; moreover, a T-node must wait to
We took snapshots of neighbor tables and evaluated connectivitychange status to an S-node if it has an ongoing recovery process.
and Consistency measures once every 50 seconds throughout eacWith more failures, there are more holes in neighbor tables and the

experiment. We also checked whether a network convergégto
consistency K = 3 or 2) at termination and measured the time

duration needed for convergence.

8Each experiment fok = 2 and K = 3 took about twelve days to
run on a Linux workstation with 3.06GHz CPU and 4GB memory.

join processes of T-nodes will be delayed longer. Figure 5(a) shows
the cumulative distribution of join duration for different values\of
When X increases (failure rate increases), join duration increases.
In Figure 5(a), observe that not only is the mean join duration for
A = 1 larger than that oA = 0.5, but the tail of the distribution

is very much longer. (In the absence of failures, join durations of



nodes are substantially shorter. From a different set of experiments We next examine neighbor tables at each snapshot more care-
in which 1000 nodes concurrently join an existing 3000-node net- fully. For each snapshot at time the following properties were
work with no failure, the average join duration was found to be 1.9 checked:

seconds and the 90 percentile value 2.7 seconds.) e Percentage of connected s-d paiFor each source-destination
For a given failure rate, the join durations of nodes can be re- pair of S-nodes, if there exists a path (definition in Section 2.2)
duced by two system parameters, namely: timeout value in failure from source to destination, then the pair is connected. (Both
recovery andk’. We have already inferred from Figure 4 that join S-nodes and T-nodes can appear in a path.)
duration can be reduced by using a smaller timeout in failure recov- o Full connectivity If at time ¢, all s-d pairs of S-nodes are
ery. This point is illustrated explicitly from comparing the distribu- connected, then full connectivity holds (over the set of S-
tion in Figure 5(a) for\ = 1, K = 3, and 10-second timeout with nodes at time).
the distribution in Figure 5(b) foA = 1, K = 3, and 5-second e K-consistencySame as th& -consistency definition in Sec-
timeout. Also observe from Figure 5 (both (a) and (b)), for= 1 tion 2.2, withV being the set of S-nodes at time
and 10-second timeout, reducing tRevalue from 3 to 2 decreases e K-consistency-SATSuppose there is no more node failure
the mean join duration slightly. However, the tail of the distribution after timet. If each recoverable hole in the neighbor ta-
is substantially shorter fok’ = 2 than for K = 3. The tradeoff is bles of S-nodes at timecan be repaired by the four steps
that aK -consistent network for a smalléf offers fewer alternate of failure recovery, therk -consistency isatisfiableor K-
paths and its connectivity measures are slightly lower. consistency-SAT holds.

Figure 6(a) shows results for an experiment with- 2, K = 3, hat full vity in th f . h
and 10-second timeout. Observe that the number of S-nodes de- Note that full connectivity in the presence of continuous churn
clines while the numbe.r of T-nodes increases over time (from 0 is a desired property of any routing infrastructure. Consistency is
to 10,000 seconds). This behavior indicates that at a failure rateal stronger property than full connectivity, at-consistency, for

L . NP K > 2, is even stronger. In any network with churn, it is obvi-
c.)f 2 nodes/second, the_ r_1etwor|ﬂ§sn capacity (definition in Sec- ous thatK'-consistency is most likely not satisfied by the neighbor
tion 1) was less than 2 joins per second. As a result, the number of

T-nodes grows like a queue whose arrival rate is higher than its ser-tables In a snapshot at timebecause some failure(s) might have

. o . - .~ occurred just prior to and failure recovery takes time. On the other
vice rate. The network’s join capacity can be increased by reducing hand, the neighbor tables in the snapshot at ticentain sufficient
the join durations of T-nodes. As shown in Figure 5, the average !

0in duration can be reduced substantially by chanaing the timeout information for us to check whethéf-consistency is satisfiable at
J y oy ging . timet or not. If K-consistency-SAT holds for every snapshot in an
value from 10 seconds to 5 seconds, or it can be reduced slightly . .

. . . experiment, then we are assured that our protocols are effective and
by changingK from 3 to 2 (with the variance greatly reduced).

) . error-free.

We found that either of these approaches would stabilize the net- .
work for A = 2. The results of another experiment with= 2 Table 6 presents a summary of results from experiment& fer
K = 3, and 5-second timeout are shown in Figure 6(b). Observe 3 and 10-second timeouts, versus the churn rate (top row). The sec-

that the number of T-nodes was stable over time indicating that the ond and third rows show the number of joins and failures, respec-
e . : L 9 tively, for each experiment. Observe that 3-consistency-SAT holds
network’s join capacity was higher than the join rate. In both ex-

. . . for every snapshot in every experiment. Each experiment also con-
periments, some time after 10,000 seconds, when no more join or . .
failure event was generated, all T-nodes became S-nodes, showin yerged to 3-consistency some time after 10,000 seconds, except the

that our join protocol worked correctly irrespective of the network’s one for ) = 2, with the convergence time shown in the 6th row.
. jonp ) ~clly pectl Since we took a snapshot once every 50 seconds, the convergence
join capacity. In the experiment with 5-second timeout, the network

converged to 2-consistency at termination (see Table 7) time has a granularity of 50 seconds. The 7th and 8th rows of Ta-
) ble 6 present the percentage of snapshots (taken from 0 to 10,000
seconds) for which 1-consistency and full connectivity held. Even
though these properties did not hold for 100% of the snapshots for
A > 0.75, perfection was missed by a very small margin, as shown
in the last row of Table 6. The average percentage of connected s-d
pairs of S-nodes was higher than 99.9996% in every experiment.
In the A = 2 experiment shown in Table 6, 3-consistency-SAT

Cumulative distribution
Cumulative distribution

@ lambda=0.5, K=3, 10sec timeout —s— | lambda=1, K=3, Ssec timeout —&— held at time 10,000 seconds, but the network did not converge to
o P lambda=1, K=3, 10sec timeout -+ 0 lambda=1, K=2, 10sec timeout - . . . ) . .
o 100 200 300 400 500 o 10 200 300 400 500 3-consistency at termination. Why? We believe it was due to the
Join duration (seconds) Join duration (seconds) very large number of T-nodes at time 10,000 seconds. Note that
() (b) only S-nodes in neighbor tables are considered in testing whether
Figure 5: Cumulative distribution of join durations 3-consistency holds. 3-consistency (among S-nodes) was satisfi-

able at time 10,000 seconds when some qualified substitutes for
“irrecoverable holes” were T-nodes. Subsequently, at termination
when all T-nodes became S-nodes, these previously irrecoverable
holes became recoverable, and 3-consistency did not hold because
all error recovery processes had already terminated by then (the
network did satisfy 1-consistency at the end). We conclude that our
protocols behaved as intended. These recoverable holes will get
oo o filled over time by the join protocol when more joins arrive.

Number o nodes in network. —— Nurmber o nodes i petwork —x— As discussed above, one way to increase the join capacity of a

umber of S-nodes o umber of S-nodes &
1000 1000

0 2000 4000 G000 000 10000 O 2000 4000 6000 8000 10000 network is to reduce the timeout value. Table 7 summarizes results
T (aeeeniy bT'”f (seeond) for experiments with timeout value reduced to 5 secorids<( 3).
() timeout = 10 sec (b) timeout = 5 sec Reducing the timeout value provides improvement in every perfor-

E{igurg 6: Number of nodes and S-nodes in the network) = 2, mance measure in the table (provided that there is room for im-

2200 2200
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n
3
3
S

1800 1800

1600 1600

Nunber of nodes
Nunber of nodes

1400 1400




A (#joins/sec = #failures/sec) 0.25 | 0.5 0.75 1 1.25 15 2
number of joins 2413 | 5095 | 7621 10080 12474 15011 19957
number of failures 2473 | 5066 | 7423 9890 12468 14919 19960
% snapshots, 3-consistency-SAT | 100 100 100 100 100 100 100
convergence to 3-consistency at efdyes yes yes yes yes yes no
convergence time (seconds) 150 200 400 350 450 400 —

% snapshots, 1-consistency 100 100 99.5 97.5 97.5 88.5 62

% snapshots, full connectivity 100 100 99.5 98 98 98.5 92
average %, connected S-D pairs | 100 100 99.99998 | 99.99991| 99.99993| 99.99991| 99.9996

Table 6: Summary of churn experiments,n = 2000, K = 3, timeout = 10 sec

provement). In particular, comparison with Table 6 shows that Note also that, fon > 500, the maximum rate increases at least
convergence time to 3-consistency is shorter, percentage of snapiinearly asn increases. This observation validates a conjecture
shots with full connectivity is higher, and average percentage of that our protocols’ stability improves as the number of S-nodes in-

connected s-d pairs is higher in Table 7. creases. However, the conjecture does not holahfer 500. This
can be explained as follows. Far< 500 andb = 16, the number
) 075 |1 125 [ 15 175 |2 of neighbors stored in each node is a large fraction ahd failure
number ofjoins | 7621 | 10080 | 12474 | 15011 | 17563 | 19957 recovery is relatively easy to do. Asdecreases further, the num-

number of failures| 7423 9890 12468 | 14919 | 17563 | 19960

ber of neighbors stored in each node as a fraction ofcreases,

3 Snapshots, 1001100 | 100 100 11100} 100 and failure recovery becomes even easier.

convergence yes yes yes yes yes yes Using Little’s law, we calculated thainimum average node life-

to 3-con. time for each maximum rate in Figure 7(a). The results are pre-
fonp egence 1501 150 1 150 1 400 | 250 | 350 sented in Figure 7(b). The trend in each curve suggests that as
% snapshors. 5951100 59515 55153 increases beyond _2000 nodes, the minimum average node lifetime
1-con. is less than 12.1 minutes féf = 3 and 8.3 minutes foK = 2.

% snapshots,
full connectivity 99.5 100 99.5 99.5 96.5 95
average %,
connected 99.99999 | 100 99.99998 | 99.99998 | 99.99993 | 99.9997
s-d pairs

timeout = 5 sec —5—
timeout = 5 sec —-—

K=3, 1400 K=3, limeout = 5 sec —B—
=2, =2,

timeout = 5 sec %

1200

1000

800
600

Table 7: Summary of churn experiments,n = 2000, K = 3,
timeout = 5 sec

400

200

Reducing the value oK is another way to increase the join ca-
pacity of a network. There is a tradeoff involved however. Choos-
ing a smallerK results in less routing redundancy in neighbor ta-
bles. We conducted experiments fgr= 2, timeout = 10 seconds, @ ()
with X\ equal to 0.5, 1 and 2. The results are summarized in Ta- Figure 7: Maximum churn rate (a) and minimum average life-
ble 8. Comparing Table 8 and Table 6, we see that the percentagetime (b), timeout = 5 sec
of snapshots with 1-consistency (also full connectivity) was much
lower for K = 2 than that forK' = 3. The average percentage of
connected s-d pairs was also lower.

Maxi mum churn rate (nodes/second)
M ni mum average |ifetime (seconds)

0 500 1000 1500 2000
Network size (n)

0 500 1000 1500 2000
Network size (n)

Protocol overheads We next present protocol overheads in the
churn experiments as a function »ffor n = 2000. (An analysis
of protocol overheads as a functionffis presented in Section 7.)
Figure 8 presents cumulative distributions of the number of three

r;\umbe, oFjoins gbsgs 10080 i9911 types of join protocol messages sent by joining nodes whose join
number of failures 5066 9890 | 20017 processes terminated. We are interested in these messages (as well
% snapshots, 2-consistency-SAT | 100 100 100 as their replies) because each such message (or reply) may include
convergence to 2-consistency at epdyes yes yes a copy of a neighbor table and thus can be large in size. Figure 8(a)
convergence time (seconds) 150 150 [ 400 shows that a large fraction of joining nodes sent a small number of
% snapshots, 1-consistency 88 625 1125 JoinNotiMsg(e.g., forA = 1, more than 98% of nodes sent less
% snapshots, full connectivity 91 68.5 27 R A . .
average %, connected s-d pairs | 99,0994 | 99.996 | 99.978 than 20JoinNotiMsg. However, as\ becomes larger, the tail of its
distribution becomes longer. Figure 8(b) shows that the number of
Table 8: Summary of churn experiments,n = 2000, K = 2, CPRstMs@ndJoinWaitMsg(combined) sent by each joining node
timeout = 10 sec is very small.
Maximum sustainable churn rate We performed experiments Figure_ 9 presents cumulative distributions of the number of queries
with increasing values ok to estimate the maximum sustainable O repairing a hole (for holes that were repaired as well as holes
churn rate as a function of the initial network siz for K = 2 or declared as irrecoverable by their recovery processes). Similar to

3. For given values of and &, our estimate is determined by the ~ re€sults in Section 3.2, most holes were repaired by steps (a) and
largest\ value such that after 10,000 seconds (simulated time) of (P) (for the distributions shown in Figure 9, more than 86% percent
churn, the network was able to recovgrconsistency afterwards. ~ ©f holes were repaired by the end of step (b)). Recall that holes
Figure 7(a) shows our results from experiments with 5-second time- '€Paired in step (a) incur no communication cost, while holes re-
out andK = 2 or 3. Observe that the maximum rate is higher for Paired in step (b) require up 4K’ — 1) messages. Asincreases,

K = 2 than forkK = 3. the percentage of holes repaired by step (a) decreases: the percent-
age is 56%, 48% and 42% for = 0.25, A = 0.5 and\ = 1,
9Since the maximum sustainable churn rate is a random variable, respectively. The long tails of the distributions are due to holes
our estimate is only a sample value of that random variable. found by failure recovery to be irrecoverable.
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Figure 8: Cumulative distribution of join protocol messages consistent netwo

sent by joining nodes,K = 3, timeout = 10 sec age number ofoinNotiMsgsent by a joining node increases with
K. Figure 12 presents cumulative distributions of the number of
JoinNotiMsgsent by a joining node from 10 simulations foe= 4
andd = 64. Again, as expected, the percentage of joining nodes
that send a small number @binNotiMsgdecreases a& increases.
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7. K vs.MAINTENANCE COST K K

As shown in previous sections, I§-consistent network with a (8)n = 1600, J = 400, F = 385 (b) n = 3600, J = 387, F = 413
larger K provides more alternate paths and is more resilient to fail- Figure 11: Average number of JoinNotiMsg sent by a joining
ures. However, these benefits come with costs. With a lakger node
more neighbors are stored in each neighbor table. As a result, each
node incurs a larger storage cost and sends more messages when
it probes neighbors or exchanges information with neighbors, and
each message that includes a neighbor table is larger. Furthermore,
with a largerk, each joining node needs to find more nodes to store
into its neighbor table and more nodes to notify.

We first study the number of neighbors in a neighbor table for
different K values. We ran simulations for different combinations T e o e = w T r———
of K, b, d, andn values. In each simulation, neighbor tables were Number of JoinNotiMisg Number of JoinNofivisg
constructed according to th&-consistency definition. Then the (@) n = 1600, J = 400, F = 385 (b) n = 3600, J = 387, F = 413
numb_er O.f neighbors in each node’s table was COUJ‘?@)F each_ Figure 12: Cumulative distribution of JoinNotiMsg sent by a
combination of parameter values, we ran a set of five simulations . .~ . de b—4 d— 64
and computed the average number of neighbors per node. The relommg node, ’
sults are shown in Figure 10, where errorbars show the maximum  Figure 13 shows the average numbeCpRstMsgndJoinWait-
and minimum values in the set. Observe that the average number ofVIsg sent by a joining node versus. The average number de-

Cumulative distribution
Cumulative distribution
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neighbors in a node’s table increases with b, andn. We found creases slightly wheK increases, because whé&nincreases, the
that the average number of neighbors in a table does not depend orpttach-level of a joining node tends to be lower, which limits the
the value ofd. total number oCpRstMsgandJoinWaitMsgsent by the node.

Next, we investigate communication costs vergis We con- Other join protocol messages, suchrSysNotiMsgndRvNgh-
ducted simulations with different values of J and F', wheren is NotiMsg are small messages which do not contain a neighbor table.
the number of nodes in the initial netwotkjs the number of joins, ~ The number of these messages depends on the number of neighbors
and F is the number of failures. All joins and failures happened at in the sender’s neighbor table and increases Witf8]. However,
the same time in each simulation. For each combination,af, these small messages can be piggybacked in probes when a node
and F values,K was varied from 1 to 5, whiléb, d) values were probes its neighbors. Thus their communication cost is small.
chosen from (4,64) and (16,40). Lastly, we investigated the communication cost of failure recov-

We first show the communication costs of joins. Figure 11 shows €Ty in the presence of concurrent joins. We found the simulation
the average number dbinNotiMsgsent by a joining node versus results to be similar to those presented in Tables 3 and 4. The only
K. Each average value was obtained by running 5 simulations for difference is that with concurrent joins, approximately 3% to 4%
the same combination of parameter values. As expected, the averOf the recoverable holes were repaired by the join protocol.

19The node itself is not included in the count, but a neighbor stored 8. CONCLUSIONS
in different entries of the table is counted multiple times. As a . .
result, the total number of neighbors per node does not depend on  FOr structured p2p networks that use hypercube routing, we in-
how the neighbors in each entry are chosen from the set of qualified troduced the property ok'-consistency and designed a failure re-
nodes in the network. covery protocol forK -consistent networks. The protocol was eval-
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Figure 13: Average total number of CpRstMsg and JoinWait-
Msg sent by a joining node

uated with extensive simulations and found to be efficient and ef-
fective for networks of up to 8,000 nodes in size. Since our proto-
col uses local information, we believe that it is scalable to networks
larger than 8,000 nodes.

The failure recovery protocol was integrated with a join proto-
col that has been proved to constructconsistent networks for
concurrent joins and shown analytically to be scalable to a large
n [3]. From extensive simulations, in which massive joins and fail-

ures occurred at the same time, the integrated protocols maintained

K-consistent neighbor tables after the joins and failures in every
experiment.

From a set of long-duration churn experiments, our protocols
were found to be effective, efficient, and stable up to a churn rate
of 4 joins and 4 failures per second for 2000-node networks (with
K = 2 and 5-second timeout). By Little’s Law, the average node
lifetime was 8.3 minutes. We discovered that each network has
a join capacity that upper bounds its join rate. The join capacity

decreases as the failure rate increases. For a given failure rate, the

join capacity can be increased by using the smallest timeout value
possible in failure recovery or by choosing a smalievalue.

We also observed from simulations that our protocols’ stability
improves as the number of S-nodes increases. More specifically,
for 500 < n < 2,000, we found that a network’s maximum sus-
tainable churn rate increases at least linearly with networkssize
The trend in our simulation results suggests that as network size

increases beyond 2000 nodes, the minimum average node lifetime

is less than 12.1 minutes fé&f = 3 and 8.3 minutes foK = 2.

[3] S.S.Lam and H. Liu. Silk: a resilient routing fabric for
peer-to-peer networks. Technical Report TR-03-13, Dept. of
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The storage and communication costs of our protocols were found

to increase approximately linearly witk. The network robust-
ness improvement is dramatic whé is increased from 1 to 2.
We believe that p2p networks using hypercube routing should be
designed withK" > 2. From churn experiments, a largéreduces
the join capacity of a network. Thus, for p2p networks with a high
churn rate, we recommendZ value of 2 or at most 3. For p2p
networks with a low churn ratdg may be 3 or higher (say 4 or 5)
if additional route redundancy is desired.

Our integrated protocols for join and failure recovery in this pa-
per have been implemented in a prototype system named Silk [3].
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APPENDIX

We present formal definitions ak-consistencyand theattach-
levelof a joining node in the table of another node. We Use 4,

to denote the subset of nodeslineach of which has an ID with
the suffixi;...lo. Let N, (i, j).size denote the number of neighbors
stored in theq, j)-entry inx.table.

DEFINITION .1. Consider a networkV, N'(V)). The network,
or N (V), satisfiesk -consistency K > 1, if for any nodez, = €
V, each entry in its table satisfies the following conditions:

(a) If ‘/]m[z—l]m[O] 7é @, (S [d]v] € [b],

then N, (i, j).size = min(K, |V;.z1-1)...2[0)])

ansz(7'7.7) g ‘/]z[zfl]z
(0) B Vjafiz1].afo) =0

S EY € b, thenN (7, §) = 0.

DEFINITION .2. Theattach-levelof joining noder in the table
of nodey (x # y)isj,0 < j < d— 1, determined as follows. (Let
k denote|csuf (z.1D, y.ID)|.)

e j=0,if Ny(i,xf/z’]).size < Kforalli,0<i<Ek;

e j =i, if there exists a level, such thay < ¢ < k,

Ny (i, z[i']).size < K forall i',i < i’ <k,
and Ny (i — 1, z[i — 1]).size = K;;
e an attach-level does not existif, (k, x[k]).size = K.



