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ABSTRACT
Almost all geographic routing protocols have been designed for 2D.
We present a novel geographic routing protocol, named MDT, for
2D, 3D, and higher dimensions with these properties: (i) guaran-
teed delivery for any connected graph of nodes and physical links,
and (ii) low routing stretch from efficient forwarding of packets
out of local minima. The guaranteed delivery property holds for
node locations specified by accurate, inaccurate, or arbitrary coor-
dinates. The MDT protocol suite includes a packet forwarding pro-
tocol together with protocols for nodes to construct and maintain a
distributed MDT graph for routing. We present the performance of
MDT protocols in 3D and 4D as well as performance comparisons
of MDT routing versus representative geographic routing protocols
for nodes in 2D and 3D. Experimental results show that MDT pro-
vides the lowest routing stretch in the comparisons. Furthermore,
MDT protocols are specially designed to handle churn, i.e., dy-
namic topology changes due to addition and deletion of nodes and
links. Experimental results show that MDT’s routing success rate
is close to 100% during churn and node states converge quickly to
a correct MDT graph after churn.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols—Routing Protocols

General Terms
Algorithms, Design, Performance, Reliability

Keywords
Geographic Routing, Delaunay Triangulation

1. INTRODUCTION
Geographic routing (also known as location-based or geometric

routing) is attractive because the routing state needed for greedy
forwarding at each node is independent of network size. Almost
all geographic routing protocols have been designed for nodes in
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2D. In reality, many wireless applications run on nodes located in
3D [21, 1, 6, 7]. Furthermore, node location information may be
highly inaccurate or simply unavailable.

Consider a network represented by a connected graph of nodes
and physical links (to be referred to as the connectivity graph).
Greedy forwarding of a packet may be stuck at a local minimum,
i.e., the packet is at a node closer to the packet’s destination than
any of the node’s directly-connected neighbors. Geographic rout-
ing protocols differ mainly in their recovery methods designed to
move packets out of local minima. For general connectivity graphs
in 3D, face routing methods designed for 2D [3, 11, 12] are not
applicable. Furthermore, Durocher et al. [6] proved that there is
no “local” routing protocol that provides guaranteed delivery, even
under the strong assumptions of a “unit ball graph” and accurate lo-
cation information. Thus, designing a geographic routing protocol
that provides guaranteed delivery in 3D is a challenging problem.

We present in this paper a novel geographic routing protocol,
MDT, that provides guaranteed delivery for a network of nodes in a
d-dimensional space, for d ≥ 2. (Only Euclidean spaces are consid-
ered in this paper.) The guaranteed delivery property is proved for
node locations specified by arbitrary coordinates; thus the property
also holds for node locations specified by inaccurate coordinates
or accurate coordinates. We show experimentally that MDT rout-
ing provides a routing (distance) stretch close to 1 for nodes in 2D
and 3D when coordinates specifying node locations are accurate.1

When coordinates specifying node locations are highly inaccurate,
we show that MDT routing provides a low routing (distance) stretch
relative to other geographic routing protocols. Nodes may also be
arbitrarily located in a virtual space with packets routed by MDT
using the coordinates of nodes in the virtual space (instead of their
coordinates in physical space). In this case, MDT routing still pro-
vides guaranteed delivery but the distance stretch in physical space
may be high.

Geographic routing in a virtual space is useful for networks with-
out location information or networks in which the routing cost be-
tween two directly-connected neighbors is neither a constant nor
proportional to the physical distance between them (such as, ETT
[5]). For example, a 4D virtual space can be used for geographic
routing of nodes physically located in a 3D space. The extra di-
mension makes it possible to assign nodes to locations in the vir-
tual space such that the Euclidean distance between each pair of
nodes in the virtual space is a good estimate of the routing cost be-
tween them. The design of a positioning system to embed routing
costs in a virtual space is a challenging problem for wireless net-
works without any-to-any routing support and beyond the scope of
this paper. The problem is solved in a companion paper [22] where
we show how to (i) make use of MDT protocols to embed routing

1Routing and distance stretch are defined later.
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Figure 1: An illustration of connectivity, DT, and MDT graphs of a set of nodes in 2D

costs in virtual spaces (such as 4D), and (ii) extend MDT routing
to optimize end-to-end path costs for any additive routing metric.

MDT was designed to leverage the guaranteed delivery property
of Delaunay triangulation (DT) graphs. For nodes in 2D, Bose and
Morin proved that greedy routing in a DT always finds a given des-
tination node [2]. Lee and Lam [14, 15] generalized their result
and proved that in a d-dimensional Euclidean space (d ≥ 2), given
a destination location `, greedy routing in a DT always finds a node
that is closest to `.

Figure 1(a) shows a 2D space with three large obstacles and an
arbitrary connectivity graph. Figure 1(b) shows the DT graph [8]
of the nodes in Figure 1(a). In the DT graph, the dashed lines de-
note DT edges between nodes that are not connected by physical
links. The MDT graph of the connectivity graph in Figure 1(a) is
illustrated in Figure 1(c). By definition, the MDT graph includes
every physical link in the connectivity graph and every edge in the
DT graph. In MDT routing, when a packet is stuck at a local min-
imum of the connectivity graph. the packet is next forwarded, via
a virtual link, to the DT neighbor that is closest to the destination.
In short, the recovery method of MDT is to forward greedily in the
DT graph which is guaranteed to succeed.

In this paper, we present MDT protocols for a set of nodes to
construct and maintain a correct multi-hop DT (formal definition in
Section 2). In a multi-hop DT, two nodes that are neighbors in the
DT graph communicate directly if there is a physical link between
them; otherwise, they communicate via a virtual link, i.e., a path
provided by soft-state forwarding tables in nodes along the path.

MDT protocols are also designed specially for networks where
node churn and link churn are nontrivial concerns. For example,
in a wireless community network, nodes join and leave whenever
computers in the community are powered on and off. Furthermore,
the quality of wireless links may vary widely over time for many
reasons (e.g., fading effects, external interference, and weather con-
ditions). Link quality fluctuations cause dynamic addition and dele-
tion of physical links in the connectivity graph used for MDT rout-
ing.

The MDT protocol suite consists of protocols for forwarding,
join, leave, failure, maintenance, and system initialization. The
MDT join protocol was proved correct for a single join. Thus it
constructs a correct multi-hop DT when nodes join serially. The
maintenance protocol enables concurrent joins at system initial-
ization. Experimental results show that MDT constructs a correct
multi-hop DT very quickly using concurrent joins. The join and
maintenance protocols are sufficient for a system under churn to
provide a routing success rate close to 100% and for node states
to converge to a correct multi-hop DT after churn. The leave and

failure protocols are used to improve accuracy and reduce commu-
nication cost.

MDT is communication efficient because MDT does not use
flooding to discover multi-hop DT neighbors. MDT’s search tech-
nique is also not limited by a maximum hop count (needed in scoped
flooding used by many wireless routing protocols) and is guaran-
teed to succeed when the existing multi-hop DT is correct.

The idea of using virtual links in MDT is conceptually sim-
ple. It was, however, a major challenge to design protocols to cor-
rectly construct and repair forwarding paths between multi-hop DT
neighbors without the use of flooding. Lastly, since MDT routing
is designed to run correctly in any connected graph of nodes and
physical links, it is possible to use MDT for geographic routing in
wireline networks.

1.1 Related work
There were several prior proposals to apply DT to geographic

routing. None of them addressed the underlying technical issue that
the DT graph of a wireless network is, in general, not a subgraph
of its connectivity graph. In [24], requirements are imposed on the
placement of nodes and links in 2D such the DT graph is a subgraph
of the connectivity graph. In other approaches, the restricted DT
graph [10] and the k-localized DT [19] are both approximations of
the DT graph. These graphs were shown to be good spanners with
constant stretch factors. However, being DT approximations, they
do not provide guaranteed delivery. Furthermore, they were de-
signed for nodes in 2D with connectivity graphs restricted to unit
disk graphs. (A unit disk graph requires that a physical link ex-
ists between two nodes if and only if the distance between them is
within a given radio transmission range.)

Many geographic routing protocols have been designed for nodes
in 2D based upon greedy forwarding. Two of the earliest protocols,
GFG [3] and GPSR [11], use face routing to move packets out of
local minima. These protocols provide guaranteed delivery for a
planar graph. If the connectivity graph is not planar, a planariza-
tion algorithm (such as GG [9] or RNG [23]) is used to construct
a connected planar subgraph. Successful construction requires that
the original connectivity graph is a unit disk graph and node loca-
tion information is accurate. Both assumptions are unrealistic.

Kim et al. [12] proposed CLDP which, given any connectivity
graph, produces a subgraph in which face routing would not cause
routing failures. When stuck at a local minimum, GPSR routing
uses the subgraph produced by CLDP instead of by GG or RNG.
CLDP was designed to provide guaranteed delivery for nodes in
2D under the assumption that there are no degenerate link crossings
caused by exactly colinear links [12].

Leong et al. proposed GDSTR [17] which provides guaranteed



delivery for any connectivity graph. Initially, nodes exchange mes-
sages to compute and store a distributed spanning tree. Each node
also computes and stores a convex hull of the locations of all of its
descendants in the subtree rooted at the node; the resulting tree is
called a hull tree. Subsequently, a packet is routed greedily until
it is stuck at a local minimum. For recovery, the packet is routed
upwards in the spanning tree until it reaches a point where greedy
routing can again make progress.

GHG [20] and GRG [7] are geographic protocols designed for
3D. GHG assumes a unit-ball graph and accurate location infor-
mation, which are unrealistic assumptions. GRG uses random re-
covery which is inefficient and does not provide guaranteed de-
livery. Aside from MDT, there is one other geographic routing
protocol that provides guaranteed delivery for general connectivity
graphs in 3D, namely, GDSTR-3D [25]. For recovery, GDSTR-3D
uses two distributed hull trees while MDT uses a distributed DT
graph. GDSTR-3D, designed for sensor networks, assumes a static
network topology; the protocol has no provision for any dynamic
topology change.

1.2 Outline
The balance of this paper is organized as follows. In Section 2,

we present concepts, definitions, and model assumptions. In Sec-
tion 3, we present the MDT forwarding protocol. In Section 4, we
present join, maintenance, and initialization protocols. In Section
5, we present an experimental performance evaluation of MDT in
3D and 4D. We also present experimental results to demonstrate
MDT’s resilience to node churn and link churn. In Section 6, we
present performance comparisons of MDT with geographic routing
protocols designed for 2D and 3D. We conclude in Section 7.

2. CONCEPTS AND DEFINITIONS
A triangulation of a set S of nodes (points) in 2D is a subdivi-

sion of the convex hull of nodes in S into non-overlapping triangles
such that the vertices of each triangle are nodes in S. A DT in 2D
is a triangulation such that the circumcircle of each triangle does
not contain any other node inside [8]. The definition of DT can
be generalized to a higher dimensional space using simplexes and
circum-hyperspheres. In each case, the DT of S is a graph to be
denoted by DT (S).

Consider a set S of nodes in a d-dimensional space, for d ≥ 2.
Each node in S is identified by its location specified by coordinates.
There is at most one node at each location. When we say node
u knows node v, node u knows node v’s coordinates. A node’s
coordinates may be accurate, inaccurate, or arbitrary (that is, its
known location may differ from its actual location). In Section 2.1,
we present the definition of a distributed DT and a key result from
Lee and Lam [15, 16] that we need later.

2.1 Distributed DT
Definition 1. A distributed DT of a set S of nodes is specified

by {< u,Nu > |u ∈ S}, where Nu represents the set of u’s neighbor
nodes, which is locally determined by u.

Definition 2. A distributed DT is correct if and only if for every
node u ∈ S, Nu is the same as the neighbor set of u in DT (S).

To construct a correct distributed DT, each node, u ∈ S, finds a
set Cu of nodes (Cu includes u). Then u computes DT (Cu) locally
to determine its set Nu of neighbor nodes. Note that Cu is local in-
formation of u while S is global knowledge. For the extreme case of
Cu = S, u is guaranteed to know its neighbors in DT (S). However,
the communication cost for each node to acquire knowledge of S
would be very high. A necessary and sufficient condition [15, 16]
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Figure 2: MDT graph of 10 nodes

for a distributed DT to be correct is that for all u ∈ S, Cu includes
all neighbor nodes of u in DT (S).

2.2 Model assumptions
Two nodes directly connected by a physical link are said to be

physical neighbors. Each link is bidirectional. In our protocol de-
scriptions, each link is assumed to provide reliable message deliv-
ery.2 The graph of nodes and physical links may be arbitrary so
long as it is a connected graph. We provide protocols to handle
dynamic topology changes. In particular, new nodes may join and
existing nodes may leave or fail.3 Furthermore, new physical links
may be added and existing physical links that have become error-
prone are deleted.

2.3 Multi-hop DT
A multi-hop DT is specified by {< u,Nu,Fu > |u ∈ S}, where Fu

is a soft-state forwarding table, and Nu is u’s neighbor set which
is derived from information in Fu. The multi-hop DT model gen-
eralizes the distributed DT model by relaxing the requirement that
every node in S be able to communicate directly with each of its
neighbors. (We will use the term “neighbor” to refer to a DT neigh-
bor.) In a multi-hop DT, the neighbor of a node may not be a phys-
ical neighbor; see, for example, nodes i and g in Figure 2.

For a node u, each entry in its forwarding table Fu is a 4-tuple
< source, pred,succ,dest >, which is a sequence of nodes with
source and dest being the source and destination nodes of a path,
and pred and succ being node u’s predecessor and successor nodes
in the path. In a tuple, source and pred may be the same node;
also, succ and dest may be the same node. A tuple in Fu is used
by u for message forwarding from source to dest or from dest to
source. For a specific tuple t, we use t.source, t.pred, t.succ, and
t.dest to denote the corresponding nodes in t.

For ease of exposition, we assume that a tuple and its “reverse”
are inserted in and deleted from Fu as a pair. For example, <
a,b,c,d > is in Fu if and only if < d,c,b,a > is in Fu. (In fact,
only one tuple is stored with each of its two endpoints being both
source and destination.) A tuple in Fu with u itself as the source is
represented as < −,−,succ,dest >, which does not have a reverse
in Fu.

For an example of a forwarding path, consider the MDT graph
in Figure 2. The DT edge between nodes g and i is a virtual link;
messages are routed along the paths, g−e−h− i and i−h−e−g,
using the following tuples: < −,−,e, i > in node g, < g,g,h, i > in
node e, < g,e, i, i > in node h, and < −,−,h,g > in node i.

Tuples in Fu are maintained as soft states. Each tuple is refreshed
whenever there is packet traffic (e.g., application data or keep-alive

2Only links that are reliable and have an acceptable error rate are
included in the connectivity graph.
3When a node fails, it becomes silent.



Table 1: MDT forwarding protocol at node u
CONDITION ACTION

1. u = m.dest no need to forward (node u is at destination location)
2. there exists a node v in Pu and v = m.dest transmit to v (node v is at destination location)
3. m.relay 6= null and m.relay 6= u find tuple t in Fu with t.dest = m.relay, transmit to t.succ
4. there exists a node v in Pu ∪{u} closest to m.dest, v 6= u transmit to node v (greedy step 1)
5. there exists a node v in Nu ∪{u} closest to m.dest, v 6= u find tuple t in Fu with t.dest = v, transmit to t.succ (greedy step 2)
6. conditions 1-5 are all false no need to forward (node u is closest to destination location)

messages) between its endpoints. A tuple that is not refreshed will
be deleted when its timeout occurs.

Definition 3. A multi-hop DT of S, {< u,Nu,Fu > |u ∈ S}, is
correct if and only if the following conditions hold: i) the dis-
tributed DT of S, {< u,Nu > |u ∈ S}, is correct; and ii) for every
neighbor pair (u,v), there exists a unique k-hop path between u and
v in the forwarding tables of nodes in S, where k is finite.

For a dynamic network in which nodes and physical links may be
added and deleted, we define a metric for quantifying the accuracy
of a multi-hop DT. We consider a node to be in-system from when
it has finished joining until when it starts leaving or has failed. Let
MDT (S) denote a multi-hop DT of a set S of in-system nodes. Let
Nc(MDT (S)) be the total number of correct neighbor entries and
Nw(MDT (S)) be the total number of wrong neighbor entries in the
forwarding tables of all nodes. A neighbor v in Nu is correct when
u and v are neighbors in DT (S) and wrong when u and v are not
neighbors in DT (S). Let Nedges(DT (S)) be the number of edges
in DT (S). Let Nnp(MDT (S)) be the number of edges in DT (S)
that do not have forwarding paths in the multi-hop DT of S. The
accuracy of MDT (S) is defined to be:

Nc(MDT (S))−Nw(MDT (S))−2×Nnp(MDT (S))
2×Nedges(DT (S))

(1)

It is straightforward to prove that the accuracy of MDT (S) is 1
(or 100%) if and only if the multi-hop DT of S is correct.

Terminology. For a node u, a physical neighbor v that has just
booted up is represented in Fu by the tuple < −,−,−,v >. A phys-
ical neighbor v that has sent a join request and received a join reply
from a DT node is said to be a physical neighbor attached to the
DT. It is represented in Fu by < −,−,v,v >. We use Pu to denote
u’s set of physical neighbors attached to the DT. A node in Pu will
become a DT node when it finishes executing the join protocol.

3. MDT FORWARDING PROTOCOL
The key idea of MDT forwarding at a node, say u, is conceptually

simple: For a packet with destination d, if u is not a local minimum,
the packet is forwarded to a physical neighbor closest to d; else, the
packet is forwarded, via a virtual link, to a multi-hop DT neighbor
closest to d.

For a more detailed specification, consider a node u that has re-
ceived a data message m to forward. Node u stores it with the
format: m =< m.dest,m.source,m.relay,m.data > in a local data
structure, where m.dest is the destination location, m.source is the
source node, m.relay is the relay node, and m.data is the payload of
the message. Note that if m.relay 6= null, message m is traversing
a virtual link.

The MDT forwarding protocol at a node, say u, is specified by
the conditions and actions in Table 1. To forward message m to
a node closest to location m.dest, the conditions in Table 1 are
checked sequentially. The first condition found to be true deter-
mines the forwarding action. In particular, line 3 is for handling

messages traversing a virtual link. Line 4 is greedy forwarding to
physical neighbors. Line 5 is greedy forwarding to multi-hop DT
neighbors.

The following theorem, which states that MDT forwarding in a
correct multi-hop DT provides guaranteed delivery, is proved in the
Appendix.

THEOREM 1. Consider a correct multi-hop DT of a finite set S
of nodes in a d-dimensional Euclidean space. Given a location ` in
the space, the MDT forwarding protocol succeeds to find a node in
S closest to ` in a finite number of hops.

4. MDT PROTOCOL SUITE
In addition to the forwarding protocol, MDT includes join, main-

tenance, leave, failure, and initialization protocols. The join proto-
col is designed to have the following correctness property: Given
a system of nodes maintaining a correct multi-hop DT, after a new
node has finished joining the system, the resulting multi-hop DT
is correct. This property ensures that a correct multi-hop DT can
be constructed for any system of nodes by starting with one node,
say u with Fu = /0 initially, which is a correct multi-hop DT by def-
inition, and letting the other nodes join the existing multi-hop DT
serially.

Two nodes are said to join a system concurrently if their join
protocol executions overlap in time. When two nodes join concur-
rently, the joins are independent if the sets of nodes whose states
are changed by the join protocol executions do not overlap. For
a large network, two nodes joining different parts of the network
are likely to be independent. If nodes join a correct multi-hop DT
concurrently and independently using the MDT join protocol, the
resulting multi-hop DT is also guaranteed to be correct.

The maintenance protocol is designed to repair errors in node
states after concurrent joins that are dependent, after nodes leave
or fail, after the addition of physical links, and after the deletion of
existing physical links (due to, for example, degraded link quality).
Experimental results show that join and maintenance protocols are
sufficient for a system of nodes to recover from dynamic topology
changes and their multi-hop DT to converge to 100% accuracy.

MDT includes leave and failure protocols designed for a single
leave and failure, respectively, for two reasons: (i) A departed node
has almost all recovery information in its state to inform its neigh-
bors how to repair their states. Such recovery information is not
available to the maintenance protocol and would be lost if not pro-
vided by a leave or failure protocol before the node leaves or fails.
(For failure recovery, each node u pre-stores the recovery informa-
tion in a selected neighbor which serves as u’s monitor node.) Thus
having leave and failure protocols allows the maintenance protocol,
which has a higher communication cost, to run less frequently than
otherwise. (ii) Concurrent join, leave, and failure occurrences in
different parts of a large network are often independent of each
other. After a leave or failure, node states can be quickly and effec-
tively repaired by leave and failure protocols without waiting for



the maintenance protocol to run. Due to space limitation herein,
the leave and failure protocols are presented in our technical report
[13].

For a multi-hop DT, in addition to constructing and maintain-
ing a distributed DT, join and maintenance protocols insert tuples
into forwarding tables and update some existing tuples to correctly
construct paths between multi-hop neighbors. Leave, failure, and
maintenance protocols construct a new path between two multi-hop
neighbors whenever the previous path between them has been bro-
ken due to a node leave/failure or a link deletion.

4.1 Join protocol
Consider a new node, say w. It boots up and discovers its phys-

ical neighbors. If one of the physical neighbors is a DT node (say
v) then w sends a join request to v to join the existing DT.4 In the
MDT join protocol, a node uses the basic search technique of Lee
and Lam [14, 15] to find its DT neighbors. First, greedy forwarding
of w’s join request finds w’s closest DT neighbor. Subsequently, w
sends a neighbor-set request to every new neighbor it has found;
each new neighbor replies with a set of w’s neighbors in its lo-
cal view. The search terminates when node w finds no more new
neighbor in the replies. The MDT join protocol also constructs
a forwarding path between w and every one of its multi-hop DT
neighbors. A more detailed protocol description follows.

Finding the closest node and path construction. Node w joins
by sending a join request to node v with its own location as the
destination location. MDT forwarding is used to forward the join
request to a DT node z that is closest to w (success is guaranteed
by Theorem 1). A forwarding path between w and z is constructed
as follows. When w sends the join request to v, it stores the tuple
< −,−,v,v > in its forwarding table. Subsequently, suppose an
intermediate node (say u) receives the join request from a one-hop
neighbor (say v) and forwards it to a one-hop neighbor (say e), the
tuple < w,v,e,e > is stored in Fu.

When node z receives the join request of w from a one-hop neigh-
bor (say d), it stores the tuple <−,−,d,w > in its forwarding table
for the reverse path. The join reply is forwarded along the reverse
path from z to w using tuples stored when the join request traveled
from w to z earlier. Additionally, each such tuple is updated with z
as an endpoint. For example, suppose node x receives a join reply
from z to w from its one-hop neighbor e. Node x changes the exist-
ing tuple < e,e,∗,w > in Fx to < z,e,∗,w >, where ∗ denotes any
node already in the tuple.

After node w has received the join reply, it notifies each of its
physical neighbors that w is now attached to the DT and they should
change their tuple for w from < −,−,w,− > to < −,−,w,w >.

Physical-link shortcuts. The join reply message, at any node
along the path from z to w (including node z), can be transmitted
directly to w if node w is a physical neighbor (i.e., for message m,
there is a tuple t in the forwarding table such that t.succ = m.dest).
If such a physical-link shortcut is taken, the path previously set up
between z and w is changed. Tuples with z and w as endpoints
stored by nodes in the abandoned portion of the previous path will
be deleted because they will not be refreshed by the endpoints.

A physical-link shortcut can also be taken when other messages
in the MDT join, maintenance, leave, and failure protocols are for-
warded, but they require the stronger condition, t.succ = t.dest =
m.dest, that is, the shortcut can be taken only if m.dest is a physical
neighbor attached to the DT.

4If node w discovers only physical neighbors, it will not start the
join protocol until it hears from a physical neighbor that is attached
to the DT, e.g., it receives a token from such a node at system ini-
tialization.

Finding DT neighbors. Node w, after receiving the join reply
from node z, sends a neighbor-set request to z for neighbor informa-
tion. At this time, Cz, the set of nodes known to z includes both w
and z. Node z computes DT (Cz), finds nodes that are neighbors of
w in DT (Cz), and sends them to w in a neighbor-set reply message.

When w receives the neighbor-set reply from z, w adds neighbors
in the reply (if any) to its candidate set, Cw, and updates its neigh-
bor set, Nw, from computing DT (Cw). If w finds new neighbors in
Nw, w sends neighbor-set requests to them for more neighbor infor-
mation. The joining node w repeats the above process recursively
until it cannot find any more new neighbor in Nw. At this time w
has successfully joined and become a DT node.

Nodes in Cu, the set of nodes known to a node u, are maintained
as hard states in distributed DT protocols [14, 15]. In MDT pro-
tocols, nodes in Cu are maintained as soft states. More specif-
ically, tuples in Fu are maintained as soft states. By definition,
Cu = {u}∪{v | v = t.dest, t ∈ Fu}. A new node in Cu is deleted if
it does not become the destination of a tuple in Fu within a timeout
period. Also, whenever a tuple t is deleted from Fu, its endpoints
are deleted from Cu.

Path construction to multi-hop DT neighbors. The MDT join
protocol also constructs a forwarding path between the joining node
w and each of its multi-hop neighbors. Whenever w learns a new
node y from the join reply or a neighbor-set reply sent by some
node, say x, node w sends a neighbor-set request to x, with x as
the relay and y as the destination (that is, in neighbor-set request
m, m.relay = x and m.dest = y.) Note that a forwarding path has
already been established between w and x. Also, since x and y are
DT neighbors, a forwarding path exists between x and y (given that
w is joining a correct multi-hop DT). As the neighbor-set request is
forwarded and relayed from w to y, tuples with w and y as endpoints
are stored in forwarding tables of nodes along the path from w to y.
The forwarding path that has been set up between w and y is then
used by y to return a neighbor-set reply to w.

Example. Let node a in Figure 2 be a joining node. Suppose
a has found b, c, and d to be DT neighbors and it has just learned
from b that j is a new neighbor. Node a sends a neighbor-set re-
quest to j with b indicated in the message as the relay. Because the
existing multi-hop DT (of 9 nodes) is correct, a unique forwarding
path exists between node b and node j, which is b− e−h− j. Af-
ter receiving the message, b forwards it to e on the b− e− h− j
path. At b and every node along the way to j, a tuple with end-
points a and j is stored in the node’s forwarding table. When the
neighbor-set reply from j travels back via h, node h searches Fh
and finds that node a is a physical neighbor attached to the DT (see
Figure 2). Node h then transmits j’s reply directly to node a. (This
is an example of a physical-link shortcut.) Subsequently, nodes a
and j will select and refresh only the path a−h− j between them.
Tuples previously stored in nodes b, e, and h for endpoints a and
j will be deleted upon timeout. Lastly, from j’s reply, a learns no
new neighbor other than b, c, and d. Without any more new neigh-
bor to query, a’s join protocol execution terminates and it becomes
a DT node.

A pseudocode specification of the MDT join protocol is in our
technical report [13]. A proof of Theorem 2 is presented in the
Appendix.

THEOREM 2. Let S be a set of nodes and w be a joining node
that is a physical neighbor of at least one node in S. Suppose the
existing multi-hop DT of S is correct, w joins using the MDT join
protocol, and no other node joins, leaves, or fails. Then the MDT
join protocol finishes and the updated multi-hop DT of S∪{w} is
correct.



4.2 Maintenance protocol
The MDT maintenance protocol for repairing node states is de-

signed for systems with frequent addition and deletion of nodes and
physical links. For a distributed DT to be correct, each node must
know all of its neighbors in the global DT. Towards this goal, each
node (say u) runs the maintenance protocol by first querying a sub-
set of its neighbors, one for each simplex including u in DT (Cu).5
More specifically, node u selects the smallest subset V of neighbors
such that every simplex including u in DT (Cu) includes one node
in V . Node u then sends a neighbor-set request to each node in
V . A node z that has received the neighbor-set request adds u to
Cz and computes DT (Cz). Node z then sends a neighbor-set reply
containing neighbors of u in DT (Cz) to u.

Node u adds new nodes found in each neighbor-set reply to Cu;
it then computes DT (Cu) to get Nu. If u finds a new neighbor, say
x, in Nu, node u sends a neighbor-set request to x if x satisfies the
following condition:

C1. The simplex in DT (Cu) that includes both u and neighbor
x does not include any node to which u has sent a neighbor-set
request.

Node u keeps sending neighbor-set requests until it cannot find
any more new neighbor in Nu that satisfies C1. Node u then sends
neighbor-set notifications to neighbors in Nu that have not been
sent neighbor-set requests (these notifications announce u’s pres-
ence and do not require replies). The protocol code for construct-
ing forwarding paths between node u and each new neighbor is the
same as in the MDT join protocol.

If after sending a neighbor-set request to a node, say v, and a
neighbor-set reply is not received from v within a timeout period,
node v is deemed to have failed. Node u sends a failure notification
about v to inform each node in u’s updated neighbor set. These
notifications are unnecessary since MDT uses soft states; they are
performed to speed up convergence of node states.

Each node runs the maintenance protocol independently, con-
trolled by a timeout value Tm. After a node has finished running the
maintenance protocol, it waits for time Tm before starting the main-
tenance protocol again. The value of Tm should be set adaptively.
When a system has a low churn rate, a large value should be used
for Tm to reduce communication cost.

If each node runs the maintenance protocol repeatedly, the node
states converge to a correct multi-hop DT because neighbors in a
DT are connected by neighbor relations. A node can find all of
its neighbors by following the neighbor relations [14]. (See results
from our system initialization experiments in Section 5.3 and churn
experiments in Section 5.6.)

4.3 Initialization protocols
Serial joins by token passing. Starting from one node, other

nodes join serially using the join protocol. The ordering of joins
is controlled by the passing of a single token from one node to
another.

Concurrent joins by token broadcast. Starting from one node,
other nodes join concurrently using the join and maintenance pro-
tocols. The ordering of joins is controlled by a token broadcast
protocol. Initially, a token is installed in a selected node. When a
node has a token, it runs the join protocol once (except the selected
node) and then the maintenance protocol repeatedly, controlled by
the timeout value Tm. It also sends a token to each physical neigh-
bor that is not known to have joined the multi-hop DT. Each token
is sent after a random delay uniformly distributed over time inter-

5Only some neighbors satisfying condition C1 are queried to im-
prove search efficiency.

val [1,τ], where τ is in seconds. If a node receives more than one
token, any duplicate token is discarded.

5. PERFORMANCE EVALUATION

5.1 Methodology
We evaluate MDT protocols using a packet-level discrete-event

simulator in which every protocol message created is routed and
processed hop by hop from its source to destination. We will not
evaluate metrics that depend on congestion, e.g., end-to-end through-
put and latency. Hence, queueing delays at a node are not simu-
lated. Instead, message delivery times from one node to the next
are sampled from a uniform distribution over a specified time in-
terval. Time-varying wireless link characteristics and interference
problems are modeled by allowing physical links to be added and
deleted dynamically.

Creating general connectivity graphs. To create general con-
nectivity graphs for simulation experiments, a physical space in 3D
(2D) is first specified. Obstacles are then placed in the physical
space. The number, location, shape, and size of the obstacles are
constrained by the requirement that the unoccupied physical space
is not disconnected by the obstacles. (Any real network environ-
ment can be modeled accurately if computational cost is not a lim-
iting factor.) Nodes are then placed randomly in the unoccupied
physical space. Let R denote the radio transmission range. Phys-
ical links are then placed using the following algorithm: For each
pair of nodes, if the distance between them is larger than R or the
line between them intersects an obstacle, there is no physical link;
else a physical link is placed between the nodes with probability p.
We refer to p as the connection probability and 1− p as the miss-
ing link probability. If a graph created using the above procedure is
disconnected, it is not used. Note that to replicate the connectivity
graph of a real network, missing links between neighbors can be
specified deterministically rather than with probability 1− p.

Inaccurate coordinates. The known coordinates of a node may
be highly inaccurate [18] because some localization methods have
large location errors. In our experiments, after placing nodes in the
physical space, their “known” coordinates are then generated with
randomized location errors. The location errors are generated to
satisfy a location error ratio, e, which is defined to be the ratio of
the average location error to the average distance between nodes
that are physical neighbors. We experimented with location error
ratios from 0 to 2.

Definitions. The routing stretch value of a pair of nodes, s and
d, in a multi-hop DT of S is defined to be the ratio of the number of
physical links in the MDT route to the number of physical links in
the shortest route in the connectivity graph between s and d. The
routing stretch of the multi-hop DT is defined to be the average
of the routing stretch values of all source-destination pairs in S.
The distance stretch of the multi-hop DT is defined similarly with
distance replacing number of physical links as metric.

5.2 Design of experiments
Our simulation experiments were designed to evaluate geographic

routing in the most challenging environments. In general, every-
thing else being the same, the challenge is bigger for a higher di-
mensional space, larger obstacles, a higher missing link probability,
a lower node density, a larger network size, or larger node location
errors. Furthermore, we performed experiments to evaluate MDT’s
resilience to dynamic topology changes at very high churn rates. In
the geographic routing literature, no other protocol has been shown
to meet all of these challenges.
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Figure 3: Accuracy vs. time for concurrent joins in 3D

Our simulator enables evaluation of geographic routing proto-
cols in the most challenging environments. In the simulator, any
connectivity graph can be created to represent any real network en-
vironment with obstacles of different shapes and sizes. The con-
nectivity graphs created as described above have properties of real
wireless networks, unlike unit-disk and unit-ball graphs used in
prior work on geographic routing.6 We experimented with obsta-
cles of different shapes and sizes, and nodes with large location
errors or arbitrary coordinates in 2D, 3D, and 4D. In this paper,
we present experimental results for large obstacles, such as those
shown in Figure 3(a), because large obstacles are more challenging
to geographic routing than small ones; these very large obstacles
may represent tall buildings in an outdoor space or large machin-
ery in a factory. Between neighbors that are in line of sight and
within radio transmission range, we experimented with a missing
link probability as high as 0.5.

Node density is an important parameter that impacts geographic
routing performance. We present experiments for node density of
13.5 for 3D and 9.7 for 2D. When we scale up the network size in
a set of experiments, we increase the space and obstacle sizes to
keep node density approximately the same. For experiments with
different missing link probabilities, we vary the radio transmission
range to keep node density approximately the same. We found that
node densities lower than 13.5 for 3D and 9.7 for 2D would result
in many disconnected graphs for spaces with large obstacles and
a missing link probability of 0.5. The values of node density we
used for experiments are relatively low compared with prior work
on geographic routing. We also conducted experiments for higher
node densities which resulted in better MDT performance, thus al-
lowing us to conclude that MDT works well for a wide range of
node densities.

5.3 System initialization experiments
We have performed numerous experiments using our initializa-

tion protocols. In every experiment, a correct multi-hop DT is con-
structed. Concurrent joins can do so much faster than serial joins
but with a higher message cost (see Figure 10 for message cost
comparison).

Figures 3(b)-(c) show results from two sets of experiments us-
ing concurrent-join initialization. In each experiment, the physical
space is a 1000× 1000× 1000 3D space, with three large obsta-
cles, placed as shown in Figure 3(a). The size of one obstacle is
200× 300× 1000. Each of the other two is 200× 350× 1000 in
size. The obstacles occupy 20% of the physical space. Connec-
tivity graphs are then created for 300 nodes using the procedure

6In a very recent paper on 3D routing, unit-ball graphs were still
used for simulation experiments [25].

described in Section 5.1 for radio transmission range R = 305 and
link connection probability p = 0.5. The average node degree, i.e.,
number of physical neighbors per node, is 13.5.7 The (known) co-
ordinates of the nodes are inaccurate with location error ratio e = 1.

The first set of experiments is for low-speed networks with one-
hop message delays sampled from 100 ms to 200 ms (average = 150
ms) and a maintenance protocol timeout duration of 60 seconds.
The second set of experiments is for high-speed networks with one-
hop message delays sampled from 10 ms to 20 ms (average = 15
ms) and a maintenance protocol timeout duration of 10 seconds.

In the legend of Figures 3(b)-(c),“token delay” is maximum to-
ken delay τ. In each experiment, note that accuracy of the multi-hop
DT is low initially when many nodes are joining at the same time.
However, accuracy improves and converges to 100% quickly. In
all experiments, after each node’s initial join, the node had run the
maintenance protocol only once or twice by the time 100% accu-
racy was achieved.

5.4 MDT performance in 3D
We evaluated the performance of MDT routing for 100 to 1300

nodes in 3D. We present results from four different sets of exper-
iments using connectivity graphs created in a 3D space with and
without obstacles, for node locations specified by accurate and in-
accurate coordinates. There are four cases:

• accurate coordinates (e = 0), few missing links (p = 0.9), no
obstacle

• inaccurate coordinates (e = 1), few missing links (p = 0.9),
no obstacle

• accurate coordinates (e = 0), many missing links (p = 0.5),
large obstacles (obs)

• inaccurate coordinates (e = 1), many missing links (p = 0.5),
large obstacles (obs)

For 300 nodes, dimensions of the physical space and obstacles are
the same as in Figure 3(a). For a smaller (or larger) number of
nodes, dimensions of the physical space and obstacles are scaled
down (or up) proportionally. For each obs experiment, the three
obstacles are randomly placed in the horizontal plane. R = 305 is
used for p = 0.5 and R = 250 is used for p = 0.9 such that the av-
erage node degree is approximately 13.5. At the beginning of each
experiment, a correct multi-hop DT was first constructed. Routing
success rate was 100% in every experiment and is not plotted.

Figures 4(a)-(b) show that both routing stretch and distance stretch
versus network size are close to 1 for the easy case of accurate coor-
dinates (e = 0), few missing links (p = 0.9), and no obstacle. Either
7In 3D, a node density of 13.5 is fairly low and realistic.
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Figure 4: MDT performance in 3D (average node degree=13.5)
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Figure 5: MDT performance in 3D and 4D (average node degree=13.5, p=0.5, obstacles)

inaccurate coordinates (e = 1) or many missing links (p = 0.5) and
large obstacles (obs) increase both the routing stretch and distance
stretch of MDT routing. Note that both the routing and distance
stretch of MDT remain low as network size becomes large.8

Storage cost. The most important routing information stored in
a node is the set of nodes it uses for forwarding; the known coor-
dinates of each node in the set are stored in a location table. We
use 4 bytes per dimension for storing each node’s coordinates (e.g.,
12 bytes for a node in 3D); this design choice is intended for very
large networks. The coordinates of a node are used as its global
identifier. Each node is also represented by a 1-byte local identi-
fier in our current implementation. The location table stores pairs
of global and local identifiers (e.g., 13 bytes per node for nodes in
3D). In the forwarding table, local identifiers are used to represent
nodes in tuples. To illustrate MDT’s storage cost in bytes, con-
sider the case of 1300 nodes, e = 1, and p = 0.5 with obstacles.
The average location table size is 540.2 bytes. The average for-
warding table size is 88.8 bytes. The average location table size is
86% of the combined storage cost. We found that this percentage is
unchanged for all network sizes (100 - 1300) in each set of experi-
ments, indicating that the forwarding table size is also proportional
to the number of distinct nodes stored.

In this paper, the storage cost is measured by the average num-
ber of distinct nodes a node needs to know (and store) to perform
forwarding. This represents the storage cost of a node’s minimum
required knowledge of other nodes. This metric, unlike counting
bytes, requires no implementation assumptions which may cause
bias when different routing protocols are compared. Figure 4(c)
shows the storage cost per node versus network size. As expected,
either inaccurate coordinates (e = 1) or many missing links (p =
0.5) and large obstacles require more storage per node due to the

8Distance stretch is almost the same as routing stretch (except for
4D experiments) and will not be shown again due to space limita-
tion.

need for more multi-hop DT neighbors. For comparison, the bot-
tom curve is the average number of physical neighbors per node.

Varying obstacle locations. Each data point plotted in Fig-
ures 4(a)-(c) is the average value of 50 simulation runs for 50 dif-
ferent connectivity graphs each of which was created from a dif-
ferent placement of the obstacles. Also shown as bars are the 10th
and 90th percentile values. Observe that the intervals between 10th
and 90th percentile values are small for all data points. (These
intervals are also small in experimental results to be presented in
Figures 5 and 8-11 and will be omitted from those figures for clar-
ity.) The small intervals between 10th and 90th percentile values
demonstrate that varying obstacle locations has negligible impact
on MDT routing performance.

Varying number and size of obstacles. Aside from varying the
locations of obstacles, we also experimented with varying the num-
ber and size of obstacles. In particular, we repeated the experiments
in Figure 4 for 6 obstacles and also for 9 obstacles. In each such
experiment, the fraction of physical space occupied by obstacles
was kept at 20%. We found the resulting changes in MDT’s rout-
ing stretch, distance stretch, and storage cost to be too small to be
visible when plotted in Figures 4.9 However, when we increased
the fraction of physical space occupied by obstacles from 20% to
30%, the resulting increases in MDT’s routing and distance stretch
were significant (about 6%).

5.5 MDT performance in 4D
To illustrate how MDT can be used in 4D, consider the connec-

tivity graphs created for the set of experiments in Figure 4 with
many missing links (p = 0.5) and large obstacles. Suppose the
nodes have no location information. We experimented with two
cases: (i) Each node assigns itself an arbitrary location in a 4D

9Performance measures from experiments for 9 obstacles are
smaller than those from experiments for 3 obstacles by less than
0.5%.
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Figure 6: MDT performance under node churn (ave. message delay = 150 ms, timeout = 60 sec.)
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Figure 7: MDT performance under link churn (ave. message delay = 150 ms, timeout = 60 sec.)

space and sends its (arbitrary) coordinates to its physical neigh-
bors. These coordinates are used by MDT protocols to construct
and maintain a multi-hop DT as well as for routing. (ii) After
a multi-hop DT has been constructed by the nodes using the ini-
tial (arbitrary) coordinates, each node then runs the VPoD proto-
col [22] to iteratively compute a better virtual position in the 4D
space. VPoD is a virtual positioning protocol that does not require
any node location information, any special nodes (such as, bea-
cons and landmarks), nor the use of flooding. VPoD makes use of
a multi-hop DT for routing support and link costs between physi-
cal neighbors for nodes to compute virtual positions. Any additive
routing metric can be used for link costs in VPoD. For the results
presented in Figure 5, we used 1 (hop) as the routing metric be-
tween two physical neighbors. (Each data point plotted in Figure 5
is the average value from 50 experiments.)

For comparison, we have also plotted the results for MDT rout-
ing using inaccurate coordinates (e = 1 case from Figure 4). Fig-
ure 5(a) on routing stretch, plotted in logarithmic scale, shows that
MDT routing using 4D virtual coordinates is better than using in-
accurate coordinates in 3D. Figure 5(b) on storage cost shows that
MDT routing using inaccurate coordinates in 3D is better than us-
ing 4D virtual coordinates. In both figures, MDT routing using
arbitrary coordinates has the worst performance. Routing success
rate was 100% in every experiment and is not shown.
5.6 Resilience to Churn

We performed a large number of experiments to evaluate the per-
formance of MDT protocols for systems under churn, with 300
nodes in a 1000×1000×1000 3D physical space. Like the exper-
iments used to evaluate MDT routing stretch in Figure 4, four sets
of experiments were performed using connectivity graphs created
with and without three large obstacles, for node locations specified
by accurate and inaccurate coordinates. The average node degree
is kept at approximately 13.5 for every experiment.

In a node churn experiment, the rate at which new nodes join is
equal to the churn rate; the rate of nodes leaving and the rate of
nodes failing are each equal to half the churn rate. In a link churn
experiment, the churn rate is equal to the rate at which new phys-
ical links are added and the rate at which existing physical links
are deleted. In each experiment, the 300 nodes initially maintain a
correct multi-hop DT. Churn begins at time=0 and ends at time=60
seconds.

Figure 6 presents results from node churn experiments for low-
speed networks where one-hop message delays are sampled from
[100 ms, 200 ms]. The maintenance timeout value is 60 seconds.
The churn rate is 100 nodes/minute in Figures 6(a)-(b) and varies
in Figure 6(c). Figure 6(a) shows the accuracy of the multi-hop
DT versus time. The accuracy returns to 100% quickly after churn.
Figure 6(b) shows the routing success rate versus time. The success
rate is close to 100% during churn and returns to 100% quickly
after churn. Figure 6(c) shows the communication cost (per node
per second) versus churn rate.

By Little’s Law, for 300 nodes and a churn rate of 100 nodes
per minute, the average lifetime of a node is 300/100 = 3 minutes,
which represents a very high churn rate for most practical systems.

Figure 7 presents results from link churn experiments for low-
speed networks with a maintenance timeout value of 60 seconds.
Figure 7(a) shows the accuracy of the multi-hop DT versus time.
The accuracy returns to 100% quickly after churn. Figure 7(b)
shows the routing success rate versus time. The success rate is close
to 100% during churn and returns to 100% quickly after churn.
Figure 7(c) shows the communication cost (per node per second)
versus churn rate.

Note that the convergence times to 100% accuracy in Figures 6(a)
and 7(a) and to 100% success rate in Figures 6(b) and 7(b) are al-
most the same for the four cases. These results are typical of all
churn experiments performed.
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Figure 8: Performance comparison of 2D protocols (average node degree=16.5)
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Figure 9: Performance comparison of 2D protocols (three large obstacles, average node degree=9.7)

6. PERFORMANCE COMPARISON

6.1 Comparison of 2D protocols
The geographic routing protocols, GPSR running on GG, RNG,

and CLDP graphs [11, 12], and GDSTR [17] were designed for
routing in 2D. We implemented these protocols in our simulator.10

The experiments in Figure 8 were carried out for 300 nodes in
a 1000 × 1000 2D space with no obstacle and few missing links
(p = 0.9). The radio transmission range is R = 150. The average
node degree is 16.5. The performance results are plotted versus lo-
cation error ratio, from e = 0 (no error) to e = 2 (very large location
errors).

The experiments of Figure 9 were carried out for 300 nodes in
a 1000 × 1000 2D space with three randomly placed obstacles (a
200×300 rectangle and two 200×350 rectangles) and many miss-
ing links (p = 0.5). The radio transmission range is R = 150. The
average node degree is 9.7. The performance results are plotted
versus location error ratio, from e = 0 to e = 1.

In Figure 8(a) and Figure 9(a) the routing success rates of MDT
and GDSTR are both 100% for all e values (it was 100% in every
experiment). As the location error ratio (e) increases from 0, the
routing success rates of RNG, GG, and CLDP drop off gradually
from 100%. For e > 0.6 in Figure 8(a) and e > 0.3 in Figure 9(a),
their routing success rates drop significantly.

Figure 8(b) and Figure 9(b), in logarithmic scale, show that MDT
has the lowest routing stretch for all e values, with GDSTR a close
second, followed by CLDP, GG, and RNG in that order. Note that
routing stretch increases as e increases for all protocols.

Figure 8(c) and Figure 9(c) show storage cost comparisons. The
10Using, as our references, [12] for CLDP, GDSTR code from
www.comp.nus.edu.sg/˜bleong/geographic/, and GPSR, GG, and
RNG code from www.cs.ucl.ac.uk/staff/B.Karp/gpsr/. GDSTR
uses two hull trees [17]
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Figure 10: Initialization message cost vs. N (average node de-
gree = 12)

GPSR protocols (CLDP, GG, and RNG) have the lowest storage
cost, with the storage costs of GDSTR and MDT about the same.

Comparison of graph construction costs. We compare MDT’s
message cost to construct a correct multi-hop DT with message
costs of CLDP graph construction using serial probes [12] and
GDSTR hull tree construction [17]. The physical space is a 2D
square with three large rectangular obstacles, occupying 20% of
the physical space. There are many missing links (p = 0.5). Nodes
have inaccurate coordinates (e = 1). The number N of nodes is var-
ied from 100 to 1300. For the radio transmission range R = 150,
the sizes of the physical space and obstacles are determined for
each value of N such that the average node degree is approximately
12.

In Figure 10, the vertical axis is in logarithmic scale. The mes-
sage cost of a protocol is the average number of messages sent per
node (we did not account for message size differences among the
protocols). Note that each GDSTR message is a broadcast message
sent by a node to all of its physical neighbors and is counted only as
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Figure 11: Performance comparison of 3D protocols (average node degree=13.5)

one message sent. Messages sent by CLDP and MDT are unicast
messages.

Figure 10 shows that with the average number of messages sent
per node as metric, GDSTR has the best message cost performance
for up to 900 nodes. For more than 900 nodes MDT (serial joins)
has the lowest cost. CLDP has a very high cost. Note that the
CLDP and GDSTR curves increase gradually with N. The MDT
curves are flat.

6.2 Comparison of 3D Protocols
We compare the routing performance of MDT with GRG [7] and

GDSTR-3D [25]. We implemented the basic version of GRG in our
simulator. Several techniques to improve the performance of GRG
are presented for unit ball graphs [7]. Since arbitrary connectivity
graphs are used in our experiments, these techniques are not appli-
cable and not implemented.

GDSTR-3D uses two hull trees for recovery. For each tree, each
node stores two 2D convex hulls to aggregate the locations of all
descendants in the subtree rooted at the node; the two 2D convex
hulls approximate a 3D convex hull at each node. We implemented
GDSTR-3D using its authors’ TinyOS 2.x source code available at
Google Sites.

Unlike other geographic protocols, each node in GDSTR-3D
stores 2-hop neighbors and uses 2-hop greedy forwarding to re-
duce routing stretch at the expense of a much larger storage cost
per node. This performance tradeoff may not be appropriate for
networks with limited nodal storage.

A non-geographic routing protocol, VRR [4], is included in the
comparison. We implemented VRR for static networks without
joins and failures.11 For each pair of virtual neighbors, we used
the shortest path (in hops) between them as the forwarding path
(the routing stretch value is 1 between virtual neighbors). Thus,
the routing stretch and storage cost results shown in Figure 11(b)-
(c) for VRR are slightly optimistic. In VRR, each node also stores
2-hop neighbors for forwarding.

MDT can be easily modified to use 2-hop greedy forwarding.
We present results for both MDT (which uses 1-hop greedy for-
warding) and MDTv2 (which uses 2-hop greedy fowarding).

In our experiments, the number N of nodes is varied from 100
to 1300. The physical space and large obstacles are the same as
the ones used in Figure 4. The average node degree was kept at
approximately 13.5. Experiments were performed using connec-
tivity graphs created for the following case: inaccurate coordinates
(e = 1), many missing links (p = 0.5), and three large obstacles that
occupy 20% of the physical space.

Figure 11(a) shows that MDT (also MDTv2), GDSTR-3D, and

11With reference from www.cs.berkeley.edu/˜mccaesar/vrrcode .

VRR all achieve 100% routing success rate while the routing suc-
cess rate of GRG is about 86%. Figure 11(b), in logarithmic scale,
shows that the routing stretch of GRG is very high, the routing
stretch of VRR is high for N > 300, and both increase with N. The
routing stretch of MDTv2 is the lowest and slightly lower than that
of GDSTR-3D for every network size (the differences are, how-
ever, too small to be seen in Figure 11(b)). MDT, which uses 1-hop
greedy forwarding, ranks a close third.

In Figure 11(c), GDSTR-3D, VRR, MDTv2 have large per-node
storage costs, because each node stores 2-hop neighbors as well as
physical neighbors. The storage cost of MDTv2 is smaller than
those of GDSTR-3D and VRR. Both GRG and MDT have much
lower storage costs because they use 1-hop greedy forwarding. The
per-node storage cost of GRG, equal to the average number of phys-
ical neighbors, is the lowest of the five protocols.

MDT versus GDSTR-3D. MDT, MDTv2, and GDSTR-3D all
provide guaranteed delivery in 3D and achieve routing stretch close
to 1. GDSTR-3D has a higher storage cost than MDTv2 and a
much higher storage cost than MDT. One clear advantage MDT (or
MDTv2) has over GDSTR-3D is that MDT is highly resilient to
dynamic topology changes (both node churn and link churn) while
GDSTR-3D is designed for a static topology without provision to
handle any dynamic topology change. Another advantage of MDT
is that it provides guaranteed delivery for nodes with arbitrary co-
ordinates in higher dimensions (d > 3).

7. CONCLUSIONS
MDT is the only geographic routing protocol that provides guar-

anteed delivery in 2D, 3D, and higher dimensions. The graph of
nodes and physical links is required to be connected, but may oth-
erwise be arbitrary. MDT’s guaranteed delivery property holds for
nodes with accurate, inaccurate, or arbitrary coordinates.

Experimental results show that MDT constructs a correct multi-
hop DT very quickly at system initialization. MDT is also highly
resilient to both node churn and link churn. Furthermore, MDT
achieves a routing stretch (also distance stretch) close to 1.

The performance of MDT scales well to a large network size (N).
We observed that, as N becomes large, MDT’s routing (distance)
stretch and per-node storage cost converge to horizontal asymp-
totes. MDT does not use special nodes (such as, beacons and land-
marks) that are required in many wireless routing protocols; every
MDT node runs the same protocols. Each node computes its own
local DT with computation cost dependent upon its storage cost,
rather than N. Lastly, MDT’s per-node communication costs for
constructing and maintaining a correct multi-hop DT are fairly low
and independent of N.
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10. APPENDIX
Theorem 1

PROOF. 1) By definition, a correct multi-hop DT of S is a
correct distributed DT of S. The distributed DT maintained
by nodes in S is the same as DT (S).

2) Given a correct multi-hop DT, each DT neighbor of a node u
in S is either a physical neighbor or connected to u by a for-
warding path of finite length (in hops) that exists in {Fv | v ∈
S}.

3) When a message, say m, arrives at a node, say u, if the condi-
tion in line 1, 2, or 6 in Table 1 is true, then a node closest to
` is found. If the conditions in lines 1-3 are all false, node u
performs greedy forwarding in lines 4-5. If it succeeds to find
in Pu a physical neighbor v that is closer to ` than node u, mes-
sage m is transmitted directly to v (lines 4 in Table 1); else,
greedy forwarding is performed over the set of DT neighbors
(line 5 in Table 1). The proof of Theorem 1 in [14] for a dis-
tributed DT guarantees that either node u is closest to ` or
there exists in Nu a node v that is closer to ` than u. There-
fore, if node u is not a closest node to `, executing the greedy
forwarding code (lines 4-5 in Table 1) finds a node v that is
closer to ` than node u.

4) Any other node in S that is closer to ` than u will not use
the actions in lines 4-5 in Table 1 to send message m back to
node u. It is, however, possible for message m to visit node u
again in the forwarding path between two DT neighbors that
are closer to ` than u. In this case, the condition of line 3 in
Table 1 must be true for m at node u. Thus, node u executes
the greedy forwarding code for message m at most once. This
property holds for every node. By 2), 3), and the assumption
that S has a finite number of nodes, MDT forwarding finds a
closest node in S to ` in a finite number of hops.

Theorem 2

PROOF. By Theorem 1, the join request of w succeeds to find a
DT node (say z) closest to w, which sends back a joint reply. By
a property of DT, node z, being closest to w, is guaranteed to be a
neighbor of w in DT (S∪{w}). A forwarding path is constructed
between w and z. Subsequently, because the multi-hop DT of S
is correct, forwarding paths are constructed between w and each
neighbor it sends a neighbor-set request. After receiving a request
from w, each neighbor of w updates its own neighbor set to include
w. They also send back replies to w. By Lemma 9 in [14], the
join process finishes and Nw consists of all neighbor nodes of w in
DT (S∪{w}).

By construction, two DT neighbors select only one path to use
between them by refreshing only tuples stored in nodes along the
selected path. Therefore, the path between each pair of neighbors
in DT (S∪{w}) is unique after the join. Each path also has a finite
number of hops because (i) the path from the joining node to its
closest DT node (z) has a finite number of hops (by Theorem 1), and
(ii) the path from the joining node to each of its other DT neighbors
is either a one-hop path or the concatenation of two paths, each of
which has a finite number of hops. By Definition 3, the updated
multi-hop DT is correct.


