PROTOCOL PROJECTIONS:

A METHOD FOR ANALYZING

COMMUNICATION PROTOCOLS*

Simon S. Lam and A. Udaya Shankér

Department of Computer Sciences
University of Texas at Austin

Austin, Texas

Abstract

We propose the method of protocol projections
to facilitate the analysis of protocols with sever-
al distinguishable functions., Image protocols are
constructed separately for each protocol function.
Image protocols are obtained by aggregating proto-
col entity states, messages and transitions using
equivalence relations., As a result, image proto-
cols are typically much simpler than the original
protocol and can be analyzed more easily using
available techniques. We have shown that if an
image protocol satisfies a well-formed property,
then it is faithful, in the sense that its logical
correctness properties are the same as the logical
correctuess properties of the projected function
in the original protocol. Im this respect, the
well-formed property can be regarded as a criterion
for well-structured protocols.

1. INTRODUCTION

A communication protocol defines the set of
rules that govern the exchange of messages between
protocol entities. Such protocol entities are
connected by communication channels (real or vir-
tual), Keller [1] has described an abstract model
for representing parallel computations. The model
is a transition system specified by the pair (G,T)
where G is the set of global states and T is a
binary relation in G called the set of transitions.
Models of communication protocols may be represent-
ed by such a transition system. The global state
of a model of interacting protocol entities is
specified by a joint description of the states of
the protocol entities and communication channels.
State transitions correspond to the occurrence of
various events: an entity sending or receiving
messages, errors in channels, an entity receiving
signals from its user and timers, etc.

Given an initial state 8> T determines the

reachability tree (space) R. R is a directed graph
with nodes being elements of G and arcs being
elements of T. R contains all available informa-
tion on logical correctness properties of the
protocol. Let RS denote the set of reachable

states in G. Rs, which may be obtained from R,

determines the safety (partial correctness)

* This work was supported by National Science Foun-
dation Grant No. ECS78-01803.

78712

properties of the protocol. Liveness properties,
however, require knowledge of the set of finite
paths in R.

Protocol Analysis Approaches

There are three basic approaches to protocel
analysis [2]. They differ mainly in the kind of
questions that the analyst poses in the character-
ization of R.

(1) Reachability analysis
Starting from the initial state 8 in G, the

reachability tree R is traversed using T. Many
logical errors (e.g., state deadlocks, unspecified
receptions, etc.) that require only knowledge of
individual reachable states in R can be detected
by automated procedures [3]. This approach

has two difficulties. First, for any non-
trivial protocol, R is extremely large (possibly
infinite). Second, many meaningful relationships
among "'state variables", expressing desirable
logical correctness properties of the protocol, ,
require an overall view of R and these are usually
not obvious from simply traversing R.

{2) Proofs of invariant assertions

In this approach [4,5], one attempts to formu-
late invariant assertions describing desired logi-
cal correctness properties (corresponding, hope-
fully, to the service specifications of the
protocol). Note that assertions are predicates on
G. Hence an assertion can be viewed as a set J of
states in G for which the predicate is true. An
assertion of a safety property is invariant if the
set J is a superset of Rs' Invariant assertions of

liveness properties can be thought of as specifying
target sets in G for trajectories of paths in R to
hit, eventually, recurrently, etc, In any case,
the method of formulating invariant assertions, in
effect, attempts to find "bounds" for the reach-
ability tree R instead of traversing it. These
bounds are in the form of predicates which are
statements about the state variables and their
relationships.

(3) Hybrid approach

Both of the above analysis approaches may be
used together [1,6,7]. For many models, the state
space G can be written as a cross product of a set
Gc of control states and a set Gd of data states,

G = GC % Gd' A reachability analysis in Gc yields

E3.2.1

CH1679-0/81/0000-0196 $00.75 © 1981 IEEE

the reachable set of control states. For each
reachable control state, assertions may be formu-
lated as predicates on Gd'

The difficulty with both the second and third
approaches is that the formulation of assertions
stating some desired logical correctness proper-
ties requires considerable human ingenuity, and
cannot be easily automated. However, given some
assertions (perhaps derived from protocol service
specifications), their verification may be facili-
tated by various semi-automatic systems using
theorem proving and symbolic execution techniques
[7, 81.

Analysis of Nontrivial Protocols

The alternating bit protocol has been analyz-
ed by many authors using a variety of techniques
[6, 7, 9-12]. This is a relatively simple proto-
col whose reachability tree R can be easily deter-
mined. The X.21 protocol has also been analyzed
using automated systems for reachability analysis
[13, 14]7.

The analysis of a relatively large protocol
such as HDLC [15] is much more difficult. Reach-
ability analysis typically cannot be employed due
to the many state variables, some of which such as
sequence numbers can take on a large number of
values. Brand and Joyner [16] analyzed one ver-
sion of HDLC using a system for symbolic execu—
tion. Altogether 1347 theorems had to be proved,
80% of which were proved automatically. The rest
was done manually.

A protocol, such as HDLC, can be thought of
as having many distinct functions. For instance,
we can think of an HDLC protocol entity as con~
sisting of fivé functional components such as
shown in Fig. 1. Each component communicates with
a corresponding component in the other protocol
entity to accomplish a specific function (e.s.,
connection management, one-way data tramsfer, ete.).

Entity 1 Entity 2
—

compection |0. > connection

manager responder
data |4 sessesenee > data
send i receive
flow % essevesB O > flow

responder controller
data 4—-;-..-..-.—> data

.receive send
flow 4 ssesevsens > flow

controller responder

Fig. 1. Functional components of HDLC.

For such complex protocols, an approach that
appears attractive is to decompose each protocol
entity into modules for handling the different
functions of the protocol. Bochmam and Chung [17]
used this approach to specify a version of HDLC.
The main difficulty with protocol analysis using a
decomposition approach is that the interaction
among modules within each protocol entity is not

structured. Modules interact through shared
variables. They also interact because a message
frame (packet) typically encodes data and control
messages sent by different modules in one entity
to the respective modules in the other emtity. To
model such dependencies, Bochmannand Chung {171
proposed the use of coupled transitions between
modules. This permits them to specify the HDLC
protocol in a compact fashion, but does not seem
to facilitate analysis of the protocol.

The data transfer protocol of Stenning has
been successfully analyzed [4, 5]. Imvariant
assertions concerning both its safety and liveness
properties have been proved. However, Stenning's
protocol is a one-way data transfer protocol. It
corresponds to the interaction of a Data Send
module and a Data Receive module in isolation (see
Fig. 1.). As such, it constitutes just one
function of a real-life protocol such as HDLC.

The following question arises: are the safety
and liveness properties that are proved for the
one—way data transfer protocol still valid when
it is implemented as part of an overall protocol
with the two types of dependencies mentioned
above?

Protocol Analysis via Protocol Projections

Consider a protocol with several distinguish-
able functions. We would like to ask questions
regarding the logical correctness. behavior of the
protocol concerning these functions. Instead of
asking such questions all at the same time, we may
ask them with respect to one fsaction of the pro-
tocol at a time. The analysis approach is to
construct from the given protocol an image proto-
col for each of the functions that are of interest
to us. These will be referred to as the projected
functions. ‘The image entity states, messages, and
transitions of an image protocol are obtained from
those of the original protocol using certain
equivalence relations.. Entity states, messages
and transitions that are equivalent with respect
to a projected function are aggregated in the im-
age protocol. As a result, image protocols. are
simpler than the original protocol. Each image
protocol can thus be more easily analyzed using
available means. (An image protocol for the
function of one-way data transfer of HDLC will be
of the same complexity as Stenmning's data transfer
protocol and can thus be analyzed.) Thus the
method of protocol projections is useful if image
protocols are faithful, i.e. logical correctness
properties of an image protocol are the same as
logical correctness properties of the projected
function in the original protocol.

A sufficient condition for an image protocol
to be faithful is that the image protocol possess-—
es a well-formed property. Although the well-
formed property is a sufficient condition, we have
found that it is the weakest condition that one
can have without any knowledge of the reachability
tree R of the protocol, (Note that we cannot
assume any knowledge of R since its complexity is
the basic source of our difficulties.) We have
found that image protocols for a version of the
HDLC protocol with respect to the functions of
connection management and one-way data transfers

E3.2.2

possess the well-formed property [18]. Thus the
well-formed property is not a very stringent re-
quirement. In fact, one can think of the well-
formed property as a criterion of well-structured
protocols.

The term "protocol projection" has been
previously used by Bochmapnand Merlin [19] to
describe an operation in their method for protocol
construction. Their basic idea of "projection
onto the relevant actions" is similar to ours
herein, but the development and application of the
idea in their work and ours are different.

In Section 2 we shall first present our pro-
tocol model. In Section -3 we shall present defin-
itions of image entity states, image messages and
image transitions for a given projected function.
In Section 4 the image protocol for a given func-
tion is defined. The well-formed property is
introduced. Our main results are stated in two
theorems. We shall illustrate the protocol model
with a small protocol example. A small example is
chosen for the sake of clarity, although the
method of protocol projections is intended for the
analysis of real-life protocols with multiple
functions.

2. THE PROTOCOL MODEL

Our model is based upon the model of Brand
and Zafiropulo [20]. Let Pl and P2 be two pro-

tocol entities that communicate with each other.

Pl sends messages to Pz through channel C1 and

P2 sends messages to Pl through channel C2. (See

Fig. 2.) Messages transmitted through a channel
may be corrupted by noise. The channels are
modeled as FIFO queues with infinite storage
capacities.

1
b T T T]—)
1 P,
e— [TITTTIT.
¢
2

Fig. 2, Components of the protocol model.

(Extension of results in this paper to models of
channels that may duplicate and reorder messages
and channels that have finite storage capacities
will be presented in a forthcoming technical
report and in [18].) For i = 1 and 2, we
define the following:

Si is the set of states of entity Pi’

o is the initial state of P, in Si’ and

i

Mi is the set of messages sent by Pi'

To simplify our notation, we assume that
S1 n 8, = ¢ and M n M, = [}

where § denotes the null set.

Entity Pi is initially in state o A state
transition of Pi from state s to state r due to

the occurrence of event e is denoted by the 3-

tuple <s, r, e>, There are 3 types of events

that cause state transitions to take place in Si'

We describe these events for entity Pl.

(1) <s, r, m>, where meMl, denotes a transition
in S1 due to the sending of a message m by Pl
into channel Cl' The set of such "send

transitions'" is a subset of SlxleMl.

(2) <s, r, m>, where mEMZ, denotes a transition
in Sl due to the reception of message m by Pl

from channel CZ' The set of such "receive

transitions" is a subset of SlxslxMZ.
(3) <s, r, a>;where o is a special symbol indica-

ting the absence of a message, denotes a

transition in Sl that does not involve a

message. These transitions are called inter-
face transitions because the state change is
caused by events generated at the entity's
local interfaces by its user and timers.

The set of interface transitions is a subset

of 51XSIX{u}.

The three types of events for entity P2 are simi-

larly defined, but with the send transitions in

. e %
SZXSZXMZ’ receive transitions in 32 SZXMl, and

interface transitions in szxszx{u}. Note that

both send and receive transitions affect the states
of channels as well as the entities involved.
Interface transitions do not affect the states of
channels. Let Ti denote the set of state transi-

tions of Pi for i = 1 and 2.

The protocol between Pl and P2 is defined by

specifying,
(Sl, Sz, 0js 09 Ml’ Mz, Tl’ TZ)'
Let Ei denote a FIFO sequence of messages
representing the state of channel Ci for i = 1 and

2. There are -additional events that cause tran-
sitions in the states of the channels. First,
each message in a channel may be corrupted by
noise (an "error event"). We use the symbol 7 to
represent the corrupted message in m, following

the occurrence of an error event. Second, if the
first element of m, is a corrupted message, it is

received by the destination entity and discarded
(an "error detection event"). We assume that both

types of events do not affect the states of Pl and
P Define

M, U {n}

2t

=2
1

for k=2, 3, 4,

The set of all possible message sequences in Ci is

a subset of

E3.2.3

® ok
=(u M) uyd.
k=1

where @ denotes the empty set.

The state space of the global model of proto-
col interaction is

G = SlleXMZXSZ

Each global state is a 4-tuple <Sps Wy, Moy S,>
where s, €Si and m —isgi for 1 = 1 and 2. The initial
global state g will be assumed to be <05 @, ¢,02>
in the rest of this paper without any loss of
generality.

We shall make the assumption that if multiple
events in Pl’ P2’ Cl and C2 occur simultaneously,
then such an occurrence can be represented as a
sequence of occurrences of events in some arbi-
trary order. This is called the arbitration
condition [1]. In the present model, the arbi-
tration condition is acceptable if mutual exclu-
sion is enforced among event occurrences in the
same protocol entities i.e. the state transitions
of protocol entities are 1mplementpd as indivisible
(atomic) operationms.

Let Ti denote the set of state transitions in

G due to the 3 types of events in Pi' Let Te de-

note the set of transitions in G due to the occur-
rence of error events and error detection events
in the channels. Define T to be TlUTZUTc.

The transition system (G, T) defines the

global- model of the interaction between Pl and P2'

Recall that R denotes the reachability tree rrom
the initial state 8y = <> o, 9, 0,> in G using

the binary relation T. A path in R is defined to
be an ordered sequence of states in G starting
from gy

An example

We illustrate the above protocol model with an
example of a symmetric full-duplex data transfer
protocol to be described next. Since the protocol
is full-duplex, it has two basic distinguishable

functions: one-way data transfer from Pl to P2

and one-way data transfer from P, to P For each

2 1°
direction, the protocol uses a very simple acknow-
ledgement scheme. For simplicity, we have assumed
that the channels used in this example are error-
free. (In this casethe protocol does notneed timers).
1° P1 has an in-
finite array of data blocks, SOURCE[i] for i = 0,1,
2,..., destined for PZ’ and an infinite empty

array, SINK[i] for 1 = 0,1,2,..., to store data
blocks received from P2. The state of Pl is

Consider protocol entity P

specified by the values of the 5-tuples
<V§, D_OUT, VR, ACK DUE, BUSY>
where VS and VR are nonnegative integers while the

others are boolean variables. Entity P2 has a

similar set of variables. For convenience, we have
omitted qualifiers (1 or 2) for these variables
and we shall omit them as long as it is clear

whether we are referring to P1 or P2. The initial

state of both entities is <0, false, 0, false,

false>.
The set Ml of messages sent by P1 is {DATA1L,

ACK1, DATA18ACK1} where DATAL is a data block,
ACK1 is an acknowledgement and DATA1&ACK1 is a
message encoding both DATAl and ACK1., The set M

2
is {DATA2, ACK2, DATA28&ACK2}.

The set of events that cause state transitions

in P1 is presented in Table 1. Events 1-3 corres-

pond to the sending of a message by P Events

1
6-8 correspond to the reception of a message by Pl.
Events 4 and 5 correspond to interface transitions
caused by an external agent locally connected to
Pl (e.g., user, channel controller). The enabl-

ing condition of an event defines the set of entity
states at which the event may take place. The
action of each event causes the entity to enter a
new state. Thus, each entry in Table 1 actually
specifies a set of transitions. For example, the
event SEND DATA defines the set of transitions

{<s, r, DATAl> : DATAl & M), s and r are 5-tuples

in 8, such that s satisfies D OUT = BUSY = false

1
and r is the same as s except that D OUT is true
and VS is incremented by 1}.

In Table 1, the operation put (CHANNEL,
DATASACK) encodes DATA and ACK into a single mess-—
age and appends it to the end of the sequence of
messages in CHANNEL. The operation get (CHANNEL,
DATASACK) removes the message DATASACK at the
head of CHANNEL and decodes it into two messages
DATA and ACK.

The transitions of P2 are identical to those
shown in Table 1 for Pl, except that the variables

CHANNEL1, DATAl and ACKl and the variables CHANNEL2,
DATA2 and ACK2 are interchanged.

The example protocol has two functions corres-
ponding to data transfers in the two directions.
The protocol is extremely simple but it embodies
the two types of dependencies that one encounters
when one attempts to decompose protocols into
functional components. First, the variable BUSY
is shared by both functions of the protocol.
Second, the messages DATAL&ACK1 and DATA2&ACK2 are
also shared. Such dependencies present major
obstacles for protocol analysis using a decomposi-
tion approach. However, the method of protocol
projections will be used to obtain a faithful
image protocol for each function.

3. PROJECTIONS

Projections are achieved using equivalence
relations. We shall denote the image of a proto-
col quantity x by x' which is obtained by aggrega-
ting all those protocol quantities that are equiv-
alent. Images of protocol entity states, messages
and global states are next defined and should be

E3.2.4

obtained in the order shown below.

Projection of entity states

We start by partitioning the state space Si
of protocol entity Pi for 1 = 1 and 2. Partition

cells are defined so that entity states within a
partition cell are equivalent with respect to the
protocol function for which an image protocol is
desired. The equivalence relation is determined
by the semantics of the protocol and this is one
place in our method where human ingenuity is
needed. Let Si denote a partition of Si' Si

constitutes the set of image states of the protocol
entity Pi' Each element in Si corresponds to a

partition cell in Si'

is s'eS]!_ then ses' ¢ 8,+ <« We say that states s and

Thus, if the image of sz—:Si

t have the same image if and only if both s and r
are in the same partition cell (they are equival-
ent with respect to the projected function).

Projection of messages

The above equivalence relation is next extend-

ed to messages in M1 and M2. Two messages m and n

in Mi are said to be equivalent if and only if

they cause identical transitions in both image

state spaces Si and Sé. In other words, m' = n

if and only if for any pair of states (s', r') in

Si and in Sé, m causes a transition from some

state in s' to some state in r' whenever n causes
P ¢ .
a transition from some state in s' to some state

in r'. Messages that cause only ‘transitions
internal to 1image entity states in both Si and Sé

are said to have the null image. The image

message sets are defined by

M; = {m': ' is not null, mEMi}.
The image of a corrupted message n is the null image.
The image Ei of channel state m, is obtained by
taking the image of each element in m and deleting

the null images. Thus for the projected function,
transitions associated with null images behave
just like interface transitions that are internal
to image entity states. (Note that the previous
statement is not true when channels with finite
storage capacities are considered.)

Images of global states

The above equivalence relations can now be
used to define image global states. Two global

states g = <31’ El’ Ez, SZ> and h = <rl, E‘l’ 32’

> in G are equivalent (g' = h') if and only if

1
i
global state space is denoted by G'. Let Ré be the

s; =r! and m! = n' for i = 1 and 2. The image
i -1

set of images of the reachable global states in R.
The image w' of a path w in R is given by the
sequence of image global states in the path w
where consecutive elements with the same image are
aggregated into a single element (in w').

4. IMAGE PROTOCOL

Our objective is to define an image protocol
that is faithful, i.e., such that its logical
correctness properties are the same as the logical
correctness properties of the projected function
in the original protocol. A natural candidate for

such a protocol is to take Si and Sé as its entity

state spaces with oi and oé as initial states and

Mi and Mé as its message sets. The transitions Ti

at P1 and Té at Pz are defined as follows
Ti ={<s’, ', m'> <8, r, m> ¢ T, such that
((m"#null image) . (m'=0 2>s'#r'))}

where parallel transitions from the set s' to the
set r' in Ti associated with messages with the

same non-null image are aggregated into a single

image transition in Ti; parallel interface transi-

tions from s' to r' are also aggregated into a
single image interface tramsition (s', r', o) where
the image of o is still a,

Note that interface transitions in Ti between

states within the same partition set do not con-
tribute to Ti. Similarly, transitions in Ti

involving messages with the null image also do not
contribute to Ti
Finally, transitions in the channels (due to
the occurrence of error events and error detection
events) involving messages with the same image are
aggregated into a single image channel transition.

The image protocol is completely specified by
(s!, Sé, oi, oé, Mi, M!, Ti, Té).

1 L 1 1 ' 1
Define T ’1’1 H] Tz U Tc where T

1’ 2
the global transitions due to respectively T!, T

, T. and Té are

]
2
and image channel transitions. Given (G', T'), let
R" be the reachability tree of the image protocol
and Rg be the set of reachable states in R".

(1) The image of every path in R

Theorem 1.
(i1) R' = R",
s =8

is a path in R".

A proof of the above theorem is given in [21]
and is omitted here due to space limitation. We
note that since invariant assertions of the safety
properties of the image protocol correspond to
supersets in G' that cover R;, the second result

in Theorem 1 implies that such assertions are also
valid in the original protocol. However, it is
bossible that assertions concerning the projected
function are true in the original protocol but are
not true in the image protocol. Also, we cannot
draw any conclusions about the liveness properties
of the projected function in the original protocol
based upon the image protocol.

We present next sufficient conditions for the
image protocol to be faithful to the projected
function. The following axiom is first stated.

E3.2.5

Channel error axiom. If channel €j corrupts mess-
ages, then any message in M; may be corrupted.

Next consider t'=(s", r', m") eT}v and some en-
tity state aes', r' is immediately m'-reachable
from a if either: (i) for t' being an interface or
send transition, there exists (a, b, n) e Ty for some
ber' and some n where n'=m', or (ii) for t' being
a recelve transition, there exists (a, b, n) e Ty
for all n such that n'=m' and for some ber'.

t' is m'-reachable from a if there exists a sequence
of interface transitions internal to s' that will
take a to another entity state ces' from which r'
is immediately m'-reachable. (In the protocol model
of interest in this paper, send transitions in Ty
involving messages with null images can be regarded
as internal interface transitions for the above
definition).

Partitions Si and Sé of an image

protocol are said to be well-formed if for any
(s', r', ") € Ti U Té and for any a € s', r' is
(X4

Definition.

m'-reachable from a.

Definition. Partitions Si and Sé of an image

protocol are said to be strongly well-formed if

for any (s', ', m') € T! y T! and for any
y 1Y %2

a€s', r' is immediately m'-reachable from a.

Obviously, an image protocol that is strongly
well-formed must also be well-formed. In the
above definitions, the sets Ti contain both inter-

face transitions and transitions involving messages.
Also, s' may be the same as r' if m' is the nonnull
image of a message.

Given a global state g, we let t(g) denote
the global state that results upon executing an
enabled transition t, where t € T.

A path w = go - gl > e > gn in R is
extendable to a path x = g, -> 8 F e * g, -+

> in R if there exist transitions

gn+l

t1s tys eesy todn T such that ti(gn+i~l) = 84
The extendability of paths is defined similarly
in R".

Theorem 2., Given a well-formed image proto-
col, (i) for any path w in R and u' in R", if
w'=u' and u' is extendable to v' then w is extend-
able to x such that x'=vy'; (ii) R; = R;.

A proof of the above theorem is given in [21].
Part (i) of Theorem 2 together with part (i) in
Theorem 1 imply that the liveness properties of a
well-formed image protocol are the same as the
liveness properties of the projected function in
the original protocol. - Since Ré = R; in part (ii)

of Theorem 2, the safety properties are also the
same. Hence a well-formed image protocol is
faithful,

An image protocol of the example

Reconsider the full-duplex data transfer
example introduced earlier in Section 2 and illus-
trated in Table 1. The protocol has two functions,

namely, data transfer in the two directions between

P1 and P2. We shall next present an image protocol

of the function of data transfer from Pl to PZ'

Observe that VR and ACK DUE in Pl, and VS and D_OUT

in P, are not needed for the P, to Pz data transfer.

2 1
We let Si consist of all 3-tuples of the form
<VS, D_OUT, BUSY> and Sé consist of all 3-tuples

of the form <VR, ACK DUE, BUSY>. In other words,
the image of <VS, D_OUT, VR, ACK DUE, BUSY> in S;
is <Vs, D _OUT, BUSY> in Si.

Using the definition for images of messages in
Section 3, we find that the image message sets are

M! = {DATA1'} and Mé = {ACK2'}.

1
Consider Mi. DATAL' is the image of DATAL and
DATA1&ACKL in Ml. ACK]1 in M1 has the null image
and is not included in Mi.

Using the definition for image transitions of
protocol entities, the set of image transitions of

P1 1s found and shown in Table 2, and the set of

image transitions of P2 is found and shown in
Table 3.

The image protocol for the function of data

transfer from Pl to P2 is relatively simple and

the following invariant assertions of its logical
behavior have been proved.

Invariant assertions

1. SINK[i] = SOURCE[i]
2. VS > VR > Vs-1.

3. DATALl' in CHANNEL1=> (D_OUT)

(DATAL' = SOURCE[VS-1])

(exactly one DATALl' message in CHANNEL1)
(not ACK DUE) ~ (VS = VR + 1)

(no ACK2' message in CHANNEL2).

4. ACK DUE => (D_OUT)
~ (no DATAl' message in CHANNEL1)
~ (VS=VR)" (no ACK2' message in CHANNEL2).

5. ACK2' in CHANNEL2 = (D_OUT)
~ (no DATAl' message in CHANNEL1)~(VS=VR)
~ (not ACK DUE)
~ (exactly one ACK2' message in CHANNEL2),

6, not D OUT => VS = VR.

for 0 < 1 < VR.

> > > >

It can be shown using the definition of well-
formed partitions that the image protocol defined
above is strongly well-formed. Therefore, the
above invariant assertions also describe the logi-

cal behavior of data transfer from Pl to PZ in the

original protocol.

5. DISCUSSIONS

The method of protocol projections is intended
to facilitate the analysis of protocols with sever-
al distinguishable functions. Image protocols are
defined separately for each protocol function. We
have shown that if an image protocol is well-formed,

E3.2.6

then it is faithful, in the sense that its logical [4]
correctness properties are the same as the logical
correctness properties of the projected function in [5]

the original protocol.

Unlike a decomposition approach, the method
of protocol projections is not handicapped by
dependencies that exist between different function- [61
al components of a protocol due to (1) the sharing
of variables, and (2) the encoding of messages for
the different functions into the same message
frames (packets). Such dependencies are naturally
accounted for in the definition of image protocols, [7]
since all the entity states and messages that are
relevant to a function are included in its image
protocol. On the other hand, since image proto- [8]
cols are obtained by the aggregation of equivalent
states and messages, they are typically much
simpler than the original protocgl, -and can be
more easily analyzed by available verification
techniques. [9]

Note that the well-formed property is a
sufficient condition for an image protocol to be

faithful. However, a careful examination of the [10]
proof of Theorem 2 in [21] will show that this is
the weakest sufficient condition that one can [11]

state without any knowledge of the reachability

tree R. We have found that image protocols are

well-formed for a version of the HDLC protocol

with respect to the functions of connection manage-—

ment and one-way data transfers [18]. Thus, the [12}
well-formed property is not as stringent as it may

appear.

One interpretation of a well-formed image pro-

tocol is that the aggregation of states in S1 and [13]
52, to form Si and Sé, does not result in any loss
of information for the projected function. If Si
and Sé were not well-formed, then we have made the [14]

error of considering two -entity states s and r in
Si as equivalent witn respect: to the projected

function, though in fact thay are not. In this [15]
respect, one can think of the well-formed property
as a criterion of well-structured protocols, That
is, a protocol would be considered well-structured,
if to each of the basic protocol functions, we can [16]
define "maximal" partitions Si, Sé to obtain image

protocols.

We have extended the results in this paper to
models of chamnels that may duplicate and reorder
messages. We are also investigating issues of
time variables, implementation variables and pro-]
tocol synthesis, as well as the development of [18]
efficient algorithms for obtaining protocol images
and checking the well-formed property [18].

[17]

REFERENCES
[1] Reller, R.M., "Formal Verification of Para- B9}
1lel Programs," Comm. ACM, July 1976.

[2] Bochmann, G.V. and C.A. Sunshine, "Formal
methods in communication protocol design," [20]
IEEE Trans. on Commun., April 1980.

[3} Zafiropulo, P., et.al., "Towards Analyzing

and Synthesizing Protocols," IEEE Trans. on
Copmun., April 1980.

E3.2.7

Stenning, N.V., "A Data Transfer Protocol,"
Computer Networks, September 1976,

Hailpern, B.T. and S.S. Owicki, '"Verifying
Network Protocols using Temporal Logic,"
Computer Systems Laboratories, Stanford Univ.
Technical Report No. 192, June 1980.

Bochmann, G.V. and J. Gecsei, "A Unified
Method for the Specification and Verification
of Protocols,” IFIP Congress 77, North Holl-
and Publishing Company, 1977.

Brand, D. and W.H. Joyner, "Verification of
Protocols using Symbolic Execution," Comput-
er Networks, September/October 1978,

Good, D.I, and R.M. Cohen, "Principles of
Proving Concurrent Programs in Gypsy," Proc.
6th Annual ACM Symposium on Principles of
Programming Languages, San Antonio, Jan. 1979,

Bochmann, G.V., "Finite State Description of
Communication Protocols," Computer Networks,
October 1978,

Merlin, P.M., "Specification and Validation
of Protocols," IEEE Trans. Commun., Nov. 1979.

Bremer, J. and 0. Drobnik, "A New Approach
to Protocol Design and Validation," IBM
Research Report RC8018, Yorktown Heights,
New York, December 1979.

DivVito, B.L., "A Mechanical Verification of

the Alternating Bit Protocol," University of
Texas at Austin, Technical Report ICSCA-CMP-
21, June 1981.

West, C.H. and P, Zafiropulo, "Automated
Validation of a Communications Protocol:
The CCITT X.21 Recommendation," IBM Journal
of Res. and Develop., January 1978.

Razouk, R. and G. Estrin, "Modeling and Veri-
fication of Communication Protocols in SARA:
The X.21 TInterface,” IEEE Trans. on Comput.,
December 1980.

International Standards Organization, "Data
Communication-~HDLC Procedures~~Elements of
Procedures," Ref., No. IS0 4335, 1979,

Brand, D. and W.H. Joyner, "Verification of
HDLC," IBM Research Report RC7779, Yorktown
Heights, New York, July 1979.

Bochmann, G.V. and R.J., Chung, "A Formalized
Specification of HDLC Classes of Procedures,"
Proc, Nat. Telecommun. Conf., Los Angeles,
December 1977.

Shankar, A.U., "Analysis of Communication
Protocols via Protocol Projections," Ph.D.
Thesis, Dept. of Electrical Engineering,
Univ, of Texas at Austin, 1982 (in prepara-
tion).

" Bochmann, G.V. and P. Merlin, "On the Con-

struction of Communication Protocols," Proc.
5th ICCC, Atlarnta, October 1980,

Brand, D. and P. Zafiropulo, "On Communica-
ting Finite-State Machines," IBM Res. Report,
RZ1053, Zurich, Switzerland, Jan. 1981.

[21] Lam, S.S. and A.U. Shankar, "Protocol Veri-
fication via Protocol Projections, Part 1:
Theory," Dept. of Computer Sciences, Univ,
of Texas at Austin, Technical Report, 1981
(in preparation).

Event Name Enabling Condition Action

1. SEND DATA not BUSY and not D OUT DATAl := SOURCE[VS]; put(CHANNEL1l, DATAl);
VS := VS + 1; D OUT := true

2. SEND DATA ACK not BUSY and not D_OUT and ACK DUE DATA1 := SOURCE[VS]; put{CHANNELL, DATA1&ACKI)
VS := VS + 1; D OUT := true; ACK DUE := false

3. SEND _ACK notg}USY and ACK DUE put (CHANNEL1, ACK1); ACK DUE := falée

4, START BUSY not BUSY BUSY := true ‘

5. STOP_BUSY BUSY BUSY := false :

6. REC DATA first (CHANNEL2) = DATA2 get (CHANNEL2, DATA2); SINK[VR] := DATA2;
VR := VR + 1; ACK DUE := true

7. REC DATA ACK first (CHANNEL2) = DATA2&ACK2 get (CHANNEL2, DATA2&ACK2): SINK[VR] := DATA2;
VR := VR + 1; ACK DUE := true; D OUT := false;

8. REC_ACK first (CHANNEL2) = ACK2 get (CHANNEL2, ACK2); D OUT := false

TABLE 1. Transitions of Entity P1 in the Protocol Example.

Event Name Enabling Condition Actien

1. SEND_DATA' not BUSY and not D_OUT DATA1' := SOURCE[VS]; put(CHANNEL1l, DATAl');
VS := VS + 1; D OUT := true

2. . START BUSY not BUSY BUSY := true

3. STOP_BUSY BUSY BUSY := false

4. REC_ACK' first (CHANNEL2) = ACK2' get (CHANNEL2, ACK2'); D _OUT := false

TABLE 2.ﬁ Transitions of Pl in the‘Image Protocol,

Event Name Enabling Condition Action

1. REC_DATA' first (CHANNEL1) = DATAl' get (CHANNEL1, DATA1'); SINK[VR] := DATAL';
VR := VR + 1; ACK DUE := true

2. START BUSY not BUSY BUSY := true

3. STOP_BUSY BUSY BUSY := false

4, SEND_ACK' not BUSY and ACK DUE put (CHANNEL1, ACK2'); ACK DUE := false

TABLE 3, Transitions of P, in the Image Protocol,

2

E3.2.8

