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Abstract

We propose the method of protocol projections
to facilitate the analysis of communication proto-
cols. Inour model, protocol entities are connected
by communication channels; messages sent by the
protocol entities through the channels may be lost,
duplicated and/or reordered. Protocols with sever-
al distinguishable functions are considered. Image
protocols are constructed separately for each pro-
tocol function. Image protocols are obtained by
aggregating protocol entity states, messages and
events using equivalence relations. As a result,
image protocols are typically much simpler than
the original protocol and can be analyzed more
easily using available techniques. We show that if
an image protocol is constructed to satisfy a well-
formed property, then it is faithful, in the sense
that its logical correctness properties are the
same as the logical correctness properties of the
projected function in the original protocol.

1. INTRODUCTION

A communication protocol defines the set of
rules that govern the exchange of messages between
protocol entities connected by communication
channels (real or virtual). A communication pro-
tocol can be viewed abstractly as a transition
system specified by the pair (G,T) where G is the
set of global states and T is a binary relation in
G called the set of transitions {1]). The global
state of such a model of interacting protocol -en-
tities is specified by a joint description of the
states of the protocol entities and communication
channels, State transitions correspond to the
occurrence of various events: an entity sending
or receiving messages, errors in channels, an
entity receiving signals from its user and timers,
etc.

Civen an initial state go, T determines the

reachability tree (space) R. R is a directed
graph with nodes being elements of G and arcs
being elements of 7. R contains all available in-
formation on logical correctness properties of the

protocol. Let Rs denote the set of reachable
states in G. Rs’ which may be obtained from R,

determines the safety (partial correctness)
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properties of the protocol.  Liveness properties,
however, require knowledge of the set of finite
paths in R.

There are three basic approaches to protocol
analysis [2]. They differ mainly in the kind of
questions that the analyst poses in the characteri-
zation of R.

(1) Reachability analysis
Starting from the initial state &5 in G, the

reachability tree R is traversed using T. Many
logical errors (e.g., state deadlocks, unspecified
receptions, etc.) that require only knowledge of
individual reachable states in R can be detected
by automated procedures [3]. This approach has
two difficulties. First, for any non-trivial pro-
tocol, R is extremely large (possibly infinite).
Second, many meaningful relationships among "state
variables", expressing desirable logical correct-
ness properties of the protocol, require an overall
view of R and these are usually not obvious from
simply traversing R.

(2)

Proofs of assertions

In this approach [4,5], one attempts to form—
ulate assertions describing desired logical correct-
ness properties (corresponding, hopefully, to the
service specifications of the protocol). Note that
assertions regarding safety properties are predi-
cates on G. Hence a safety assertion can be viewed
as a set J of states in G for which the predicate
is true. An assertion of a safety property is
invariant if the set J is a superset of Rs' Asser-

tions of liveness properties are predicates on the
paths in G. Liveness assertions in temporal logic
{51, for example, specify target sets in G for
trajectories of paths in R to hit, eventually,
recurrently, etc. In any case, the method of form-
ulating assertions, in effect, attempts to find
"bounds' for the reachability tree R instead of
traversing it. These bounds are in the form of
predicates. which are statements about the state
variables and their relationships.

(3) Hybrid approach

Both of the above analysis approaches may be
used together [1,6,7]. For many models, the state
space G can be written as a cross product of a set
Gc of control states and a set Gd of data states,

G = Gc X Gd' A reachability analysis in G

yields the reachable set of control states. For



each reachable control state, assertions may be
formulated as predicates on Gd'

The difficulty with both the second and third
approaches is that the formulation of assertions
stating some desired logical correctness proper-
ties requires considerable human ingenuity, and
cannot be easily automated. Given some assertions
(representing rigorous protocol service specifica-
tions), their verification may be facilitated by
various semi-automatic systems using theorem prov-
ing and symbolic execution techniques [7,8].

A relatively large protocol such as HDLC. [9]
cannot be easily analyzed using a technique based
upon any of the three basic approaches mentioned
above. Reachability analysis typically cannot be
employed due to. the many state: variables, some of .
which such. as sequence numbers can take on a large
number of values. Brand and Joyner [10] analyzed
one. version of HDLC using a system for symbolic
execution, Altogether 1347 theorems had to be
proved, 80% of which were proved automatically.
The rest was done manually. )

The protocol projection idea

The method of protocol projections is intended
to facilitate the analysis' of nontrivial protocols
that are too complex to be analyzed with one of the
basic approaches. We observe that real-life proto-
cols typically have several distinguishable func-
tions., For example, the HDLC protocol has at least
three functions: connection management, and one-way
data transfers in two directions. Wewould like to
ask questions regarding the logical correctness be-
havior of the protocol concerning these functions.
Instead of asking such questions all at the same
time, we may ask them with respect to one function
of the protocol at a time. The analysis approach is
to construct from the given protocol an image pro-
tocol for each of the functions that are of inter-
est to us. These functions will be referred to as
the projected functions. The image entity states,
messages, and events of an image protocol are ob-
tained from those of the original protocol using
certain equivalence relations. Entity states, mes-
sages and events that are equivalent with respect
to a projected function are aggregated in the image
protocol. As a result, image protocols are simpler
than the original protocol. Each image protocol can
thus be more easily analyzed using available means.
For example, an image protocol for the functionm of
one-way data transfer of HDLC will be of the same
complexity as Stenning's data transfer protocol
which has been successfully analyzed [4,5].
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Fig. 1. An illustration of the protocol projec-

tion idea.
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~'difficulty in protocol analysis.

The protocol projection idea can be illustra-
ted by the picture in Fig. 1. Consider a protocol
model with the state description (%,y,z) and the
set RS of reachable states. Suppose that we are

‘only interested in a safety assertion that in-

volves only the variables x and y. To determine
whether the assertion is true, it is sufficient

.for us to know the image of RS on the (x,y) plane.

Obviously, if RS is known, its image on the (x,y)

plane is readily available. However, the com-
plexity of R (and thus RS) is the basic source of

Thus, we would
like to take the original protocol and construct
from it an image protocol whose set of reachable
states duplicates the image of Rs on the (x,y)

plane.  In fact, we want to construct image pro-
tocols that are faithful -with respect to both
gafety and liveness properties. In general, -an’
image protocol is said to be faithful if its logi-
cal eorrectness propérties ‘are the same as' the
logical correctness propertles of the projected
function in the original protocol.

We. show in this paper that if an image pro-
tocol is constructed to satisfy a well-formed
property then it is faithful. Although the well-
formed property is.a sufficient condition, we
have found that it is the weakest condition that
one can have without any knowledge of the reach-
ability tree R of the protocol. (Note again that
we cannot assume any knowledge of R since its com- -
plexity is the basic source of our difficulties.)
We have found that image protocols for a version
of the HDLC protocol wittheSpect to the functions
of connection management and one-way data transfers
possess the well-formed property [11]. Thus the
well-formed property is not a very stringent re-
quirement. In fact, one can think of the well~
formed property as a criterion of well-structured
protocols.’ ' . ‘ :
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Fig. 2. Aﬁpliéatibn of profocbl projections. =

The application of protocol projections to the
analysis of protocols is illustrated in Fig. 2. Suppose
that we are given a protocol andoneor more asser-
tions that specify the correct behavior of some pro-
tocol function (service specification ‘of the func-
tion). Suppose also that a verifier is avatilable
for checking the validityof assertions for a given
protocol. Instead of feeding the assertion(s) and
the original protocol into the verifier, we first con-
struct a well-formed imageé protocol (which should
be much simpler than the original protocol). The
image protocol and assertions are then fed into the
verifier for evaluation. If we are interested in




several functions of the protocol, a different
image protocol is-generated for each function.

The protocol model and results in this paper:
extend the model and results previously presented
by us in [12]. We consider herein communication
channels that may lose, duplicate and reorder
messages.  Duplication and reordering of messages
are not considered in [12]. = !

The term "protocol projection™ has been pre—
viously used by Bochmann and Merlin [13] to des-
cribe an operation in their method for protocol
construction. Their basic idea of "projection
onto the relevant actions'" is similar to ours
herein, but the development and:application of -
the idea in their work and ours are different.

In Section 2 we shall first present our pro-
tocol model. In Section 3 we shall present defin-
itions of image entity states, image messages and
image events for a given projected function. In
Section 4 the image protocol for. a given function
is defined.. The well-formed property is intro-
duced. Our main results are stated in two
theorems. We shall illustrate the protocol model
with a small protocol example. A small example is
chosen for the sake of clarity, although the
method of protocol projections is intended for the
analysis of real-life protocols with multiple
functions.

2, THE PROTOCOL MODEL

Oﬁf model is an extension of the model of

Brand and Zafiropulo [14]. Let Pl and Py be two

protocol entities that communicate with each
other, VPl sands messages to P2 through channel

€, and P, sends messages to P

CZ' (See Fig. 3.)
a channel may be reordered, duplicated, and/or

lost (due to corruption by noise).

1 through channel

Messages transmitted through

" A channel from one entity to another consists
of all buffers and communication media between
the entities. - The channels are modeled as queues
of infinite storage capacities. (Most communica-
tion protocols have some measure of flow control.
As a result, their buffer requirements for
messages in transit between entities are bounded.
Hence, the assumption of infinite storage capacity
is equivalent to satisfying those buffer require-
ments.)

C
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Fig. 3. Components of the protocol model.

For i=1 and 2, let Si be the set of states of

P., o, be the initial state of P, in S,, and M, be
i’ "i i i i
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condition, hold.

the set of messages sent by Pi'

Let m, denote a sequence of messages represen-—

_‘i :
ting the state of channel Ci.‘ A message rec¢eption

event removes.the first message in the sequence.

A message send event appends a new message to the
end of the sequence. . The set of all possible mes-—
sage-sequences in Ci is a subset of

M = (kgi ) u 0

where @ denotes thé null sequence and Mk is the

i i
cartesian product of Mi with itself k times.

The state space of the global model of pro-
tocol, interaction is

G =5 XM XM, xS,

Each global state is a 4-tuple <sl, oy My, s2>

and m The initial

.._i
global state denoted by &0 will be assumed to be

where s,€8S, €M, for i=1 and 2.
i~ i —i

<0y» 9, 8, 0,> in the rest of this paper (without
any loss of generality).

The events in the protocol are either entity
events or channel events. An event can occur only
if certain conditions, denoted as its enabling
When an enabled event occurs, it
changes the state of one or more components of the
global state.

There are three types of entity events. We

describe these events for entity Pl.

(1) (s, r, m), where meM,, denotes an event of P,
£

1°

due to the sending of a message m by P. into

1

channel C.. This send event is enabled when

1

P1 is in state s.

Pl is in state r and m has been appended to

1* The
set of such send events is a subset of
S1 X Sl X Ml'

(s, r, m), where meM

After the event occurrence,

the end of the message sequence in C

23 denotes an event of P1
due to the reception of message m by Pl from

This receive event is enabled

(2)

channel CZ'

when P1 is in state 8 and m is the first

message in C2. After the event occurrence,

Pl is in state r and m has been deleted from
The set of such

x X .
168 M
(s, r, o), where o is a special symbol indica-
ting the absence of a message, denotes an
internal event of Pl that does not involve a

message. This

P1 is in state

P1 is in state r.

the message sequence in CZ'

receive events is a subset of §

(3

internal event is enabled when
s; after the event occurrence

Internal events model



events such as timeouts and interactioms he-
tween the entity and its local user. The
set of internal events is a subset of

S % 8 % {a}.

The three types of events for entity Pz are simi-

larly defined, but with the send events in

82 x S2 X MZ’ receive events in 32 X 82 X Ml’ and

internal events in 82 X S2 x {a}. Note that both

send and receive events affect the states of

channels as well as the entities involved. In-
ternal entity events do not affect the states of
channels. Let Ti denote- the set of events of Pi

for i = 1 and' 2.

Events occurring in the communication
channels will also cause transitions in the global
state space (in addition to the entity events des-—
cribed above). These events are described below
for channel Cl.

(1

El;k denotes a loss event (e.g., due to
th

noise) that deletes the k message in the

channel. This is enabled if C1 has at

least k messages.

(2) dl-k denotes a duplication event that in-
’

serts a duplicate of the kth message imme-

diately after it in Cl' This event is

enabled if Cl has at least k messages.

denotes a reordering event that takes

X1;%,n
the kth message in ¢, and inserts it imme-~

diately after the nth message. This event

is enabled if C1 has at least max(k,n)

messages.

Note that these events do not affect the states
of the entities.

Note that the enabling conditien of each
channel event does not depend upon the specific
message occupying the kth position. This implies
that if channel Ci loses (duplicates, repositions)
messages, then any message in Mi may be lost
(duplicated, repositioned).

The three types of events for channel C2 are
similarly defined. Let Ei denote the set of

events of C, for i = 1 and 2. Define

i

E : k,n=1,2,...}.

1= e Siie Xijkon

Note that k and n range from 1 to « in the defini~
tion of Ei’ which implies that no position of the

message sequence in Ci is exempt from an error
event.

The above assumptions about the behavior of
channels are summarized in the following axiom.

Channel error axiom.

If channel Ci loses

(duplicates, repositions) messages, then any
message in any message sequence in Ci may be lost
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(duplicated, repositioned).

The protocol between Pl is defined by
specifying,

(sl’ Szl 019 02’ Ml’ Mz’ Tl’ T2’ El’ Ez)'

Recall that T is the set of transitioms in
the global state space G. Define T = T, U T, U E,

U Ez. Each event in T is enabled over a set of

global states, and gives rise to a set of global

state transitions. If the protocol is at global

state g, and event t (in T) is enabled at g, then
t can take the protocol to another global state,

which we denote by t(g).

The transition system (G,T) defines the

global model of the interaction between Pl and PZ'

A path in G is defined to be a sequence of states

f 5 f » ...>f in G, such that there exist
0 1 n

events tl, tz, eey tn in T with ti(fi-l) = fi

for 1 < 1 < n. Recall that R denotes the reach-
ability tree from the initial state 8y A path in

R is a path in G that starts from the initial
global state (i.e. fo = go).

We shall make the assumption that if multiple

events in Pl’ PZ’ C1 and C2 occur concurrently,

then such an occurrence can be represented as a
sequence of occurrences of events in some arbi-
trary order. This is called the arbitration con-
dition [1]. In the present model, the arbitration
condition is acceptable if mutual exclusion is en-
forced among event occurrences in the same proto-
col entities i.e. the events of protocol entities
are implemented as indivisible (atomic) operations.

An example

We illustrate the above protocol model with
an example of a symmetric full-duplex data trans-
fer protocol to be described next. Since the
protocol is full-duplex, it has two basic distin-
guishable functions: ~one-way data transfer from

Pl to P2 and one-way data transfer from P2 to Pl'

For each direction, we have assumed that the
channels used in this example are FIFQ queues

(i.e. the event sets El and E2 are null).

Consider protocol entity Pl. P_ has an in-

1

finite array of data blocks, SOURCE[i] for
i=0,1,2,..., destined for P,, and an infinite
array, SINK[i] for i = 0,1,2,..., to store data
blocks received from PZ' SINK is initially

empty. Additionally, the following variables are
used in P1: VS and VR which are nonnegative

integers, and D OUT, ACK DUE and BUSY which are
Boolean variables. VS points to the data block in
SOURCE to be sent next. VR points to the position
in SINK to be next filled. D OUT is true if (and
only if) a data block has been sent but not yet
acknowledged. ACK DUE is true if (and only if) a
received data block has to be acknowledged. BUSY
can be viewed as an externally operated switch;
all events of Pl are inhibited if (and only if)

BUSY is true.



The state of Pl, at any time, is the value of
the 6-tuple
<vVs, D OUT, VR, ACK DUE, SINK, BUSY>.

Entity P2 has a similar set of variables, For con—

venience, we have omitted qualifiers (1 or 2) for
these variables and we shall omit them as long as

it is clear whether we are referring to Pl or P2.

The initial state of both entities is <0, False,
0, False, Empty, False>.

The messages used in the protocol are of the
following types: DATA, ACK and DATA&ACK. DATA
ranges over the set of data blocks that can be
sent in the protocol. ACK has a single value
corresponding to a positive acknowledgement. A
DATASACK type message contains an encoding of a
DATA type message and a positive acknowledgement,

The set of events that cause state changes in
Pl is presented in Table 1, Event types 1~-3
correspond to the sending of a message by Pl.
Event types 6-8 correspond to the reception of a
message by Pl' Event types 4 and 5 correspond to

internal events caused by an agent
locally connected to Pl (e.g., user, channel

controller). The enabling condition of an event
type defines the entity states and channel states
at which the events may take place. The action
of each event causes the entity to enter a new
state. DATAl and DATA2 are messages of type DATA.
DATA1&ACK1l and DATA28&ACK2 are messages of type
DATASACK. ACK1 and ACK2 are messages of type ACK,

Note that each event type in Table 1 actually
specifies a set of events in T as defined earlier.
For example, the event type SEND DATA defines the
set of events {<s, r, DATAL> : DATAL is of type
DATA, s and r are 6-tuples in S1 such that s

satisfies D_OUT = BUSY = false and r is the same
as s-except that D OUT is true and VS is incre-
mented by 1}.

In Table 1, the operation put(CHANNEL1,
DATA14ACK1l) encodes DATAl and ACKl into a single
message and appends it to the end of the sequence
of messages in CHANNELL. The operation
get (CHANNEL2, DATA2&ACK2) removes the message
DATA28ACK2 at the head of CHANNEL2 and decodes it
into two messages DATA2 and ACK2.

The events of P2 are identical to those
shown in Table 1 for Pl’ except that CHANNEL1l and

the messages DATAl and ACKl are interchanged with
CHANNEL2 and the messages DATA2 and ACK2.

The example protocol has two functions cor-
responding to data transfers in the two direc—
tions. The protocol is extremely simple but it
embodies two types of dependencies that one en-
counters when one attempts to decompose a proto~
col into functional components. First, the
variable BUSY is shared by both functions of the
protocol. Second, the messages DATA1&ACKl and
DATA2&ACK2 are also shared. Such dependencies
present major obstacles for protocol analysis
using a decomposition approach. However, the
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method of protocol projections will be used to
obtain a faithful image protocol for each func~
tion,

3. PROJECTIONS

Projections are achieved using equivalence
relations. The image of a protocol quantity is
obtained by aggregating all those protocol quan-
tities that are equivalent. Images of protocol
entity states, messages, global states,events and
paths are next defined and should be obtained in
the order shown below.

Projection of entity states

We start by partitioning the state space Si
of protocol entity Pi for 1 =1 and 2. Let Si
denote a partition of Si. Si is a collection of

mutually exclusive and collectively exhaustive
subsets of Si' These subsets will be referred to

as partition cells., The partition cells are de-
fined so that entity states within a partition
cell are equivalent with respect to the protocol
function for which an image protocol is desired.
The equivalence relation is determined by the
semantics of the projected function. The image of
a state seSi is defined as the partition cell in

1
51
to denote both the image and the partition cell
(ses' ¢ Si)’ We say that states s and r have the

that contains s. We shall use the notation s'

same image if and only if both s and r are in the
same partition cell (they are equivalent with
respect to the projected function). Furthermore,

each partition cell in Si will also be referred to

as an image state, and S'

1 constitutes the image

state space of Pi'

Projection of messages

The above equivalence relation is next ex—

tended to messages in MlAand M2. Two messages m

and n in Mi are said to be equivalent if and only

if they cause identical changes in both image

state spaces Si and Sé; in other words, m and n

are equivalent if and only if for any pair of states

(s',¥") in S! and in S!, m causes a change from
1 2

some state in s' to some state in r' whenever n
causes a change from some state in s' to some
state in r'. This equivalence relation induces

partitions of Ml and MZ' Each set of equivalent

messages in the partitions is said to be the image
of individual messages in the set, and will also
be referred to as an image message. Messages

that cause only changes internal to image entity

states in both Si and Sé are said to have the null

image. The image message sets are defined by
Mi = {n': m" is not null, meMi}, for i=1 and2,
Images of channel states

1
The image my

by taking the image of each element in m, and

of channel state m, is obtained



deleting the null images. (Implicit in this oper-
ation is the assumption that a message with a null
image has no effect on the projected function.
Note that this statement is not true when channels
with finite storage capacities are considered.)

Images of global states

The above equivalence relations can now be
used to define image global states. Two global
states g = <sl, my My, s2> and h = <r1, g, oy,
r,> in G are equivalent (g' = h') if and only if

| B t = ! = .
s, =1 and m o= for 1 = 1 and 2, The image

global state space, denoted by G', is {g':geG}.

Projection of entity events

The above equivalence relations are next ex-
tended to entity events. The image of an event
(s, r, m) is given by (s', r', m'), where the
image of o is still o for internal events. Re-
call that if the image message m' is null, then
by definition s' = r'. Consequently, if m' is

waull, the event (s,r,m) does not change the image
global state. Such an event is said to have a
null image. Similarly, an internal event (s,r,0)
with s' = r' has a null image. The set of image
events at Pi for 1 =1 and 2 is defined as

T = {(s',c',m') : (s',r',m") is not null,
(s,r,m) € Ti}.

Note that events in Ti associated with state

changes from the set s' to the set r' and messages
with the same non-null image are aggregated into a
single image event in T;; internal events associa-

ted with state changes from s' to r' are aggrega-
ted into a single image internal event
(s',r', a).

Note that internal events in Ti
changes within the same partition cell do not

contribute to Ti. Similarly, events in Ti in-

volving messages with the null image also do not
contribute to Ti.

causing state

Image of a sequence of global states

Given w, a sequence of global states in G,
its image w' is defined to be the sequence of image
global states in w, where consecutive elements with
the same image are aggregated into a single element
(in w'). ‘(Recall that a path in G is a sequence of
global states.)

4.

‘Qur objective. is to define a new protocol that
is faithful to a given projected function, i.e.,
such that its logical correctness properties are
the same as the logical correctness properties of
the projected function in the original protocol.
We call this protocol an image protocol. A
natural candidate is a protocol between entities

Pi and Pé, using channels Cl and C2. For i = 1 and
2: let Si be the entity state space of P!; let o{

be the initial state of Pi, and let Mi be the set

IMAGE PROTQCOL
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i
the image protocol is G'.

of messages sent by P The global state space of

Let Ti be the set of

entity events'for P;. Given the channel error
axiom, the events of channel Ci remain the same as
before.
The image protocol is completely specified by
(s?, sé, o]'_, oé, Mi, Mé, T]'_, Té, E, Ez)
Define T' = Ti U Té U El U EZ' As before, T'

gives rise to a set of transitions T' and G'. The
transition system (G', T') describes the inter-

action between the entities Pi and Pé. Let R' be

the reachability tree of the image protocol.
R; be the set of reachable states (R; = G")

Let

Theorem 1. (i) the image of every path in R
is a path in R'
s 14 . L}
(1) {g' : geRJ R

A proof of the above theorem is given in [15]
and is omitted here, We note that since invariant
assertions of the safety properties of the image
protocol correspond to supersets in G' that cover
R!, the second result in Theorem 1 implies that

such assertions are also valid in the original
protocol. However, it is possible that assertions
concerning the projected function are true in the
original protocol but are not true in the image
protocol. Also, we cannot draw any conclusions
about the liveness properties of the projected
function in the original protocol based upon the
image protocol.

We present next sufficient conditions for the

image protocol to be faithful to the projected
function.

Definition. For i = 1 and 2, for r' € Si, ac Si’

and image message m', r' is immediately

m'-reachable from a if:

(i) given that m' ¢ M; U {a}, for some n whose
image is m', there exists (a,b,n) € Ti for
some b £ r'; or

(ii) given that m' ¢ Mg (j#i), for each n whose
image is m', there exists (a,b,n) € Ti for
some b ¢ r'.

Definition. For i = 1 and 2, for r' ¢ Si, ace Si’

and image message m', r' is m'-reachable from a if:

(i) given that m' ¢ Mi U {0}, there is a sequence
of internal events with state changes inside

a' that will take Pi from a to another entity

state ¢ from which r' is immediately m'-

reachable; or

(ii) given that m' ¢ M& (j#i), for each n whose

image is m', there is a sequence of internal
events with state changes inside a' that will

take Pi from a to some ¢ such that there

exists (c,b,n) € Ti for some b € r'.




(In the protocol model of interest im this paper,

send events in Ti involving messages with null

images can be regarded as internal events for the
above definition.) Note from the construction of

T! and T!, that for every. (s',r',m') € T!, there
1 2 i

is a (a,b,n) s‘Ti such that a' "= s', b' = r', and
n' =m'.
Definition. Partitions Si and Sé of an image pro-

tocol are said to be well-formed if for any

(s', r', m') E T' U Té and for any a € s', ¢

' is

m —reachable from a.

Definition. Pattltions S! and S! of an image ﬁro-

1 2 :
tocol are said to be strongly well-formed.if for

any (s', r', m') € T! U T! and for any a € s', r'
1 2

is immediately m'-reachable from a.

Obviously, an image protocol that is strongly
well-formed must also be well-formed. In the

above definitions, the sets T£ contain both inter- |

face events and events involving messages. Also,
s' may be the same as r' if m' is the nonnull
image of a message.

Apathw=f > f = ... > fn.in G is

0 1

f0—>...—>fn+fn+l4>...+f R

if x is also a path in G. The extendability of
paths is defined similarly in G*.

extendable to x =

Theorem 2. GCiven a well-formed image proto-

tecol,

(i} for any path w in R and u' in
R*, if w'=u' and u' is exten
dable to v' then w is extend-
able to x such that x'=v';
(1) {g' : geRr}-=
A proof of the above theorem is given in [15].
Part (i} of Theorem 2 together with part (i) in
Theorem 1 imply that the liveness properties of a
well-formed image protocol are the same as the
liveness properties of the projected function in
the original protocol. Part (ii) of Theorem 2 im—
plies that the safety properties are also the same.
Hence a well-formed image protocol is faithful.

An image pratocol of the example

Reconsider the full-duplex data transfer ex-
ample introduced earlier in Section 2 and illustra-
ted in Table 1. The protocol has two functionms,
namely, data transfer in the two directions be-

tween Pl and P2. We shall next present an image

protocol of the function of data transfer from P
9¢ Observe that VR, ACK DUE and SINK in Pl’

and VS and D OUT in P2 are not needed for the Pl

to P2 data transfer. We let Si consist of all 3-

tuples of the form <VS, D_OUT, BUSY> and Sé con-

sist of all 4~tuples of the form <VR, ACK DUE,
SINK, BUSY>, In other words, the image of
<V§, D_OUT, VR, ACK DUE, SINK, BUSY> in S1 is

<VS, D_OUT, BUSY> in Sj.

1
to P
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Using the definition for images of messages
in Section 3, we find that the image message sets
are as follows: Mi is the set of messages of type

DATA, and M) 'consists of a single acknowledgement

message of iype ACK. In tables 2 and 3, DATAL' is
the image of DATAl and DATAlI&ACKL in Ml ACKl1 in
M1 hgs the null image and is not included in Mi.
ACK2' is the image of ACK2 and DATA2&ACKZ in MZ'
DATAZVin MZ has the null image and is not imcluded
in Mé;

Using the definitiom for image events of pro- -

tocol entities, the set of image events of Pi‘is

found and shown in Table 2, and the set of image
events of PE is found and shown in Table 3.

The image protocalyfor’the function of data

transfer from P1 to Pz is relatively simple and

the following invariant assertions of its logical
behavior have been proved.

Invarlant assertions

1. SIRK[i] = SOURCE[i] for 0 < i < VR,
2. VS > VR > Vs-1.
3. DATAL' in CHANNELL = (D OUT)
A (DATAR® = SOURCE[VS-1]) ,
s (exactly one DATAL' message in CHANNELL)
A (not ACK DUE) A (VS = VR + 1}
A{no ACK2' message in CHANNEL2).
4. ACK DUE => (D_OUT)
A (no DATAl' message in CHANNEL1)
, A (VS=VR) A (no ACK2' message in,CHANNELZ)
5. ACK2' in CHANNELZ = (D_OUT)
A (no DATAL' message in CHANNELL) A (VS=VR)
A(not ACK DUE)
" n(exactly one ACK2" message in CHANNEL2)
6. mnot D OUT => VS = VR ‘ ‘

It can be shown using the definition of well-
formed partitions that the image protocol defined
above is strongly well-formed. Therefore, the
above ‘invariant assertions also describe the logi-

cal behavior of data transfer from Pl to Pz‘in~thet

original protocol.

5. DISCUSSIONS

The method of protocol projections is intended
to facilitate the analysis of protocols with sever-
al distinguishable functions. Image protocols are
defined separately for each protocol function. We
have shown that if an image protocol is well-
formed, then it is. faithful, in the sense that its
logical correctness properties are the same as the
logical correctness properties of the projected
function in the original protocol.

Unlike a decomposition approach, the method
of protocol projections is not handicapped by



dependencies that exist between different func-
tional components of a protocol due to (1) the
sharing of variables, and (2) the encoding of
messages for the different functions into the
same message frames (packets). Such dependencies
are naturally accounted for in the definition of
image protocols, since all the entity states and
messages that are relevant to a function are in-
cluded in its image protocol. On the other hand,
since image protocols are obtained by the aggre-~
gation of equivalent states and messages, they
are typically much simpler than the original pro-
tocol, and can be more easily analyzed by avail-
able verification techniques.

Note that the well-formed property is a
sufficient condition for an image protocol to be
faithful. However, a careful examination of the
proof of Theorem 2 in [15] will show that this is
the weakest sufficient condition that one can
state without any knowledge of the reachability
tree R. We have found that image protocols are
well-formed for a version of the HDLC protocol
with respect to the functions of connection mana-
gement and one-way data transfers [11]. Thus, the
well-formed property is not as stringent as it may
appear.

One interpretation of a well-formed image
protocol is that the aggregation of states in §
to form Si and Sé,
loss of information for the projected function. If

Si and Sé were not well-formed, then we have made

the error of considering two entity states s and r
in §, as equivalent with respect to the projected

i

function, though in fact they are not. In this
respect, one can think of the well-formed property
as a criterion of well-structured protocols. That
is, a protocol would be considered well-structured,
if to each of the basic protocol functions, we can

define "maximal" partitions Si, Sé to obtain image

1

and'SZ, does not result in any

protocols,

We are investigating issues of time varia-
bles, implementation variables, channels with
finite storage capacities, and protocol synthesis,
as well as the development of efficient algorithms
for obtaining protocol images and checking the
well-formed property [1l]. The extension of the
theory herein to protocols involving more than two
protocol entities can be done in a straightforward
manner,
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Event Type
1. SEND_DATA

2. SEND_DATASACK

3. SEND_ACK

4. START_BUSY
5. STOP_BUSY

6. REC DATA

7. REC_DATASACK

8. REC_ACK

Event Type
1. SEND DATA'

2. START_BUSY
3. STOP_BUSY

4, REC_ACK'

Event Type
1. REC_DATA'

2. START_BUSY
3. STOP_BUSY

4. SEND_ACK'

Enabling Condition

not BUSY and not D _OUT

not BUSY and not D OUT and ACK DUE

not BUSY and ACK DUE

not BUSY
BUSY

first(CHANNEL2) = DATA2

first (CHANNEL2) = DATA2&ACK2

first (CHANNEL2) = ACK2

TABLE 1. Events of Entity Pl

Enabling Condition

not BUSY and not D_OUT

not BUSY
BUSY

first (CHANNEL2) = ACK2'

Action

DATAl := SQURCE[VS];
put (CHANNEL1, DATAl);
VS = VS + 1; D OUT := true

DATAl := SOURCE[VS];

put (CHANNEL1, DATA16ACK1);
VS := VS + 1; D OUT := true;
ACK DUE := false

put {CHANNEL1, ACKl);
ACK DUE := false

BUSY := itrue
BUSY := false

get (CHANNEL2, DATAZ);;
SINK[VR] == DATA2;
VR := VR # 1; AUK IDUE := true

get{CHANNEL2, DATA2&ACK2);
SINK[VR] := DATA2;

VR := VR + 1; ACK.DUE := true;
D _OUT := false

get (CHANNEL2, ACK2);
D _OUT := false

in the Protocol Example.

Action

DATA1' := SOURCE[VS];

put (CHANNEL1, DATAl');

VS := Vs + 1; D _OUT := true
BUSY := true

BUSY := false

get (CHANNEL2, ACK2');
D OUT := false

TABLE 2. Events of P! in the Image Protocol.

1

Enabling Condition

first (CHANNEL1) = DATAL'

not BUSY
BUSY

not BUSY and ACK DUE

Action
get (CHANNEL1, DATAl');
SINK[VR] := DATAl';

VR := VR + 1; ACK DUE := true
BUSY := true

BUSY := false

put (CHANNEL1, ACK2');
ACK DUE := false

TABLE 3. Events of P! in the Image Protocol

2
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