FORMAL DESCRIPTION TECHNIQUES, IV

KR. Parker and G.A. Rose

Elsevier Science Publishers B.V. (North-Holland) 165
© 1992 IFIP. All rights reserved.

Understanding Interfaces*

Simon S. Lam A. Udaya Shankar
Department of Computer Sciences Department of Computer Science and
The University of Texas at Austin Institute for Advanced Computer Studies
Austin, Texas 78712 University of Maryland

College Park, Maryland 20742

Abstract

The concept of layering has been applied to the design and implementation of computer net-
work protocols, operating systems, and other large complex systems. However, to reap the
benefits of a layered architecture—i.e., to be able to design, implement, and modify each
module in a layered system individually—a composition theorem such as one we formulated
and proved recently is necessary. To arrive at the theorem, we explore the semantics of
interfaces. In particular, we investigate how modules should be designed to satisfy interfaces
as a service provider and as a service consumer. The requirements are then presented for-
mally, as well as our composition theorem for a general model of layered systems.

1. Introduction

Consider the design of a system to provide services through a user interface U. Instead of
designing a monolithic system to provide these services, the system design may be decom-
posed into components that are implemented separately. For example, Figure 1 shows a sys-
tem design with two modules, M and N, interacting across interface L, and with users of the
system interacting with M across interface U. The intention of the design is that N provides
the services of interface L (formally, N offers L), and M provides the services of U while
utilizing the services of L (formally, M using L offers U).

The design in Figure 1 can be used only if the following claim can be established: M
while interacting with N does indeed provide the services of U to users of the system. The
above claim can be established in general by proving the following composition theorem: If
M using L offers U, and N offers L, then the composite system consisting of M interacting
with N offers U. To prove the theorem, we need to understand how to specify interfaces,

* The work of Simon S. Lam was supported by National Science Foundation grant no. NCR-9004464. The
work of A. Udaya Shankar was supported by National Science Foundation grant no. NCR-8904590.

166

and how modules should be designed to satisfy interfaces as a service provider and as a ser-
vice consumer. Specifically, we need formal definitions for interface, M offers I, and M
using L offers U, where M denotes a moduie and !, U, L denote interfaces.

We emphasize that these formal definitions are needed not only for the composition
theorem but also for practical applications, i.e., for the designer of a module to check that the
module does satisfy each one of its interfaces. With the composition theorem, we arc
assured that each module in Figure 1 can be designed, implemented, and modified individu-
ally. The internals of M can change so long as M satisfies L as a service consumer and
satisfies U as a service provider. Similarly, the internals of N can change so long as N
satisfies L as a service provider. This we consider to be the key benefit of decomposition.

users

interface U
module M

interface L
module N

Figure 1. A system of two interacting modules.

Figure 1 is a simple illustration of the concept of layering (described by Dijkstra more
than two decades ago [4]). Layering has been applied to the design and implementation of
computer network protocols, operating systems, and other large complex systems. It is
surprising that a composition theorem applicable to layered systems has not been formulated
and proved. (In fact, to our knowledge, it has not even been formally stated by designers of
layered systems.) Without formal semantics for the notions of interface, using an interface,
and offering an interface, and a composition theorem based upon the semantics, we cannot
get the key benefit of decomposing a system into modules or layers—because there are no
applicable guidelines for designing each module to satisfy. its interfaces.

The main result of this paper is a composition theorem for a general model of layered
systems. Specifically, a layered system is organized as a stack of layers, with a finite number
of modules in each layer. Each module offers a set of interfaces. Each module may use a set
of interfaces offered by other modules, each of which resides in a lower layer of the stack.
More precisely, a system can be represented by a directed acyclic graph where each node is a
module, and each arc, say an arc from node M to node N, represents an interface whose ser-
vice provider is N and whose service consumer is M. (Conversely, any directed acyclic
graph represents a layered system in our model.)

167

For computer networks, we note that each module in our model represents a protocol
(e.g., data link, transport, routing) rather than a protocol entity (i.e., a process). When there
are-several modules in a layer (e.g., the transport layer), they represent different protocols
(e.g., TCP, TP4 and UDP).

The balance of this paper is organized as follows. In Section 2, we explore informally
the semantics of interfaces, subsequently arriving at the concept of a ‘‘two-sided”’ interface.
The requirements for a module to satisfy such an interface as a service consumer and for a
module to satisfy it as a service provider are discussed. In Section 3 we present formal
definitions. Our composition theorem is presented in Section 4. The concept of module
implementation and theorems relevant to this concept are presented in-Section 5.

2, Exploring Interface Semantics

A physical interface is where a module and its environment interact. For different kinds of
physical interfaces, such interactions take on a variety of physical forms. For a vending
machine, an inferaction may be the insertion of a coin. For a workstation, an interaction may
be the striking of a key on a keyboard. For a communication protocol, an interaction may be
the passing of a set of parameter values. For a hardware circuit, an interaction may be the
changing of voltages on certain pins.

Semantically, we model interface interactions between a module and its environment as
discrete event occurrences. An interface event occurs only when both the module and
environment are simultaneously. executing the event (simultaneous participatioh). Such an
occurrence is observable from either side of the interface. Thus an interface may be
specified by a set of sequences of interface events; each such sequence defines an allowed
sequence of interactions between the module and its environment. This semantic view of an
interface is akin to the specification of a process in CCS [15], CSP [5] and Lotos [2], or the
specification of an 1/O automaton [14].

Let S denote the specification of a module M. Most definitions of M satisfies S in the
literature have this informal meaning [5,6,13,14]: If every possible observation of M is
described by S, then M satisfies S . (Specific definitions differ in many ways: (1) in whether
interface events or states are observable, (2) in whether observations are finite or infinite
sequences, (3) in the formalism for specifying these sequences, and (4) in the conditions
under which interface events can occur.)

A straightforward way to define interface semantics is to use the following paradigm:
every module is viewed by an observer situated in its environment. From the viewpoint of
the observer, the module is completely enclosed by a physical interface that is semantically
specified by S, a set of sequences of interface events. Informally, the module satisfies its
interface if and only if every possible observation of the module is described by S .

168

In what follows, we first illustrate this paradigm with an example. We then discuss why
it is inadequate for achieving our goal stated in Section 1—namely, to find conditions
sufficient for designing, implementing, and modifying each module in a layered system indi-
vidually; in particular, each module can be designed and implemented by a different person
or team. Clearly, these conditions should be as weak as possible for them to be useful in
practice.

Observer as paradigm
Consider the design of a vending machine that is made up of two modules, a control module
and a storage module. (See Figure 2.) The control module has the following specification
(in CSP notation [5]):

CONT =(coin — request — response — choc — CONT)
The intent of the designer can be stated as follows. A customer comes up to the vending
machine and inserts a coin. Having accepted the coin, the control module sends a request to
the storage module. Having got the request, the storage module responds by releasing a cho-
colate to the control module, which then dispenses the chocolate to the outside of the vend-
ing machine. The storage module has the following specification:

STOR =(request — response — STOR)

CONT

module M

__STOR

module N

Figure 2. External views as specifications.

Let VM denote the parallel composition of CONT and STOR with interactions between the
two modules hidden.

169

VM =(CONT | ISTOR Nrequest, response }
=(coin = choc > VM)

VM represents the allowed interaction sequences between the vending machine and its
environment. Note that these allowed interaction sequences (as well as those between the
control and storage modules) are not explicitly specified. Instead, they are derived from
CONT and STOR. (This approach of system design is characterized as compositional or
bottom-up.)

Suppose we have shown that VM satisfies the intended property for a vending machine.
Let M denote a module that implements CONT, and N a module that implements STOR.
(See Figure 2.) We can then use observational equivalence, defined by Milner [15], to be the
satisfies relation between a module and its specification to arrive at a composition
theorem—namely, if M is observationally equivalent to CONT, and N is observationally
equivalent to STOR, then we claim that the composite system consisting of M interacting
with N is observationally equivalent to VM.

Actually, various weaker notions of equivalence can be used instead of observational
equivalence. In fact, to have a useful composition theorem, the satisfies relation between a
module P and its specification S should be much weaker. Specifically, consider an imple-
mentation relation from [2,3], stated informally as follows:

P is an implementation of S iff
(I1) P can only execute events that § can execute, and
(I2) P can only refuse events that S can refuse.

For the vending machine example, we claim that if M is an implementation of CONT and N
isan implementation of STOR, then the composite system consisting of M interacting with N
is an implementation of VM. However, for reasons given below, the requirements I1 and 12
are still too strong for achieving our goal.

Events controlled by environment

Consider module M in Figure 2, which implements CONT. Module M participates in the
execution of four events, coin, choc, request, and response. In applying the implementation
relation (or observational equivalence) to M and CONT, all four events are treated in the
same way. However, there is clearly an intuitive distinction between the events {choc,
request }, for which module M has control of, and the events {coin, response }, for which
module M does not have control of.

Consider an occurrence of the event coin, requiring insertion of a coin by a customer in
the environment of the vending machine, and participation by module M to accept the coin.
Note that the initiative to insert a coin can only be taken by a customer in the environment;
hence, the environment has control of the coin event.

170

In addition to initiative, control of an event also includes a notion of responsibility, €-8.
the coin inserted by the customer is not & <pad’’ coin. The specification CONT above is
unsatisfactory because it requires module M to have perfect discrimination of good and bad
coins—a highly unreasonable premise—in the sense that in order for a module and CONT 10
satisfy the implementation relation, the module must accept only good coins and refuse all
bad ones.

A more reasonable specification for the module is that it accepts only objects of a cer-
tain size, shape and weight. For sucha module, a bad coin can be one of these cases:

. It is an object larger than the specified size of the coin slot. When a customer tries to
insert the object, it is blocked (refused).

. It is an object that meets the size specification but not the shape oOf weight
specification. When a customer inserts the object, it is accepted. Having accepted the
object (€.g., 8 piece of scrap metal), module M breaks down or malfunctions in an
arbitrary manner. (Can we blame the module or the designer of the module?)

. It is an object that meets the specification of size, shape and weight (e.g., 2 counterfeit
coin). When a customer inserts it, it is accepted and module M dispenses 2 chocolate.

In each of the three cases, W believe that the behavior of module M is satisfactory and the
module should not be considered as failing its specification. However, such would be the
conclusion if the implementation relation were the criterion for M 1O satisfy CONT; hence it
is toO strong.

The reader, one who is familiar with CSP (or Lotos), might disagree with this conclu-
sion. Clearly, we can replace the event coin by three events, big.object, bad.object , and
good.object with good.object representing both genuine and counterfeit coins. We can then
rewrite the specification CONT as described above for the three cases. In fact, we can and
should rewrite CONT to describe what module M must do for every possible sequence of
objects that a customer may try to insert.

Indeed, CSP (or Lotos) is sufficiently expressive for specifying how a module responds
to all kinds of inputs from its environment. The moral of the story here, however, is not
about expressiveness, but something else, namely: In designing a module, we have informa-
tion that certain events ar¢ controlled by the environment of the module. Such information is
not utilized in the definition of the implementation relation. Consequently, unless the
module’s specification (i.e., CONT in the example) is designed to explicitly make use of this
information and, mOTEOVeT, all possible input sequences from the environment are accounted
for in the specification, the implementation relation is to0 strong.

Similarly, consider the event response that is under the control of module N but not
under the contro} of module M. Tf module M fails to dispense 2 chocolate because module N
does not respond to a request from M, or the response of module N is bad, then module M
should not be considered as failing its specification.

171

In Section 3 below, when we define an interface, each event is"identified to be under the
control of the service provider or consumer of the interface. Intuitively, we employ the fol-
lowing approach: for every event under the control of the consumer, it is the responsibility of
the consumer, rather than the provider, to ensure that the event is not a bad input. In our
definitions of M offers I and M using L offers U, we make use of information that certain
tvents are controlled by the environment of M to arrive at “‘safety constraints’’ that are simi-
lar to, but weaker than, I and I2. With our definitions, there is no need to explicitly account
for all possible input sequences when specifying the interfaces of a module.

Designing module vs. testing black box

In testing an existing module—specifically, one whose internal states are either unobservable
or 100 complicated to comprehend—the tester is the outside observer and the module is
regarded as a black box. In designing a module to satisty its interfaces, however, there is no
need to consider the module as a black box. In fact, we do not, for the following reason.

Consider a vending machine and a tester. The tester can initiate interaction with the
vending machine by inserting a coin or some object, However, it cannot initiate interaction
with the vending machine in the choc event. Having inserted a coin, the tester can only wait
to interact in the choc event. Suppose an indefinite duration of time has elapsed and there is
1o sign of chocolate. The tester cannot conclude that the vending machine has refused the
choc event (because real time is not part of the interface semantics).

In designing a module, there is no need to view it as a black box. In our approach, the
designer of a module is the one who demonstrates that the module satisfies its interface as a
service provider, and the designer knows the module’s internal behaviors. (See ‘‘progress
constraints”” in definitions of M offers I and M using L offers U in Section 3.)

Decompositional vs, compositional approach

In general, let § denote a system specification, and {S;} specifications of individual
modules in the system. In a compositional approach, {S;} are specified first and $ is derived
from them. If S does not have the intended system property, the module specifications { S:}
are redesigned. On the other hand, in a decompositional or top-down approach, the system
specification S is first given and module specifications {S;} are derived from .

When there are constraints on how a system should be decomposed into processes, as in
the design of many distributed algorithms—e.g., one process in each node of a network per-
forming a parallel computation—a compositional approach is appropriate. On the other hand,
to design a system beginning with no constraint other than S, a decompositional approach
provides the maximum freedom of choice on how to decompose the system.

172

Decomposing a system specification § into a set {S;} of module specifications is a
difficult task in general. For a layered system, however, the task is facilitated by the
hierarchical provider-consumer relationships between pairs of modules in the system. In this
case, S corresponds to the ‘topmost’’ interface offered to the users of the system. Other
interfaces in the system can be derived from § by a topdown approach as follows. Consider
any interface U in the system. To design a module that offers the services of U, we may
assume that certain services are offered by other modules through a set of interfaces {L;}. In
this manner, interfaces offered by other modules in lower layers of the system are specified.

Contract as paradigm

Our interface semantics differs in several ways from those based upon the paradigm of an
external observer [2,5,14,15]. First, each module in a system is specified by a set of inter-
faces rather than a single external view (e.g., module M specified by interfaces U and L in
Figure 1). We think of an interface to be like a legal contract between two modules in the
system (e.g., interface L in Figure 1), or between a module and the environment of the sys-
tem (e.g., interface U in Figure 1).

Each interface has a service provider on one side and a service consumer on the other.
The allowed interaction sequences between the service provider and consumer are specified
explicitly. Specifically, let I denote an interface between M and N. (See Figure 3.) In our
design approach, I is first specified to be a set of allowed interaction sequences between M
and N. Specifications of M and N are to be derived from /.

interface /

Figure 3. Interface I constraining behaviors of both M and N.

Note that the same set of interaction sequences constrains the behaviors of both M and
N. This is like a legal contract between two parties: the same document contains the entire
bilateral agreement, and is interpreted by each party to determine its privileges and obliga-
tions. For example, consider a loan agreement between a debtor and a creditor. The identity
of either the debtor or the creditor may change (e.g., a house is sold and its mortgage
assumed by the buyer). The loan agreement remains in force so long as it has been honored
by its debtor and creditor, whose actual identities over time might have changed.

173

We refer to interface / illustrated in Figure 3 as a rwo-sided interface because, like a
bilateral agreement, / encodes all information that the designers of M and N need to know
and the same 7 is to be satisfied by both M and N —albeit the obligations of service provider
and service consumer are not exactly the same.

Each event in interface / is explicitly defined to be under the control of M or N. This
additional semantic information gives rise to definitions—of what it means for a service pro-
vider and a service consumer to satisfy an interface—that are adequate for our goal, i.e.,
design, implement and modify modules individually. (See Section 3 for details.)

The notion of control is not new (e.g., see {13]). In the theory of I/O automata [14], the
events of an /O automaton are partitioned into events under its control and events controlled
by the automaton’s environment. Each I/O automaton, however, is required to be input-
enabled, i.e., every input event, controlled by its environment, must be enabled to occur in
every state of the automaton. With this requirement, the class of interfaces that can be
specified using I/O automata is restricted. For example, a module with a finite input buffer
such that inputs causing overflow are refused cannot be specified. A consequence of the res-
triction is that it is not always possible to use an I/O automaton to encode all the semantic
information that a designer wants to include in a specification, e.g., the input buffer size.
Such information has to be supplied separately by other means. (The theory of I/O automata
differs from ours in other ways also. For example, the specification of an I/O automaton is
defined to be its external view as seen by an outside observer; specifically, the satisfies rela-
tion is the usual one, i.e., an automaton M satisfies its specification S if every possible obser-
vation of M is described by S.)

Obligations of service provider and consumer

Consider Figure 3. Since interface events are partitioned into events under the control of M
and events under the control of N, in general interface / can be satisfied only if M and N
cooperate with each other in some manner. In order to design each module individually,
terms of the required cooperation must be completely encoded in /.

For illustration, we consider some special cases, i.e., the terms of cooperation are in the
form of a set of guarantees a module must ensure given that the other module satisfies a set
of assumptions, where assumptions and guarantees are assertions of safety or progress. (For
this section, assumptions and guarantees are stated informally and only very simple ones are
illustrated. See Part IT of our report {11] for a general and more rigorous presentation of
safety and progress assertions in our method.)

A safety assertion is a statement that something bad never occurs. An example of some
safety assumptions and guarantees for M and N is shown below.

(S1) M never executes ¢; = N never executes e,

174

(82) N never executes ez = M never executes €

(The consequent of S1 is a guarantee of N given an assumption about M, which is the
antecedent of S1. Similarly, the consequent of S2 is a guarantee of M given an assumption
about N, which is the antecedent of §2.)

A progress assertion is a statement that something good eventually occurs. An example
of some progress assumptions and guarantees for M and N is shown below.

(P1) M eventually executes e3 = N eventually executes €4
(P2) N eventually executes eq4 = M eventually executes e3

Suppose M and N are designed individually and it has been proved that N satisfies S1
and P1 and M satisfies S2 and P2. To infer that the composite system of M and N satisfies
the guarantees—more generally, to prove a composition theorem-—we must take care that
circular reasoning is not used. The possibility of circular reasoning in composing processcs
has been addressed by other researchers. For processes that communicate by CSP primitives,
Misra and Chandy gave a proof rule for assumptions and guarantees that are restricted to
safety properties [16]. Using different models, Pnueli [17] presented a proof rule and Abadi
and Lamport [1] presented a composition principle that are more general in that the class of
assertions includes progress properties (albeit the class is still restricted).

In summary, we know the following: Safety assumptions and guarantees can be com-
posed without circular reasoning. (For S1 and S2, this is intuitively evident.) But with pro-
gress assumptions and guarantees, such as P1 and P2, circular reasoning is involved.

In formulating our composition theorem below, circular reasoning is avoided in a
straightforward manner. Specifically, each interface in our model is between a service pro-
vider and consumer. Therefore, we need only assert that the provider eventually performs a
service given that the consumer eventually does something good. (E.g., for a vending
machine, if eventually a customer inserts a coin, then the vending machine eventually
dispenses a chocolate.) Thus, if N is the service provider and M the service consumer of
interface 7 in Figure 3, only P1 is meaningful (but not P2). Since our composition theorem
applies to layered systems that are modeled by a set of modules organized as the nodes of a
directed acyclic graph, circular reasoning is avoided.

Our implements relation

In the next section, we formally define M offers I and M using L offer U, where M denotes a
module and 7, U and L interfaces. These definitions embody our semantics for a module
satisfying an interface as a service provider and as a service consumer. Each module in a
system can be designed separately given all of the interfaces offered and used by the module,
However, having derived a module, say M, that satisfies all of the given interfaces, it is use-
ful to have an implements relation to facilitate additional refinements of M in the manner

175

described below.

Suppose M has been designed such that M offers / and M | using L offers U for arbi-
trary interfaces /, U and L. Suppose M is derived from M, by a series of refinements. The
implements relation should be defined such that it is as weak as possible and allows the fol-
lowing to be inferred: If M implements M ;, then M, offers / and M, using L offers U.

Consider Figure 3. Having derived modules M and N, that cooperate to satisfy /, our
implements relation is then used in the same way as the implementation relation [2,3]
described above. It is however a weaker relation because interface events are under the con-
trol of either the service provider or consumer. Its definition, given in Section 5 below, is
similar to that of M offers I.

3. Definitions

We first define some notation for sequences. A sequence over E, where E is a set, means a

(finite or infinite) sequence (eq, €1, - - -), where ;€ E foralli. A seduence over alternating
E and F, where E and F are sets, means a sequence {(eo, fo. ¢1,f1, " -), where ¢;e E and
fieF foralli.

Definition. An interface / is defined by:
* Events(I), a set of events that is the union of two disjoint sets,
Inputs (I'), a set of input events, and
Quutputs (1), a set of output events.
* AllowedEventSeqs (I'), a set of sequences over Events (1), each of which is referred to

as an allowed event sequence of /.

By definition, output events of / are under the control of the service provider of /, and

input events of I are under the control of the service consumer (user) of 1. For interface 7,
define

Saf eEventSeqs (I) = {w: w is a finite prefix of an allowed event sequence of I }

which includes the empty sequence.

Definition. A state transition system 4 is defined by:
e States(A), a set of states.
* Initial (A), a subset of States (A), referred to as initial states.
* Events (A), a set of events.

* Transitionss(e), a subset of States (A)xStates (A), for every e e Events (4). Each ele-
ment of Transitionss(e) is an ordered pair of states referred to as a transition of e.

176

A behavior of A is a sequence o=(sg, €0, 51, €1, ***) OVEr alternating States (A) and
Events(A) such that soe Initial(A) and (s;, Sia) is a transition of ¢ for all i. A finite
sequence ¢ over alternating States(A) and Events (A) may end in a state or an event. A finite
behavior, on the other hand, ends in a state by definition. The set of behaviors of A is
denoted by Behaviors (A). The set of finite behaviors of A is denoted by FiniteBehaviors (A).

For ¢ e Events (A), let enableds(e) = {s: for some state ¢, (s, t) € Transitionss(e)}. An
event e is said to be enabled in a state s of A iff s € enableda(e). An event ¢ is said to be
disabled in a state s of A iff s ¢ enabled4(e).

Notation. Let ¢ be a sequence over a set F. For any set E, image (0, E) is the sequence
over E obtained from o by deleting all elements that are not in E.

Definition. A module M is defined by:
« Events (M), a set of events that is the union of three disjoint sets:
Inputs (M), a set of input events,
Outputs (M), a set of output events, and
Internals (M), a set of internal events.
« sts(M), a state transition system with Events (sts (M))=Events M).
. Fairness requirements of M, a finite collecion of subsets of

Outputs (M)L Internals (M). Each subset is referred to as a fairness requirement of
M.

By definition, a module has control of its internal and output events, but its input events
are under the control of its environment.

Convention. For readability, the notation sts M) is abbreviated to M wherever such
abbreviation causes no ambiguity, e.g., States (slv' (M)) is abbreviated to States(M),
enabledys (e) is abbreviated to enabledy (e), etc.

Let F be a fairness requirement of module M. F is said to be enabled in a state s of M
iff, for some ¢ € F, e is enabled ins. F is said to be disabled in state s iff F is not enabled
in s. In a behavior 6=(so, €0, S 1, €1, - *»Sj» €, - -), wWe say that F occurs in state s; iff
eje F. An infinite behavior ¢ of M satisties F iff F occurs infinitely often or is disabled
infinitely often in states of ©.

For module M, a behavior o is an allowed behavior iff for every fairness requirement F
of M: o is finite and F is not enabled in its last state, or o is infinite and satisfies F. Let
AllowedBehaviors (M) denote the set of allowed behaviors of M.

We are now in a position to formalize the notion of @ module offers an interface. Con-
sider an interface /. Let o be a sequence over a set of states and events.

177

Definition. ¢ is allowed wrt I iff image (, Events (I)) € AllowedEventSegs (I).

Definition. o is safe wrt / iff one of the following holds:
* o s finite and image (G, Events (I)) € Saf eEventSegs (I).

+ oisinfinite and every finite prefix of o is safe wrt /.

In what follows, we use last () to denote the last state in a finite behavior ¢, and @ to denote
concatenation of two sequences. (For sequences consisting of a single element, say e, the
sequence notation <e > is abbreviated to e for simplicity.)

Definition. Given a module M and an interface I, M offers I iff the following condi-
tions hold:

* Naming constraints:
Inputs (M }=Inputs (I') and Outputs (M y=Outputs (I).
» Safety constraints:
For all 6 e FiniteBehaviors (M), if ¢ is safe wrt I, then

Ve € Outputs (M): last(0) € enabledy(e) = o@e is safe wrt 1, and
Ve € Inputs M): o@e is safe wrt1 = last () € enabledy(e).

* Progress constraints:
For all 6 e AllowedBehaviors (M), if 6 is safe wrt I, then o is allowed wrt /.

Note that module M is required to satisfy interface I only if its environment satisfies the
safety requirements of /. Specifically, for any finite behavior that is not safe wrt 7, the two
Safety constraints are satisfied trivially; for ahy allowed behavior of M that is not safe wrt 7,
the Progress constraint is satisfied trivially. That is, as soon as the environment of M
violates some safety requirement of 7, module M can behave arbitrarily and still satisfy the
definition of M offers I.

The two Safety constraints can be stated informally as follows: First, whenever an out-
put event of M is enabled to occur, the event’s occurrence would be safe, i.e., if the event
occurs next, the resulting sequence of interface event occurrences is a prefix of an allowed
event sequence of /. Second, whenever an input event of M (controlled by its environment)
can occur safely, M does not block the event’s occurrence.

For an input event of M whose occurrence would be unsafe, module M has a choice: it
may block the event’s occurrence or let it occur.

A module M with upper interface U and lower interface L is illustrated in Figure 1.
The environment of M consists of the user of U and the module that offers L. In what fol-
lows, we use ‘o is safe wrt U and L’’ to mean ‘‘c is safe wrt U and o is safe wrt L.”’

178

Definition. Given module M and interfaces U and L, M using L offers U iff the follow-
ing conditions hold:
« Naming constraints:
Events (U) N Events (L=,
Inputs (M y=Inputs (U) U Outputs (L), and
Outputs (M y=Outputs (U) Inputs (€L).
« Safety constraints:
For all 6 € FiniteBehaviors M), if o is safe wrt U and L, then
Ve € Outputs(M): last(o) € enabledy(e) = o@e is safe wrt U and L, and
Ve € Inputs(M): o@e is safe wrt U and L = last(c) € enabledy(e).

« Progress constraints:
For all e AllowedBehaviors (M), if © is safe wrt U and L, then
cis allowed wit L = ois allow'é‘dWrtU.v)

The definition of M using L offers U is similar to the definition of M offers I in most
respects. The main difference between the two definitions is in the Progress constraints. For
module M using interface L, it is required to satisfy the progress requirements of interface U
only if the module that offers L satisfies the progress requirements of L.

Note that M using L offers U reduces to M offers U when L is a null interface—i.e.,
Events (L) is empty, and AllowedEventSeqs (L) has the null sequence <> as its only element.

4. Composition Theorem

We first define how modules are composed.

Definition. A set of modules {M;: j € J} is compatible iff Vj, k€ J, j#k:
Internals (M) "\ Events (M =D, and Ouputs (M) N Qutputs M)=D.

Convention. For any set of modules with distinct names, {M;: j € J},itis assumed that
Internals (M) N Events M=, forall j,kelJ, Jk.

The above convention can be ensured by, for instance, including the name of each
module as part of the name of each of its internal events. Thus to check that a set of modules
M jel]is compatible, it suffices to check that their output event sets are pairwise dis-
joint.

Notation. For a set of modules {M;: j € J}, each state of their composition is a tuple
s =(t;: j € J), where t; e States (M}). We use image (s, Mj) to denote t;.

(Note that the ordering of module states in the tuple is arbitrary. In fact, the state of the

composite system can be represented by an unordered tuple provided that, for alli,jel,
States (M) N States (M=, This requirement can be ensured by including the name of each

179

module as part of its state.)

Definition. Given a compatible set of modules {M;: j e J}, their composition is a
module M defined as follows:

* Events (M) defined by:
Internals (M) = U Internals M1 U [(\J Outputs M N Inputs M 'iD]
Jj€J JE&J j€J

Outputs (M) = [I_kEJJOutputs (1% j)]f[jkejllnputs M)

Inputs (M) = [jkEJJI"P"“ (¢4 j)]—[j\é)! Outputs (M D1 -

* sts(M) defined by:
States M) = T1States M)
jeJ
Initial (M) = T]Initial (M)
jeJ
Transitionsy (e), for all e € Events (M), defined by: (s,1)e Transitionsy (e) iff,
Viel,
if e € Events (M ;) then (image (s, M i), image (t , M i) e Transitionij(e), and
if e ¢ Events(M ;) then image (s, M j)=image (¢, M;).

* Fairness requirements of M = [\ Fairness requirements of M;].
JjEJ

Definition. A set of interfaces {1;: j e J} is disjoint iff Vi keld, j#k,
Events (I;) N Events (I,)=0.
Theorem 1. Let modules, M and N , and disjoint interfaces, U and L, satisfy the fol-
lowing:
* M using L offers U
* NoffersL

Then, M and N are compatible and their composition offers U,

Since the composition of any two compatible modules is also a module, Theorem 1 is

easily extended to the following theorem for an arbitrary number of modules organized in a
linear hierarchy.

180

Theorem 2. Let My, I, M3, 13, -+, Mp,1n be a finite sequence: over alternating
modules and interfaces, such that the following hold:

« Il -+, andl, are disjoint interfaces.
o M,offersi;. s
. TForj=2,---,n,M;using I offers /;.

Then, modules {My, -+, M,]} are compatible and their composition offers I,.

Theorem 2 can be used for the design and specification of layered systems by consider-
ing each system layer as a module in our theory. For some complex systems, however, itis
desirable to consider each system layer as a set of modules. For example, the transport layer
of a computer network may consist of a set of different transport protocols (TCP, TP4, UDP,
etc.).

We next formulate and prove a composition theorem for a general model of layered
systems.

Definition. The composition of a set of disjoint interfaces, {I;: j e J}, is an interface [
defined by:

e Events(l) that is the union of

1 D=l 1;), and

nputs)—ij nputs (Ij), an

Quiputs (I y= UJOutputs a;
JE

o AllowedEventSeqs (I)= {w: w is a sequence over Events (I) such that
Vj e J:image(w, Events (I;)) € AllowedEventSegs (1)}

‘ Definition. Given a set (U1, U2, -~ Un, L1, Lo, -+ ,Lm} of disjoint interfaces, M
using Ly,L2, " Lm offersU, Uz, -+, Un iff M using the composition of {L1,L2, =+ Lm}
offers the composition of {U1, U2, -+, U,}). Also M offers Uy, Uz, -+ U, iff M offers the
composition of {U1, U2, =+, Un}.

Before considering a layered architecture in general, we first prove the following basic
composition theorem:
Theorem 3. Let modules, M and N, and disjoint interfaces {U,L, Vv }, satisfy the fol-
lowing:
« M using L offers U
e NoffersL,V

Then, M and N are compatible and their composition offers U, V.

181

Note that Theorem 3 subsumes Theorem 1. Specifically, it reduces to Theorem 1 when
V is a null interface. A proof of Theorem 3 is presented in [10]; it is quite long, requiring
seven lemmas.

Definition. A layered system with layers 1 throughJ is defined by
* Modules, a set of modules with distinct names partitioned into sets Modules (j),
j=1, ---,J, one for each layer. 7 ,
o Interfaces, a set of disjoint interfaces partitioned into sets Interfaces(j),
j=1, - -+, J, one for each layer.
» for each module M € Modules, U (M), a set of interfaces to be offered by M, and
L(M), a set of interfaces to be used by M.
such that the following Naming constraints are satisfied:
(1) forall j=1, ---,J:
I j)= UM
nterfaces (j) e Myul”(j) M)

(2) for every M e Modules
(@) M e Modules(j)» j>1 = L(M) ¢ ku_lnterfaces k)
<j
(b) Inputs(M)=[1 . %])(M)Inputs Ol u [1 EkLJ(M)Outpwts ())]
(c) Outputs M)=[l E %/)(M)Outputs Hr v [, ekLJ(M)lnput‘s' 1

(3) for every pair of distinct modules M and N:

UMYNUN =D
LM)YNLNN)=D

The above Naming constraints ensure that Modules is a compatible set of modules.

In our model of layered systems, a module in layer j can use an interface offered by
any module in a lower layer, provided that no other module is using the same interface.
(This provision is simply a naming constraint. In fact, a module can offer services to multi-
ple users concurrently. But by tagging interface event names with user names, the interface
offered to each user is distinct.) A layered system corresponds to a directed graph whose
nodes are modules and whose arcs are defined as follows: for modules M and N in Modules ,
there is an arc from M to N iff for some interface 7 in Interfaces, N offers I and M uses /. It
is not hard to see that every layered system in our model can be represented by a directed
acyclic graph. Furthermore, every directed acyclic graph represents a layered system
allowed by our model.

182

Let Services (j) denote the services available to the user(s) of layer j. Formally,

Services (1) = Interfaces (1)

and for j>1

Services (j) = [Interfaces ()] U [Services(j=1) — ve Myum(j)L M)

Theorem 4. For a layered system, if the following hold:

e YM e Modules(1): M offers UM)

« forj=2,---,J,VM ¢ Modules (j): M using L (M) offers U(M)

Then, re {,,U. . 'J}Modules (k) is a set of compatible modules and their composition
offers Services (J).

5. Implementation Theorems

To define our implements Telation between two modules, we extend the definitions of ‘‘safe
wrt”” and “‘allowed wrt’’ as follows. Let M and N denote modules, and let & be a sequence
over a set of states and events.

Definition. o is safe wrt N iff for some w € Behaviors(N),
image (w, Inputs (N YU Outputs (N)) = image (o, Inputs (N) L Outputs (N)).
Definition. ¢ is allowed wrt N iff for some w e AllowedBehaviors N)
image (w , Inputs N) L Outputs (N)) = image (G, Inputs (N) Outputs (N)).
Definition. Given modules M and N, M implements N iff the following conditions
hold:
« Naming constraints:
Inputs M)=Inputs (N) and Outputs (M y=Outputs (N).
« Safety constraints:
For all ¢ e FiniteBehaviors (M), if ¢ is safe wrt N, then

Ve e Outputs (M) last(0)€ enabledy(e) = o@e is safe wrtN, and
Ve e Inputs(M): o@e is safe writ N = last(0) e enabledy(€).

« Progress constraints:
For all 6 € AllowedBehaviors (M), if & is safe wrt N, then o is allowed wrt N.

Suppose a module has been designed and shown to satisfy a set of interfaces. Subse-
quently, we may want to refine it to derive new modules. The following theorems are useful
for justifying such refinement steps.

183

Theorem S. Let M and N be modules and I an interface. If M implements N and N
offers I, then M offersI.

Theorem 6. Let M and N be modules, and U and L be interfaces. If M implements
N and N using L offers U, then M using L offers U.

Theorem 7. Let M, M, and M5 be modules. If M5 implements M, and M, imple-
ments M ;, then M3 implements M ;.

6. Concluding Remarks

Proofs of the theorems and lemmas in this paper are presented in [10]. For interfaces and
modules specified in the relational notation [8], we have developed a proof method based
upon the theory in this paper [11]. A small example illustrating application of our method to
the specification of a connection management protocol can be found in [9]. Nontrivial appli-
cations of our method to the specification and verification of protocols for concurrency con-
trol and secure access control can be found in [7] and [12] respectively.

Acknowledgement

We thank Michael Merritt of Bell Laboratories for his constructive criticisms of our proof
method in [7], which motivated us to develop the theory presented in this paper.

References

(11 M. Abadi and L. Lamport, ‘‘Composing Specifications,’’ in Stepwise Refinement of Dis-
tributed Systems, J. W. de Bakker, W.-P. de Roever and G. Rozenberg (Eds.), LNCS
430, Springer-Verlag, 1990.

[2] T. Bolognesi and E. Brinksma, ‘‘Introduction to the ISO Specification Language
LOTOS,”” Computer Networks and ISDN Systems, Vol. 14, 1987.

[3] S. D. Brookes, C. A. R. Hoare, and A. D. Roscoe, ‘A Theory of Communicating
Sequential Processes,”” JACM, Vol. 31, No. 3, 1984.

(4] E. W. Dijkstra, ‘‘Hierarchical Ordering of Sequential Processes,” Acta Informatica,
Vol. 1, 1971.

[51 C. A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs,
N.J, 1985.

[6] S.S.Lam and A. U. Shankar, ‘‘Protocol Verification via Projections,’” IEEE Transac-
tions on Software Engineering, Vol. SE-10, No. 10, July 1984,

184

[7] S.S.Lamand A.U. Shankar, ‘“Specifying Modules to Satisfy Interfaces: A State Tran-
sition System Approach,”’ Technical Report TR-88-30, Department of Computer Sci-
ences, University of Texas at Austin, August 1988; revised, January 1991, to appear in
Distributed Computing.

81 S.S.Lam and A. U. Shankar, “‘A Relational Notation for State Transition Systems,”’
IEEE Transactions on Software Engineering, Vol. 16, No. 7, July 1990; an abbreviated
version entitled ‘‘Refinement and Projection of Relational Specifications’” in Stepwise
Refinement of Distributed Systems, . W. de Bakker, W.-P. de Roever and G. Rozenberg
(Eds.), LNCS 430, Springer-Verlag, 1990.

[9] S.S.Lam and A. U. Shankar, “‘A Composition Theorem for Layered Systems,”
Proceedings 11th Int. Symp. on Protocol Specification, Testing and Verification, Stock-
holm, June 1991.

[10] S. S. Lam and A. U. Shankar, “‘A Theory of Interfaces and Modules I—Composition
Theorem,”’ Technical Report, Department of Computer Sciences, University of Texas
at Austin, in preparation.

(111 S. S. Lam and A. U. Shankar, “‘A Theory of Interfaces and Modules O—Proof
Method,”’ Technical Report, Department of Computer Sciences, University of Texas at
Austin, in preparation.

[12] S.S.Lam, A. U. Shankar and T. Y. C. Woo, « Applying a Theory of Modules and Inter-
faces to Security Verification,”” Proceedings Symposium on Research in Security and
Privacy, IEEE Computer Society, May 1991.

[13] L. Lamport, “‘A Simple Approach 0 Specifying Concurrent Systems,”” Comm. ACM,
Vol. 32, No. 1, January 1989.

[14] N.Lynch and M. Tuttle, ¢‘Hierarchical Correctness Proofs for Distributed Algorithms,”
Proceedings of the ACM Symposium on Principles of Distributed Computing, Van-
couver, B.C., August 1987.

[15] R. Milner, A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, Berlin,
1980.

[16] J. Misra and XK. M. Chandy, <“Proofs of Networks of Processes,”” IEEE Transactions on
Software Engineering, Vol. SE-7, No. 4, July 1981.

(171 A. Pnueli, “In Transition from Global to Modular Temporal Reasoning About Pro-
grams,”” NATO ASI Series, Vol. F13, Logics and Models of Concurrent Systems, K.R.
Apt (ed.), Springer-Verlag, Berlin, 1984.

