Protocol Specification, Testing, and Verification, XI

B. Jonsson, J. Parrow and B. Pehrson (Editors)

Elsevier Science Publishers B.V. (North-Holland) 93
© 1991 IFIP. All rights reserved

A Composition Theorem for Layered Systems*

Simon S. Lam A. Udaya Shankar
Department of Computer Sciences Department of Computer Science and
The University of Texas at Austin Institute for Advanced Computer Studies

Austin, Texas 78712 University of Maryland

College Park, Maryland 20742

Abstract

We define interface, module and the meaning of M offers I, where M denotes a module and / an inter-
face. For a module M and disjoint interfaces I/ and L, the meaning of M using L offers U is also defined. Let N
be a module that interacts with module M across interface L. We prove the following composition theorem: If
M using L offers U, and N offers L, then M interacting with N offers U. Since the composition of M and N
is also a module, the theorem holds for an arbitrary number of modules organized in a linear hierarchy. This
theorem provides a theoretical foundation for layered systems (e.g., computer networks) where each layer
corresponds to a module in the theorem.

1. Introduction

A module in our theory may be a service provider, a service consumer, or both. Interactions between a
module and its environment take place at interfaces. Occurrence of an interface event involves simultaneous
participation by both the module and its environment, and is observable from both sides of the interface. The
semantics of an interface is defined by a set of allowed sequences of interface events; each such sequence
defines an allowed sequence of interactions between the module and its environment. A module is specified by
a state transition system (and a set of fairness requirements).

For a module M and an interface /, we define the meaning of M offers I (see Section 2). Our definition is
similar to—but not quite the same as—various definitions of M satisfies S in the literature, where S is a
specification of M [1,3,5,6,7,9,12,13,14]. Most definitions of M satisfies S have this informal meaning: M
satisfies S if every possible observation of M is described by §. Specific definitions, however, differ in many
ways: (1) in whether interface events or states are observable, (2) in whether observations are finite or infinite
sequences, (3) in the particular formalism for representing these sequences, and (4) in the method of interaction
at an interface.

Two modules interacting across an interface are composed to become a single module by hiding the inter-
face between them. In this respect, the composition of two modules in our theory is defined in a manner not
unlike the approaches of CSP [5] and I/O automata [14]. There are, however, some basic differences between
our theory and the theories of CSP and I/O automata. First, we have an explicit notion of two-sided interfaces.
Second, the interaction method between a module and its environment is different in our theory. (See below.)
Third, in developing our theory, our vision of how it should be applied is different from those in [5,14];
specifically, we are more interested in decomposing the specification of a complex system (e.g., the protocols of
anetwork) than in composition per se. An elaboration on this point follows.

* The work of Simon S. Lam was supported by National Science Foundation grants no. NCR-8613338 and no. NCR-

;9\[004464. The work of A. Udaya Shankar was supported by National Science Foundation grants no. ECS-8502113 and no.
CR-890450.

94

Suppose an interface J has been specified through which a system provides services. Instead of design-
ing and implementing a monolithic module M that offers I, we would like to implement the system as a collec-
tion of smaller modules {M;} such that the composition of {M;} offers /. To achieve this objective, the follow-
ing three-step approach may be used:

Step 1. Derive a set of interfaces {S;} from /, one for each module in the collection (decomposition step).

Step 2. Design modules individually, and prove that M; offers S; assuming that the environment of M; satisfies
§; in some manner.

Step 3. Apply an inference rule (composition theorem) 1o infer from the proofs in Step 2 that the composition
of {M;} offers 1.

The above approach has the following highly-desirable feature: given interfaces {S;}, each module can
be designed and implemented individually. However, the decomposition step—i.c., deriving the interfaces (S:}
from /—is not an easy task. Furthermore, to develop the approach into a valid method, the following problem
has to be solved, namely: In general, the inference rule required in Step 3 uses circular reasoning, and may not
be valid. To see this, consider modules M and N that interact across interface I . Each module guarantees some
properties of I only if its environment satisfies certain properties of /. However, module M is part of the
environment of module N, and module N is part of the environment of module M.

The above problem was considered by Misra and Chandy [16] for processes that communicate by CSP
primitives. They gave a proof rule for assumptions and guarantees that are restricted to safety properties.
Using different models, Pnueli [18] presented a proof rule and Abadi and Lamport [2] presented a composition
principle, that are more general than the rule of Misra and Chandy; in particular, while the class of interface
properties is still restricted, it includes progress properties.

In thinking about an interface, we depart from the usual notion that it is an external ‘‘cover’’ that
encloses a module. Instead, we think of an interface as being two-sided, namely: there is a service provider on
one side of the interface, and a user on the other, with both the user’s behaviors and the service provider’s
behaviors constrained by the same set of interface event sequences; in this respect, an interface is symmetric.
However, in our definitions of M offers I and M using L offers U (see Section 2), the user and the service pro-
vider of each interface have asymmetric obligations. By organizing modules hierarchically and having asym-
metric obligations for each interface, circular reasoning is avoided.

user

upper interface U
module M

lower interface L
module N

Figure 1. Module M and its environment.

For example, consider module M in Figure 1. It provides services to a user through interface U while it
uses services offered by another module through interface L. We refer to U as the upper interface and L as the
lower interface of module M . Note that module M is the user of interface L and the service provider of inter-
face U. Its environment consists of both the user of U and the module that offers L .

Many practical systems have a hierarchical structure. In fact, almost all computer networks have layered
protocol architectures. Each protocol layer—e.g., transport, data link—corresponds to a module in our

95

composition theorem. (Note that each protocol layer is composed of a set of entities [17,19,20]. We place no
restriction on how these entities are composed.)

Our composition theorem provides a theoretical foundation for layered systems. With the composition
theorem, we are assured that each layer in the system, say M with upper interface U and lower interface L , can
be designed, implemented and modified individually. As long as the interfaces remain the same and M using L
offers U is satisfied, the internals of M can change.

The balance this paper is organized as follows. In Section 2, we present our theory in a general semantic
framework. In Section 3, the definitions and results are specialized to the relational notation [9], which is a
specification formalism more suitable for practical application. As an example, we present in Section 4 the
upper and lower interfaces of a connection management protocol. A specification of the protocol is given
together with a proof that it satisfies M using L offers U. Section 5 has some concluding remarks. (Nontrivial
applications of our theory and notation to the specification and verification of protocols for concurrency control
and secure access control can be found in [8] and [11] respectively.)

2. Theory

We first define some notation for sequences. A sequence over E, where E is a set, means a (finite or
infinite) sequence (eo, e1, -+), where ¢;€ E forall i. A sequence over alternating E and F, where E and F
are sets, means a sequence (eo, fo, € 1,1, - * -), where ¢; € E and fie F foralli.

Definition. An interface I is defined by:

= Events(I), a set of events that is the union of two disjoint sets,

Inputs (I'), a set of input events, and
Outputs (I, a set of output events.
* AllowedEventSeqs (I'), a set of sequences over Events (7), each of which is referred to as an allowed
event sequence of 7 .

Output events of J are under the control of the service provider of 7, and input events of I are under the
control of the user of /. The occurrence of an interface event can only be initiated by the side with control.
(This requirement will be referred to as unilateral control.) Since the occurrence of an interface event requires
simultaneous participation by both the service provider and user of /, it is possible that an interface event ini-
tiated by one side cannot occur because the other side refuses to participate.

For a given interface /, define

SafeEventSeqs (I)= {w: w is a finite prefix of an allowed event sequence of 7}
which includes the empty sequence.

Definition. A state transition system A is defined by:

> States(A), a set of states.

¢ Initial(A), a subset of States (A), referred to as initial states.
* Events(A), aset of events.

* Transitionsa(e), a subset of States (A)xStates(A), for every e € Events (A). Each element of
Transitions, (e) is an ordered pair of states (s, ¢) referred 10 as a transition of e .,

A behavior of A is a sequence 0=(s0, 0,51, €1, "+) over alternating States (A) and Events (A) such
that so€ Initial (A) and (i, 5i+1) is a transition of e; for all i. A finite sequence o over alternating States (A)
and Events (A) may end in a state or an event, A finite behavior, on the other hand, ends in a state by definition.

96

The set of behaviors of A is denoted by Behaviors(A). The set of finite behaviors of A is denoted by
FiniteBehaviors (A).

For e € Events(A), let enabled,(e) = {s: for some state ¢, (s, t) € Transitionsa(e)}. An event ¢ is
said to be enabled in a state s of A iff s € enableda(e). Anevent e is said to be disabled in a state s of A iff
s ¢ enableda(e).

Notation. For any sequence ¢ over alternating States(A) and Events(4), and for any set
E < Events (A), image (5, E) denotes the sequence of events in £ obtained from o by deleting states and delet-
ing events that are notin E.
Definition. A module M is defined by:
« Events (M), a set of events that is the union of three disjoint sets:
Inputs (M), a set of input events,
Outputs (M), a set of output events, and
Internals (M), a set of internal events.
+ sts(M), a state transition system with Events (sts (M))=Events (M).
« Fairness requirements of M, a finite collection of subsets of Quiputs (M) U Internals (M). Each sub-

set is referred to as a fairness requirement of M.

Convention. For readability, the notation sts (M) is abbreviated to M wherever such abbreviation causes
no ambiguity, ¢.g., States (sts (M) is abbreviated w States (M), enabledqs (e) is abbreviated to enabledy (e),
etc.

Let F be a fairness requirement of module M. F is said to be enabled in a state s of M iff, for some
ecF, e is enabled in s, F is disabled in a state s iff F is not enabled in s. In a behavior
O=(50, €0, 51, €1, ** *»5j,€j, *), We say that F occurs in state s; iff e;€ F. An infinite behavior ¢ of M
satisfies F iff F occurs infinitely often or is disabled infinitely often in states of ©.

For module M , a behavior & is an allowed behavior iff for every fairness requirement F of M : ¢ is finite
and F is not enabled in its last state, or & is infinite and satisfies F . Let AllowedBehaviors (M) denote the set of
allowed behaviors of M .

We are now in a position to formalize the notion of a module offers an interface. Consider module M
and interface /. Let o be a sequence over alternating states and events of module M.

Definition. ¢ is allowed wrt / iff image (6, Events (I)) € AllowedEventSeqs ().

Definition. o is safe wrt / iff one of the following holds:
« ois finite and image (o, Events (I)) € SafeEventSeqs (I').
« ¢ isinfinite and every finite prefix of ¢ is safe wrt 7.

In what follows, we use last (6) to denote the last state in finite behavior 6, and @ to denote concatenation.
Definition. Given a module M and an interface I, M offers I iff the following conditions hold:
» Naming constraints:
Inputs (M)=Inputs (') and Outputs (M Y=Outputs (I).
« Safety constraints: :
For all ¢ € FiniteBehaviors (M), if ¢ is safe wrt I, then

97

Ve € Outputs (M): last(c) € enabledy(e) = o@e is safe wrtl,and
Ve e Inputs(M): o@e issafe wrtI = last(c) € enabledy(e).

_ = Progress constraints:
For all 6 € AllowedBehaviors (M), if ¢ is safe wrt I, then ¢ is allowed wrt].

A module M with upper interface U and lower interface L is illustrated in Figure 1. The environment of
M consists of the user of U and the module that offers L. The meaning of M using L offers U is next defined.
In what follows, we use ‘“c is safe wrt U and L *’ to mean ‘g is safe wrt U and o is safe wrt L.’

Definition. Given module M and interfaces U and L, M using L offers U iff the following conditions
hold:

« Naming constraints:
Events (U) Events (L)=9,
Inputs (M)=Inputs (U) L Outputs (L), and
Outputs (M Y=Outputs (U Y Inputs (L).
« Safety constraints:
For all o € FiniteBehaviors (M), if ¢ is safe wrt U and L, then

Ve € Outputs (M): last(0) € enabledy(e) = o@e is safe wrt U and L, and
Ve € Inputs(M): oc@e issafe wit U and L = last(6) € enabledy(e).
« Progress constraints:
For all o € AllowedBehaviors (M), if ¢ is safe wrt U and L, then
cisallowed wrt L = oisallowed wrt U.

The definition of M using L offers U is similar to the definition of M offers I in most respects. We first
review the key elements that are common to both definitions:

. Module M is required to satisfy its interface(s) only if the environment of M satisfies the safety
requirements of its interface(s). Specifically, for any finite bebavior that is not safe wrt M’s
interface(s), the two Safety constraints are satisfied trivially; for any allowed behavior that is not safe
wrt M ’s interface(s), the Progress constraint is satisfied trivially. That is, as soon as the environment
of M violates some safety requirement of M ’s interface(s), module M can behave arbitrarily and still
satisfy M offers I or M using L offers U.

. Module M satisfies the safety requirements of its interface(s). Specifically, whenever an output event
of M is enabled to occur, the event’s occurrence would be safe.

. ‘Whenever an input event of M (controlled by its environment) can occur safely, M does not block the
event’s occurrence.

For an input event whose occurrence would be unsafe, module M has a choice: it may block the event's
occurrence or let it occur. (In this respect, our model is more general than the I/O automata model {14], which
requires an I/O automaton to be always input-enabled.)

The main difference between the definitions of M offers I and M using L offers U is in the Progress con-
straints. For module M using interface L, it is required to satisfy the progress requirements of interface U only
if the module that offers L satisfies the progress requirements of L .

Definition. A finite set of modules {M;: j € J } are compatible iff Vj, k € J, j#k:
Internals (M) N Events (Mi)=, and Outputs (M ;) N\ Outputs (M)=2.

98

Notation. For a set of modules {M;: j € J}, each state of their composition is a wple 5 =(t;: j € J),
where ¢; € States (M;). We use image (s, M) to denote ;.

Definition. The composition of a compatible set of modules {M;: je J} isa module M defined as fol-
lows:
« Events (M) defined by:
Internals M) = [Ike).rlnternals Mo [(jkeJJ Outputs (M;)) N (jkEJII"P“‘S MM

Outputs(M) =[k)] Outputs (M ;)1-1 UJInputs M)
Jj€ J€

Inputs M) =[k)]]nputs M- UJOutputs M)
J€ J€

« sts(M) defined by:
M) = T|States(M;
States (M) ,1;17 ates (M)
Initial (M) = []Initial(M;
nitial (M) j];[] nitial (M)
Transitionsy (e), for all e € Events (M), defined by: (s, t) e Transitionsy(e) iff, Vj € J,
if ¢ € Events (M) then (image (s, M), image t.M)e TransitionsM,(e), and

if ¢ & Events (M;) then image (s, M;)=image (t, M}).

« Fairness requirements of M = [\) Fairness requirements of M;1.
J€J

Theorem 1. Let modules, M and N, and interfaces, U and L, satisfy the following:
o Internals (M) Internals (N)=0

* M using L offers U

e N offers L

Then, M and N are compatible and their composition offers U .

A proof of Theorem 1 can be found in [10). It is quite long, requiring the proof of several lemmas, and is
omitted due to space limitation. Theorem 1 is at the heart of our approach to compose modules hierarchically.

Theorem 2. Let My,11,M,1I2, -+, My, I, be a finite sequence over alternating modules and inter-
faces, such that the following hold:

« Forall j,k,if j#k then Events(I;) " Events (I)= and Internals (M;) " Internals (M)=0.
e M,offersI;.

» Forj=2,---,n,M;using I;_, offers ;.

Then, modules M 1, - - -, M,, are compatible and their composition offers .

Using Theorem 1, a proof of Theorem 2 is straightforward and is omitted. It is also straightforward to
generalize Theorem 1 1o a set of modules organized as the nodes of a rooted tree; see [10].

3. Relational Specifications

In this section, we give a brief introduction to the specification of state transition systems, modules and
interfaces in the relational notation. Some of the definitions and results in Section 2 are recast in this notation.
For a complete treatment, see [8] and also [9].

99

The state space of a state transition system is specified by a set of variables, called state variables. For a
state transition system A , the set of variables is denoted by Variables(A). For each variable v, there is a set
domain (v) of allowed values. By definition, States (A)= (A)domain (v). Each state s € States (A) is

v € Variables

represented by a tuple of values, (d,: v € Variables (A)), whete d, € domain (v).

We use state formulas to represent-subsets of States(A). A state formula is a formula in Variables(A)
that evaluates to true or false when Variables (A) is assigned s, for every staie s € States(A). A state formula
represents the set of states for which it evaluates to true. For state s and state formula P, s satisfies P iff P

evaluates to true for 5. !

We use event formulas to specify the transitions of events. An event formula is a formula in
Variables (A) U Variables (A)’, where Variables(A)Y={v’:v € Variables(A)} and domain (v y=domain (v).
The ordered pair (s, t) € States (A)xStates (A) is a transition specified by an event formula iff (s, ¢) satisfies the
formula, that is, the formula evaluates to true when Variables (A) is assigned s and Variables (A) is assigned .

Definition. A state transition system A is specified in the relational notation by:

« Events(A), aset of events.

» Variables(A), a set of state variables, and their domains.

« Initialy, a state formula specifying the initial states.

- Forevery event e € Events(A), an event formula formula, (e) specifying the transitions of e

Note that for each event e , we have
enabled, (e)=[3Variables (A)": formulas(e)]

which is a state formula representing the set of states where ¢ is enabled.

Definition. A module M is specified in the relational notation by:

- Disjoint sets of events, Inputs (M), Owtputs (M), and Internals (M), with Events (M) being their un-
ion.

« sts(M), a state transition system with Events (sts (M))=Events (M), specified in the relational nota-
tion.

« Fairness requirements of M, a finite collection of subsets of Qutputs (M)\ Internals (M).

To specify an interface in the relational notation, we use a state transition system together with invariant
and progress assertions. Invariant assertions are of the form: invariant P, where P is a state formula. A finite
sequence over alternating states and events satisfies invariant P iff every state in the sequence satisfies P. An
infinite sequence over alternating states and events satisfies invariant P iff every finite prefix of the sequence
satisfies invariant P.

We use leads-to assertions of the form: P leads—to Q, where P and Q are state formulas.? A sequence
(so,€0,81, €1, * + +) over alternating states and events satisfies P leads—to Q iff for all i: if 5; satisfies P then
there exists j, j2i, such that s; satisfies Q.

Invariant and leads-to assertions are collectively referred to as atomic assertions. In what follows, an
assertion is either an atomic assertion or one constructed from atomic assertions using logical connectives and
quantifiers. Let ¢ denote a sequence over alternating states and events. An assertion is true for o iff o satisfies

! We use formula to mean a well-formed formula in the language of predicate logic.
2 leads-to is the only temporal connective we use.

100

the assertion. For a given &, to evaluate the truth value of an assertion, say Assert, we first evaluate for ¢ the
truth value of every atomic assertion within Assert. For example, ¢ satisfies the assertion X A Y = Z, where
X, Y and Z are atomic assertions, iff (o satisfies X') » (o satisfies Y) = (o satisfies Z).

A safety assertion is an assertion constructed from invariant assertions only. A state transition system
satisfies a safety assertion iff every finite behavior of the state transition system satisfies the safety assertion. A
progress assertion is an assertion constructed from atomic assertions that include at least one leads-to assertion.
A module satisfies a progess assertion iff every allowed behavior of the module satisfies the progress assertion.

To use a state transition system, say A, for specifying an interface, we need to exercise care in defining
the events of A. First, A cannot have internal events. Second, the input and output events must be defined such
that they have ‘‘adequate resolution.”” A sufficient condition is the following:

Definition. A state transition system A has deterministic events iff
» Internals (A)=D,
» Initial (A) is a single state, and

» for all e € Events (A), Transitionsa(e) is a partial function, i.e., for all s € States (A), there is at most
one state s” such that (s, s) € Transitionsa(e).

This condition is easy to satisfy because events in our theory can be regarded as names or labels. (More-
over, event names can be parameterized in the relational notation [9].) The condition implies that each event
sequence represents at most one behavior of A because event occurrences have deterministic effects.
Behaviors of A, however, are nondeterministic because more than one event can be enabled in a state.

As an observation, note that the restriction of a single initial state may be circumvented as follows (if
needed): Let 5o denote a state not in States (A), and Init (A) the desired initial states of A. Define Initial (A) to
be {50} and, for all s € Init(A), specify a distinct event for each transition (s ¢, 5).

Notation. For any state formula R, we use R’ 1o denote the formula obtained from R by replacing every
state variable v in it with v”,

Definition. An interface I is specified in the relational notation by:
» Disjoint sets of events, Inputs (I') and Outputs(I'), with Events (I') being their union.

= sts(I), a state transition system with deterministic events specified in the relational notation such that
Events (sts(I))y=Events ().

* InvAssumy, a conjunction of state formulas referred 1o as invariant assumptions of I, such that
Initial (I') => InvAssumy, and
Ve € Outputs(I'y: InvAssumy » formulay(e) = InvAssum;’

* InvGuar;, a conjunction of state formulas referred to as invariant guarantees of I, such that
Initial (I') = InvGuary, and
Ve € Inputs(I): InvGuar; » formulay(e) = InvGuar;’

* ProgReqs;, a conjunction of progress assertions, referred to as progress requirements of I .

The invariant assumptions and guarantees of interface / are collectively referred to as invariant require-
ments of interface I, Define

InvReqs; = InvAssumy » InvGuary.

Given an interface I specified in the relational notation, an allowed event sequence of I is the sequence
of events in a behavior of sts (7) that satisfies all invariant and progress requirements; more precisely, define

101

AllowedBehaviors (I) = { 6: o€ Behaviors(I') and G satisfies invariant InvReqs; and ProgReqs;},
AllowedEventSeqs (I)= {image (o, Events(I)): 6 € AllowedBehaviors(I)).

Lastly, for event e € Events (I'), define
possible;(e) = InvReqs; » (AVariables(IY: formula;(e) » InvRegs;’]
which is a state formula representing the set of states in which event e can occur without violating any invariant
requirement of /.

Note that we have provided two ways to specify the safety requirements of an interface: namely, a state
transition system, and a set of invariant requirements. It is our experience that some safety requirements are
more easily expressed by invariant requirements, while some are more easily expressed by allowed state transi-
tions encoded in a state transition system [8]. Our approach is a flexible one.

For modules and interfaces specified in the relational notation, we provide sufficient conditions for M
offers I and M using L offers U. We first introduce a refinement relation between two state transition systems A
and B such that Variables(A) o Variables(B). In this case, there is a projection mapping from States(4) to
States(B) defined as follows: state s € States(A) is mapped to state ¢ € States (B) where ¢ is defined by the
values of Variables(B) in s [79,19]. State formulas in Variables(B) can be interpreted directly over
States (A) using the projection mapping. Also, event formulas in Variables (B) L Variables (BY can be inter-
preted directly over States (A)xStates (A) using the projection mapping.

Definition. Given state transition systems A and B and state formula /nv, in Variables(A), A is a
refinement of B assuming Inv, iff
* Variables(A) o Variables (B) and Events (A) o Events (B)
» Initialy = Initialy
* Ve € Events(B): Inva » formulas(e) = formulag(e)
(event refinement condition)
* Ve € Events(A)-Events (B): Invs » formulas(e) = [Vv e Variables(B): v=v"]

(null image condition)

If A is a refinement of B assuming /nv, and, morcover, A satisfies invariant Inv, then A is a refinement
of B as defined in [9]. In this case, for any state formula P in Variables (B), if B satisfies invariant P, then A
satisfies invariant P.

Given a module M, an interface 7, and some state formula Invy, in Variables (M), the following condi-
tions, expressed in the relational notation, are sufficient for M offersI:

Bl Inputs(M)=Inputs (1) and Qutputs (M =Outputs (1)

B2 sts(M) is arefinement of sts (/') assuming Invy,

B3 Ve e Inputs(I): Invy » possible(e) = enabledy (e)

B4 Ve e Outpurs(I): Invy » Sformulay (e) = InvGuary

BS sts(M) satisfies (invariant InvAssum; = invariant Invy)

B6 M satisfies (invariant InvAssum; = ProgReqsr)

102

Theorem 3. For a module M, an interface /, and some state formula Invy in Variables (M), if condi-
tions B1-B6 hold, then

(a) M offers I, and
(b) Vo € Behaviors (M): © satisfies invariant InvAssum; = ¢ is safe wrt].

Given an interface I, to obtain a module M that offers 7, we make use of B1-B6 in three stages. First, the
events of sts (M) are named such that B1 is satisfied. Second, events of sts(M) are specified such that sts (M)
is a refinement of sts (I') (B2 is satisfied), each input event is enabled in states where the event’s occurrence
would be safe (B3 is satisfied), and M satisfies its invariant guarantees (B4 is satisfied). Initially, Invy is equal
to InvAssumy. But to prove B2-B4, we may have to assume that sts (M) has additional invariant properties,
which are used to strengthen /nvy and must be proved (so that BS is satisfied). Third, we try to prove B5 and
Bé.

For a module M, interfaces U and L, and some state formula Invy in Variables (M), the following con-
ditions, expressed in the relational notation, are sufficient for M using L offers U:

C1 Events(U)N Events (L)=2

Inputs (M) = Inputs (U) U Outputs (L)

Outputs (M) = Outputs (U) U Inputs(L)

Variables (U) N Variables (L=
C2 sts(M) is a refinement of sts (U) assuming Invy
C3 sts(M) is a refinement of sts (L) assuming Invy
C4 Ve e Inputs(U): Invy possibley(e) = enabledy(e)
CS Ve € Qutputs (LY. Invy 1 possibler (e) = enabledy(e)
C6 Ve e Inputs(L): Invy 5 formulay(e) = InvAssumy’
C7 Ve e Ouputs (U): Invy 7 formulay (e) = InvGuary’
C8 sts (M) satisfies (invariant (InvAssumy » InvGuarp) => invariant Invy)

C9 M satisfies (invariant (InvAssumy » InvGuar,) » ProgRegs;, => ProgReqsy)

Theorem 4. For a module M, interfaces U and L, and some state formula Invyy in Variables (M), if con-
ditions C1-C9 hold, then

(@) M using L offers U, and
(b) Vo € Behaviors (M): o satisfies invariant (InvAssumy » InvGuar,) = oissafe wit U and L.

C8 indicates that we can set Invy equal to InvAssumy A InvGuary initially. However, to prove C2-C7
for a module M, we may have to assume that sts (M) has additional invariant properties, which are used to
strengthen Invy and must be proved (so that C8 is satisfied).

Proofs of Theorems 3 and 4 can be found in {10].

For convenience, we employ a couple of conventions when we use the relational notation [9]. They are
briefly reviewed below. Recall that an event formula defines a set of state transitions. Some examples of event
definitions are shown below:

e; = vi>2 A vy’ e (12,5}
€3 = V>V A V1+V2’=5

In each definition, the event name is given on the left-hand side of *“ = ** and the event formula is given on the
right-hand side.

103

Consider a state transition system A with two state variables v, and v,. Let e, above be an event of the
system. Note that v’ does not occur free in formula (e;). By the following convention, it is assumed that v is
not updated by the occurrence of e 5.

Convention. Given an event formula, formula (e), for every state variable v in Variables (A), if v’ is
not a free variable of formula(e), the conjunct v’=v is implicit in formula(e).

If a parameter occurs free in an event’s formula, then there is an event defined for every allowed value of
the parameter. For example, consider

e3(m) = vi>van vi+vy=m

where m is a parameter with a specified domain of allowed values. A parameterized event is a convenient way
to specify a group of related events.

Lastly, in deriving a state transition system A from a state transition system B, for A to be a refinement
of B as defined above, we further require that every parameter of B be a parameter of A with the same name
and same domain of allowed values.

4. Example—A Connection Management Protocol

We first present an interface U specifying a connection management service between two access points,
named 1 and 2. Suppose there is a user entity at each access point of interface U . Connections are asymmetric
in that each connection established “belongs’’ to the user entity that requested the connection, Call collisions
are resolved in favor of the user entity at access point 1. (This example is motivated by the call setup protocol
between DTE and DCE in the packet layer of X.25)

We then present an interface L specifying a reliable message communication service between two access
points, also named 1 and 2. (Note that the data link layer of X.25 provides a reliable communication service to
the packet layer.)

We then specify a module M that uses L to offer I/, The module consists of two protocol entities, 1 and
2, such that the events of protocol entity { match the events of U and L at access points named i, for i=1, 2.
We show that conditions C1-C9 are satisfied. Thus, the module satisfies M using L offers U.

4.1. Interface U specifying connection management

We specify the state variables, initial condition, and events of interface U/ . The parameter i ranges over
land 2. We use parameter j to range over 1 and 2 such that j#i.

State variables:

State;: {Closed , PassiveOpening , ActiveOpening , PassiveOpen , ActiveOpen }. Initially Closed .
Input events:

ConnReq; = State;=Closed » State;’=ActiveOpening

ConnResp; = State;=PassiveOpening n State;’=PassiveOpen

DiscReq; = State;=ActiveOpen n State;’=Closed
Output events:

Connind; = State;=Closed » State/:PassiveOpening

Collision, = State 2=ActiveOpening » State 2'’=PassiveOpening

104

ConnConf; = State;=ActiveOpening i State;"’=ActiveOpen

Disclnd; = State;=PassiveOpen » State;’=Closed
Note that the collision event is defined only for access point 2.
Invariant and progress requirements;

InvAssumy = true

InvGuary = InvGuary i InvGuary 3, where
InvGuary ; = (State;=ActiveOpen => State;=PassiveOpen)
A (State;=PassiveOpening => State j=ActiveOpening)

The first conjunct of InvGuary; can be falsified only by the event ConnConf; (which makes the
antecedent true) and the event Discind; (which makes the consequent false). The second conjunct of
InvGuary; can be falsified only by the event Connind; (which makes the antecedent true), the event
ConnConf j (which makes the consequent false), and the event Collision, (which makes the consequent false
for i=1, and the antecedent true for i=2). Note that all these events are output events of U . Input events of U
do not falsify InvGuary as required by our definition of a relationally-specified interface.

ProgReqsy =
((State =PassiveOpening leads—to State ;=PassiveOpen)
=> (State \=ActiveOpening leads—to State ;=ActiveOpen))
A ((State 1=PassiveOpening leads—to State =PassiveOpen)
n (State ;=PassiveOpening leads—to State =PassiveOpen)
=> (State =ActiveOpening leads—to State € {ActiveOpen , PassiveOpen }))

4.2. Interface L specifying reliable message delivery
‘We specify the state variables, initial condition, and events of interface L .
State variables:

Sent;: sequence of messages. Initially the null sequence.
Received;: sequence of messages. Initially the null sequence.

Sent; is the sequence of messages that have been sent at access point i since the beginning of execution,
Received; is the sequence of messages that have been received at access point i since the beginning of execu-
tion. Below, the parameter i ranges over 1 and 2.

Input events:

Send;(m) = Sent;’=Sent; @ (m)

Output events:

Reci(m) = Received;'=Received;@ (m)

Invariant and progress requirements:

InvAssumy, = true

InvGuary, = (Received ; prefix-of Sent 1) » (Received prefix-of Sent ;)

105

ProgReqs; = (1Sent|2>k leads—to |Received 21 2k) # (1Sent 2121 leads—to |Received 1121)

Note that input events of L do not falsify InvGuary.

4.3. Module M

The module M consists of two protocol entities, named 1 and 2. We specify the state variables, initial
condition, and events of the protocol entities below. The protocol uses three types of messages, conn denoting
a connect Tequest, disc denoting a disconnect request, and ack denoting an acknowledgement to a connect
request.

State variables of protocol entity i:

State;: <as defined in upper interface U >,
Sent;, Received;: <as defined in lower interface L>.
Si: {null, connS , connR , ackS , ackR , discS , discR, disc&connS , disc&connR }. Initially null.

S;=null indicates that protocol entity i does not have any obligation. S;=connS indicates that protocol entity i
must send a conn message. S;=connR indicates that protocol entity i has received a conn message for which it
must execute an appropriate output event. The values discS and discR (and ackS and ackR) indicate similar
conditions for disc (and ack) messages. The value disc&connS indicates that protocol entity i must send a
disc message followed by a conn message; this can happen if protocol entity i was in the ActiveOpen state,
and the local user entity issued a disconnect request followed by a connect request before protocol entity i
could handle the disconnect request. The value disc&connR indicates that protocol entity i has received a disc
message followed by a conn message, for which it must execute appropriate output events.

Events of protocol entity i:

We first specify module events that match events of U, and then specify module events that match events
of L. For an interface event ¢;, the formula of the matching module event e; has the form f g where fis the
interface event formula and g is a formula that has no appearance of any primed interface variable (i.c., no
change to any interface variable is specified by g). The parameter i ranges over 1 and 2. Events of protocol
entity i do not access state variables of protocol entity j, where i #j.

ConnReq, = formulay(ConnReq1) » (S 1=discS » S y'=disc&connS) v (S 12discS £ § y'=connS))
ConnReq 2 = formulay(ConnReq2)
A (S z=discS A 8 ’=discd&connS) v (S y=connR n S y'=connR) v (S 2¢ {discS, connR } » § y’=connS))

ConnResp; = formulay(ConnResp;) n Si"=ackS
DiscReq; = formulay(DiscReq;) » S;'=discS
Connlnd; = formulay(Connlnd;) » S;=connR + Si’=null
Collision, = formulay(Collisionz) A § =connR ~ § y’=null
ConnConf; = formulay(ConnConf ;) r Si=ackR n S;"=null
DiscInd; = formulay(DiscInd;) » ((Si=discR ~ S;'=null) v (S;=disc&connR » §;’=connR))
Send;(conn) = formulay (Send;(conn)) r Si=connS » S;'=null
Send;(ack) = formulay(Send;(ack)) » S;=ackS » S;"=null
Send;(disc) = formulay(Send;(disc))» ((Si=discS » Si’=null) v (S;=disc&connS + §;’=connS))
Rec 1(conn) = formulay(Rec 1(conn))

A ((State (=Closed 1 § y’=connR) v (S 1=discR n §1’=disc&connR) v (State 1#Closed » S 1#discR » §1'=8))

106

Rec o(conn) = formulay(Rec 2(conn)) » ((S 2=discR ~ 8 y’=disc&connR) v (8 22discR » S 3’=connR))
Reci{ack) = formula;(Rec;(ack)) » Si'=dckR
Rec;(disc) = formula(Reci(disc)) » S;'=discR

Fairness requirements: For each protocol entity i of module M, there is a faimess requirement consisting of
the output events of the protocol entity.

4.4. Satisfaction of conditions C1-C9

It is obvious that condition C1 is satisfied. C2 and C3 are satisfied (for Invy=true) because each module
event has the special form f g described above, C4 and CS5 are satisfied (for Inva=true) because every input
event of module M has the special form £ g and enabled (g)=true. C6 holds since InvAssumy = true. C7
holds if we define Invyy = Invy 1 A Invy 2, where

bi nym; =
(State;=ActiveOpening S;=ackR => State;=PassiveOpen)
n (State;=ActiveOpen = State;=PassiveOpen + §;€ {discR , disc&connR })
A (State;=Closed r S;=connR = State;j=ActiveOpening)
A (State;=PassiveOpening => State;=ActiveOpening ~ S; ¢ {connR , ackR })
A (State =ActiveOpening » S ;=connR = State (=ActiveOpening)

The first two conjuncts of /nvy ; are sufficient (and necessary) for the output events of M to preserve the
first conjunct of InvGuary ;. The last three conjuncts of /nvy; are sufficient (and necessary) for the output
events of M to preserve the second conjunct of InvGuary ;.

It remains to be proved that C8 and C9 hold. (The proof is omitted due to space limitation.)

§. Concluding Remarks

The concept of layering was described by Dijkstra more than two decades ago [4]. Layering has been
applied to the design and implementation of computer network protocols, and also operating systems (in partic-
ular security kernels). However, to reap the benefits of a layered architecture—i.e., to be able to design, imple-
ment, and modify each layer individually—we need formal definitions of the meanings of interface, M offers I,
and M using L offers U, as well as a composition theorem such as the one presented in this paper.

In designing our model and theory, we were faced with two conflicting goals. On the one hand, we
would like to have a model that is as general as possible so that our theory has wide applicability. On the other

hand, to prove the composition theorem, the model needs to be restricted in various ways. Below, we compare
our model and theory to those in [2,5,14].

Our model and the CSP model [5] are different in many ways. We mention two here. First, the seman-
tics of a process in the CSP model is given by a set of finite traces and associated refusal sets, whereas we
specify a module using a set of behaviors and a set of faimess requirements (each behavior is represented by a
sequence of alternating states and events). Specifically, the concepts of internal state and fairness are essential
in our theory but are absent in the theory of CSP. Second, the notion of M satisfies S, where § is a
specification, in the theory of CSP is not the same as our notion of M offers I, where I is a two-sided interface

between a service provider and a service consumer; in particular, there is no requirement in the CSP model that
interface events are unilaterally controlled.

In the theory of 1/O automata [14,15], there is no distinction between module and interface, service pro-
vider and service consumer. There is the notion of one automaton simulating another automaton, but not our
notion of a two-sided interface. Furthermore, each I/O automaton is required to be input-enabled, i.e., every

107

input event is enabled in every state of the automaton. In this respect, our model is more general; a module in
our theory is required to be input-enabled only when the occurrence of an input event would not violate any
safety requirement of the module’s interface(s). For an input event whose occurrence would be unsafe, the
module has a choice: it may disable the input or let it occur. Because of the input-enabled requirement, each
1/0 automaton can execute independently because its outputs cannot be blocked by other automata; but the set
of interface event sequences generated by the automaton is inadequate for encoding various desirable interface
properties. For example, it cannot be used to specify a module with a finite buffer such that inputs causing
overflow are blocked. (Blocking is useful in the specification of many communication protocols that enforce
input control, flow control or congestion control.)

The model of Abadi and Lamport [2] is state-based, without interface events. It is fundamentally dif-
ferent from our model and those of [5,14] in how a module and its environment interact. Specifically, such an
interaction is represented by a change in the observable portion of the module’s state, rather than by the
occurrence of an interface event involving the simultaneous participation of the module and environment,

A restriction in our model that is uniquely ours is that modules can only be composed hierarchically. We
accepted this restriction because we were motivated by our interest in decomposing the specification of a com-
plex system rather than the kind of composition problems of interest in the area of distributed algorithms.

To specify nontrivial examples, we prefer to use the relational notation [9]. We find it more convenient
10 work with state formulas and event formulas than individual states and transitions, and to reason with invari-.
ant and progress assertions than safe and allowed event sequences. In relational specifications, the set of
allowed sequences of interface events is not represented directly. Instead, a labeled state transition system and
a set of invariant and progress requirements are specified, and the set of allowed event sequences is obtained
from the allowed behaviors of the state transition system. Having states represented explicitly in behaviors
facilitates our proof that a module offers an interface. Specifically, we make use of a projection mapping from
module states to interface states to prove that the state transition systems of the module and interface satisfy a
refinement relation. By using auxiliary variables, such projection mappings [9] are as general as multi-valued
possibilities mappings [14].

Conceptually, the use of a state transition system in an interface specification should not influence an
implementor, because only the set of allowed event sequences, generated by the state transition system and con-
strained by the assertions, is of interest. In practice, however, the state transition system might bias implemen-
tors of modules that offer the interface.

Acknowledgements: The development of our theory has benefited from many discussions with Sandra Murphy
of the University of Maryland, College Park. We also thank Leslic Lamport of DEC, and Ken Calvert,
Mohamed Gouda and Thomas Woo of the University of Texas at Austin for their helpful comments. In particu-
lar, Ken Calvert suggested the condition of deterministic events for relationally-specified interfaces.

References

{11 M. Abadi and L. Lamport, The existence of refinement mappings, Research Report 29, Digital Systems
Research Center, Palo Alto, CA 94301, August 1988.

[21 M. Abadi and L. Lamport, *“‘Composing specifications,”* in Stepwise Refi t of Distributed Sy , T
W. de Bakker, W.-P. de Roever and G. Rozenberg (Eds.), LNCS 430, Springer-Verlag, 1990.

[3] K. M. Chandy and J. Misra, A Foundation of Parallel Program Design, Addison-Wesley, Reading, Mas-
sachusetts, 1988.

108

[4] E.W. Dijkstra, ‘‘Hierarchical Ordering of Sequential Processes,”* Acta Informatica, Vol. 1, 1971.
{51 C.A.R. Hoare, Co icating Sequential Processes, Prentice-Hall, Englewood Cliffs, N.J., 198s5.

[6] B. Jonsson, ““On Decomposing and Refining Specifications of Distributed Systems,”” in Stepwise
Refinement of Distributed Systems, J. W. de Bakker, W.-P. de Roever and G. Rozenberg (Eds.), LNCS
430, Springer-Verlag, 1990.

[7]1 S.S.Lam and A. U. Shankar, ‘‘Protocol verification via projections,”” IEEE Transactions on Software
Engineering, Vol. SE-10, No. 10, July 1984, pp. 325-342.

{81 S.S.Lam and A. U. Shankar, **Specifying Modules to Satisfy Interfaces: A State Transition System
Approach,”” presented at 26th Lake Arrowhead Workshop on How will we specify concurrent systems in
the year 20007, September 1987; technical report TR-88-30, Department of Computer Sciences, Univer-
sity of Texas at Austin, January 1991 (revised).

[9] S.S.Lam and A. U. Shankar, *‘A relational notation for state transition systems,”’ IEEE Transactions on
Software Engineering, Vol. 16, No. 7, July 1990, pp. 755-775; an abbreviated version entitled
“Refinement and projection of relational specifications’ in Stepwise Refinement of Distributed Systems, J.
W. de Bakker, W.-P. de Roever and G. Rozenberg (Eds.), LNCS 430, Springer-Verlag, 1990.

[10] S. S. Lam and A. U. Shankar, ‘‘A Theory of Modules and Interfaces,”” Technical Report, Department of
Computer Science, University of Maryland, 1991, in preparation.

[11] S. S. Lam, A. U. Shankar, and T. Y. C. Woo, **Applying a Theory of Modules and Interfaces to Security
Verification,”” Proceedings IEEE Symposium on Research in Security and Privacy, Oakland, California,
May 1991.

[12] L. Lamport, ‘“What it means for a concurrent program to satisfy a specification: Why no one has specified
priority,’” Proc. 12th ACM Symposium on Principles of Programming Languages, New Orleans, January
1985.

[13] L. Lamport, ‘‘A simple approach to specifying concurrent systems,”” Comm. ACM, Vol. 32, No. 1, January
1989.

[14] N. Lynch and M. Tuttle, *‘Hierarchical correctness proofs for distributed algorithms,”” Proceedings of the
ACM Symposium on Principles of Distributed Computing, Vancouver, B.C., August 1987.

[15] N. Lynch, M. Merritt, W. Weihl and A. Fekete, "A Theory of Atomic Transactions,” Technical Report
MIT/LCS/TM-362, Laboratory for Computer Science, M.LT, June 1988.

[16] J. Misra and K. M. Chandy, ‘‘Proofs of networks of processes,”” IEEE Transactions on Software
Engineering, Vol. SE-7, No. 4, July 1981, pp. 417-426.

[17] S. L. Murphy and A. U. Shankar, ‘‘Service specification and protocol construction for the transport layer,”
CS-TR-2033, UMIACS-TR-88-38, Computer Science Dept., Univ. of Maryland, May 1988; an abbrevi-
ated version appears in Proc. ACM SIGCOMM '88 Symposium, August 1988.

{18] A. Pnueli, *‘In transition from global to modular temporal reasoning about programs,”” NATO ASI Series,
Vol. F13, Logics and Models of Concurrent Systems, K. R. Apt (ed.), Springer-Verlag, Berlin, Heidelberg,
1984, pp. 123-144.

[19] A. U. Shankar and S. S. Lam, ‘“An HDLC protocol specification and its verification using image proto-
cols,”” ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983, pp. 331-368.

[20] A. U. Shankar and S. S. Lam, ‘A stepwise refinement heuristic for protocol construction,”” Technical
report UMIACS-TR-87-12, University of Maryland, College Park, March 1987 (revised March 1989); an
abbreviated version entitled ‘*Construction of Network Protocols by Stepwise Refinement’” in Stepwise
Refinement of Distributed Systems, J. W. de Bakker, W.-P. de Roever and G. Rozenberg (Eds.), LNCS

