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Abstract

We observed that variable bit rate (VBR) video, which
is a sequence of encoded pictures, has very large rate
fluctuations from picture to picture. In designing a
new traffic model, we retain the basic notion of a
flow but allow the flow rate to fluctuate. In partic-
ular, we introduce the concept of a burst which, in
a video flow, is a sequence of packets that carry the
bits of an encoded picture. We present the architec-
ture of a class of packet switching networks, called
Burst Scheduling networks, for carrying video, au-
dio, and data traffic. The class is characterized by
(i) use of virtual clock value as priority in scheduling,
(il) end-to-end delay and delay jitter guarantees pro-
vided to flows conforming to the new traffic model, and
(iii) traffic flows (in particular, video flows) scheduled
efficiently in bursts. Some experimental results are
presented from a discrete-event simulation in which
traces from several MPEG video sequences were used
as video sources.

1 Introduction

Real-time video and audio require stringent network
performance guarantees. Even though circuit switch-
ing can be used to provide the required performance
guarantees, the current technology trend is towards
the use of packet switching for all types of traffic. In
ATM networks, for example, video, audio, and data
are all to be carried in 53-byte cells.

In a packet switching network, each communica-
tion channel is statistically shared among many traffic
flows. Typically, packets are queued and scheduled for
transmission on a first-come-first-served (FCFS) basis.
The service received by a particular flow is necessarily
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impacted by the behavior of other traffic flows that
share the same queue. For this reason, it is very diffi-
cult for packet switching networks that employ FCFS
scheduling to offer the following kinds of guarantees:
(i) a flow gets a specified throughput rate, (ii) the end-
to-end delays of packets in a flow are bounded, and
(iii) the delay jitter over a set of packets is bounded.}

Such throughput, delay, and delay jitter guaran-
tees, however, are precisely the ones needed to support
many multimedia applications. To provide some or
all of these guarantees in packet switching networks, a
variety of rate-based service disciplines have been pro-
posed [1, 2, 3, 4, 9, 11, 12]. For a network employing
one of the rate-based disciplines to offer performance
guarantees, network users are assumed to generate
traffic according to a traffic specification. The traffic
specifications assumed in [1, 3, 4, 12] are essentially the
same and very simple: an average rate, and an interval
over which the average rate is calculated. The traffic
specification in [2, 9, 11] has one additional require-
ment, namely: a minimum interarrival time, which
imposes an upper bound on the instantaneous flow
rate.

This paper is concerned with the design of packet
switching networks to support multimedia applica-
tions. In particular, we present the architecture of
a class of packet switching networks, called Burst
Scheduling networks, for carrying video, audio, and
data traffic. An efficient scheduling algorithm is spec-
ified. The architecture and algorithm are motivated
by two recent findings in our research project: (i)
From studying the characteristics of MPEG video [5],
we found that traffic specifications assumed by ex-
isting rate-based disciplines are inadequate for rep-
resenting video; in particular, the packet generation
rate of a VBR video source changes substantially and

1The delay jitter over a set of items is the maximum differ-
ence between the delays of any two items in the set.
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frequently. (ii) We discovered and proved a delay guar-
antee for the Virtual Clock service discipline [10].

The balance of this report is organized as follows.
In Section 2, we present the delay guarantee of a Vir-
tual Clock server and its properties. In particular,
the concept of a conditional delay guarantee is intro-
duced. In Section 3, we discuss why a new traffic
model is needed for packet video. We then introduce
the concept of bursts and specify the traffic model.
In Section 4, we show how to convert the delay guar-
antee to a delay bound for flows that conform to the
traffic model. In Section 5, we discuss the need to
restructure and retime bursts as they travel through
a network. The network architecture and scheduling
algorithm are presented in Section 6. In Section 7, we
present end-to-end delay and delay jitter bounds. In
Section 8, we present some experimental results from
a discrete-event simulation.

The network architecture and scheduling algorithm
in this paper have been designed with the following
objectives: (i) End-to-end delay and delay jitter guar-
antees provided by a network to a traffic flow are
independent of the behavior of other traffic flows shar-
ing the network. (ii) The scheduling algorithm is fast
enough for high-speed packet switches. Substantial
improvements in algorithm efficiency are obtained by
exploiting the traffic model and delay guarantee. In
particular, a switch stores only one virtual clock value
per flow.?

Due to length limitation, many important network
design issues are beyond the scope of this paper, such
as: demand assignment, connection admission con-
trol, overbooking and statistical guarantees, modeling
and scheduling of audio and delay-sensitive data, and
fault tolerance. They are being investigated and our
findings will be presented in a forthcoming technical
report.

2 Delay Guarantee

Consider a service facility with several sources of traf-
fic. Each source generates a sequence of packets, called
a flow. Prior to generating packets, the source of flow
f negotiates with the facility a reserved flow rate r(f)
bits/second.  Generally, different sources negotiate
for different rates depending upon their needs and how
much they are willing to pay. For all flows, the length

2Tt was observed [11] that priority-based service disciplines
may be infeasible for high-speed implementation, because a
sorted priority list requires O(logN) insertion operations, where
N is the number of packets queued for a channel. In the Burst
Scheduling algorithm, the parameter N is the number of active
flows, not packets queued.

of a packet varies from a minimum of ,,;,, to a max-
imum of /4, bits. For an arbitrary packet p, we use
I(p) to denote its length in bits, A(p) its arrival time
to the facility (A(p) > 0), and L(p) its departure time
from the facility upon service completion. The con-
cept of virtual clock is introduced next.

Let priority(f) denote the virtual clock of flow f.
It can be implemented as a variable, which is zero
initially and updated as follows [12] whenever a flow
J packet, say p, arrives to the facility.

priority(f) = max{priority(f), A(p)} + ;{% (1)

The new value of priority(f) above is assigned to
packet p as its virtual clock value, denoted by P(p).
Thus, the virtual clock of flow f is a variable that
holds the virtual clock value of the most recent arrival
of f. Note that the virtual clock values of flow f are
determined by the sequence of packet arrival times of
[, and are independent of the service discipline.

Now consider a server and a set F' of flows. The
Virtual Clock (VC) service discipline specifies that
whenever the server is ready to serve a new packet,
the packet in queue with the smallest virtual clock
value is selected for service. Furthermore, the service
discipline is work-conserving and nonpreemptive. We
will refer to such a server as a VC server. In what
follows, we use the term system to refer to both queue
and server.

Definition 1. A flow f is active at a VC server at
time ¢ if and only if the following condition holds: The
system is not empty, and the value of priority(f) at
time ¢ satisfies

t < priority(f) (2)

Simply stated, a flow is active as long as its virtual
clock is running faster than real time and the system
1s nonempty. Whenever the system is empty, all flows
are inactive by definition.

Definition 2. Let C denote the capacity, in
bits/second, of a VC server. The server’s capacity
is exceeded at time ¢ if the following condition holds:

> rH>c (3)

Jea(t)

where a(t) is the subset of flows that are active at time
t.

3which is unspecified at this point.
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Theorem 1. If the capacity of a VC server has not
been exceeded for a nonzero duration since the start
of a busy period, then the following holds for every
packet p that has been served during the busy period:

L(p) < P(p) + 22 (@
A proof of Theorem 1 can be found in [10]. Fixed
assignment or demand assignment may be used to en-
sure that a VC server’s capacity is not exceeded. Note
that the active flow definition can be exploited to in-
crease the number of flows that statistically share a
VC server. Definition 1 has been designed such that
a flow’s active periods are as short as possible, yet
sufficient for the delay guarantee in Theorem 1.

2.1 Properties of delay guarantee

The delay guarantee in Theorem 1 is not a delay bound
in the usual sense. Specifically, the deadline provided
to a packet is measured from its virtual clock value,
rather than its actual arrival time. If a packet arrives
early, its deadline is bounded from its expected arrival
time, based upon the reserved rate of its flow; see (1)
and (4). Thus early arrivals may encounter large de-
lays. On the other hand, packets that arrive late do
not get better service. In short, the delay guarantee is
a service specification designed to encourage sources
to generate on-time arrivals.

We believe that delay guarantees based upon vir-
tual clock values are very appropriate for packets car-
rying real-time video and audio. In fact, in designing
a packet switch, on-time packet arrivals are prefer-
able to early packet arrivals. If a flow’s packets can
arrive very early, the flow is effectively more bursty,
and more buffer space is needed for the flow. Reward-
ing arrivals that are too early with prompt service is
counterproductive.

The delay guarantee is useful because it is condi-
tional. As such, it does not require the service facility
(actually the designer and implementor of the facility)
to be concerned with the behavior of sources, of which
the facility has no control [6]. There is no requirement
that sources be flow controlled or well-behaved. Even
though the reserved rate of flow f is r(f), its source
can misbehave, i.e., its traffic generation rate can be
arbitrary. However, we do assume that each flow is
allocated its own buffers, so that if a source generates
traffic at a rate higher than r{f), it will fill up its own
buffers but not those of other flows.

The delay guarantee in (4) has a desirable firewall
property, namely: The delay guarantee to a flow is
independent of the behavior of other flows that share

the same service facility. The property is obvious from
examining (4) and (1}, and recognizing that the virtual
clock values of a flow are determined solely by the
flow’s own arrivals. Thus if a source generates traffic
faster than its reserved flow rate, its own packets will
encounter large delays, but its behavior will not affect
delay guarantees provided to other traffic flows.

2.2 The role of source control

The delay guarantee to a flow becomes an uncondi-
tional delay bound if the source of the flow is known
to be well behaved, voluntarily or by source control.
Consider a flow f with reserved rate 7(f). Let ¢ denote
the ith packet in flow f. The goal of source control
is to upper bound P(i) — A(7), that is, the extent to
which the virtual clock of flow f is allowed to run
ahead of real time. A simple example of source con-
trol is to ensure that the interarrival time between two
consecutive packets in the flow is lower bounded, e.g.,
A(i + 1) — A(4) is greater than or equal to I(z)/r(f)
for all 7. In this case, we can show by induction on ¢
that P(i) = A(¢) + (1(5)/r(f)). Therefore, a VC server
provides the following delay bound to every packet p
in controlled flows.

L(p) < Alp)+ 1 + (5)

2.3 Network with fixed packet size

For clarity of exposition, we assume in the balance of
this paper that packets are of fixed size (such as ATM
cells). The results and specifications to be presented
can be modified in a straightforward manner for net-
works where the packet size is variable, but bounded.

For networks with a fixed packet size, we use the
following notation:

A(f) rate of flow f in packets/second
v  server rate in packets/second

The virtual clock update in (1) becomes

priority(f) := max{priority(f), A(p)} + K(IT) {6)

The delay guarantee in (4) becomes

L@sp@+§ (1)

3 New Traffic Model

Full-motion video is a set of pictures displayed sequen-
tially. In uncompressed form, each picture is a two di-
mensional array of pixels, each of which is represented
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by three values (24 bits) specifying both luminance
and color information. From such uncompressed video
data, a video encoder produces a coded bit stream
representing a sequence of encoded pictures (as well
as some control information for the decoder). There
are three types of encoded pictures in MPEG video:
I (intracoded), P (predicted), and B (bidirectionally
predicted). An I picture is one that is encoded, and
decoded, without using information from another pic-
ture. In general, an I picture is much larger than a P
picture (in number of bits), which is much larger than
a B picture. Typically, the size of an I picture is larger
than the size of a B picture by an order of magnitude.

Consider an MPEG encoder as a traffic source that
produces encoded pictures at a rate of 30 pictures per
second. The size of each picture is known as soon as
it is encoded. It ranges from a low of about 10,000
bits for a B picture to a high of about 300,000 bits
for an I picture (for some MPEG sequences encoded
at a spatial resolution of 640 x 480 pixels [5]). For
delivery by a packet switching network, each picture
is segmented to be the payload of a large number of
packets (e.g., ATM cells). Thus, the rate of such a
source changes every 1/30 second, varying from a low
of 0.3 Mbps to a high of 9 Mbps.

For traffic flows generated by multimedia applica-
tions, we generalize the flow model to a sequence of
bursts. The concept of bursts is needed for two pur-
poses: (i) for specifying delay jitter guarantees,* and
(ii) for partitioning a flow into intervals that have sub-
stantially different flow rates.

For a video flow, a burst is a sequence of packets
that carry the bits of an encoded picture. With live
video capture, note that the average rate of the en-
tire video flow is unknown at the start of the video
sequence. However, as soon as the video source has
encoded a picture, the size of the burst (number of
packets) is known and its rate, to be called the pic-
ture’s packet rate, can be determined. Specifically, if
lossless smoothing is used, the rate is available from
the smoothing algorithm [5]. If not, the rate can be
computed from the picture size, the picture rate (e.g.,
30 pictures per second), and the packet payload size.
Information on the rate and size of each burst can be
exploited in scheduling packets.

We use n; to denote the number of packets in burst
i. The jth packet in burst ¢ is denoted by (%, 7). The
arrival time, virtual clock value, and departure time of
packet (4, j) at a service facility are denoted by A(3, ),
P(i,§), and L(z, j), respectively.

4With the concept of bursts, two types of delay jitters can
be defined: delay jitter over packets in a burst, and delay jitter
over bursts in a flow.

Definition 3. Flow Specification:

e A flow is a sequence of bursts, each of which is
a sequence of packets. The first and last pack-
ets in each burst are marked. The first packet
of burst ¢ carries information on its rate, ); , in
packets/second, and its size n; .5

e Packets in burst ¢ satisfy a jitter timing con-

straint, namely: for j = 1,2,..., n;,

. . j—1
OSA(i,]) —A(Z,l) <= (8)

1

o Bursts in the flow satisfy a separation timing con-
straint, namely: for ¢ > 1,

S

A(i+1,1) — A(4,1) >

i

(9)

Do

1

Timing constraint (8) specifies a delay jitter bound.
Burst Scheduling networks are designed to preserve
this jitter bound. Timing constraint (9) specifies a
minimum time separation between two consecutive
bursts in a flow. This is a form of source control which
is used to convert conditional delay guarantees into
delay bounds (see Lemma 2 below).

Though motivated by video traffic, the Flow Spec-
ification can also be used for audio and data traffic
that require delay jitter bounds. In what follows, a
flow that requires service guarantees from a network
and conforms to the Flow Specification when entering
the network is called a guaranteed flow.

4 VC Server for Guaranteed
Flows

Consider flows which conform to the Flow Specifica-
tion arriving at a VC server. Each flow is a sequence
of bursts that do not overlap in time. Since the first
packet of a burst carries information on the rate of
the burst, the burst rate can be used for virtual clock
update; specifically, the flow rate A(f) in (6) is up-
dated each time a new burst arrives. We present two
lemmas: Lemma 1 is a consequence of the jitter tim-
ing constraint, and Lemma 2 is a consequence of the
separation timing constraint,

Lemma 1. The virtual clock value of the jth packet
inburst 4, 1 < j < ny, is

. , j—1
P(z,])zP(z,l)-{-J_/\i_

5This part of the specification is implementation-dependent.
Some information, such as n;, may not be required.

(10)
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Lemma 2. If the capacity of a VC server has not
been exceeded for a nonzero duration since the start
of a busy period, then the following bound holds for
the jth packet of burst ¢ served during the busy period,
fori>1,j=12,...,n4

i) SAGD+E+ @

Proofs of the two lemmas are presented in [7]. Note
that if we consider each burst as an integral unit,
Lemma 2 provides a burst delay bound which depends
on the length of burst i.

From Lemma 1 and the jitter timing constraint, ob-
serve that once the first packet of a burst has arrived,
its flow will remain continuously active until some time
after the last packet of the burst arrives. Also if a
flow does not satisfy the separation timing constraint,
the flow may have two or more bursts being active at
the same time with the following consequence: In de-
termining whether or not the capacity of a server is
exceeded, the rate of the flow is the aggregate rate of
simultaneously active bursts in the flow. The separa-
tion timing constraint is needed to ensure that each
flow has at most one active burst at any time.

5 Restructuring and Retiming
of Bursts

Consider the packets of a guaranteed flow, which tra-
verse a sequence of nodes indexed by 0,1,2,..., K+1,
where node 0 denotes the source, and node K + 1
the destination. The other nodes are packet switches,
where each outgoing channel is a VC server. At the
network entrance, a source regulator ensures that the
flow’s packets satisfy the Flow Specification when they
arrive at node 1.

Note that the sequence of packets leaving node 1
may or may not satisfy the jitter and separation tim-
ing constraints. The same can be said about packets
leaving node 2, etc. Since the timing constraints are
assumed by every packet switch along the path,® pack-
ets are delayed by flow regulators to ensure that both
timing constraints are satisfied when packets become
eligible at their next VC server. Specifically, the times
when packets become eligible at nodes 2,3, ..., K are
taken to be their arrival times for the purposes of
checking satisfaction of timing constraints (8) and (9),
and applying Lemma 2.

8The jitter timing constraint is assumed to compute virtual
clock values efficiently. The separation timing constraint is as-
sumed to determine the aggregate rate of active flows.

Flow
Queues Regulators

Packet
Arrivals = I

P

Figure 1: Architecture of a channel.

Channel

Scheduler ——

Delaying packets to satisfy the jitter and separa-
tion timing constraints is called burst restructuring
and retiming, respectively [7]. In the algorithm to be
presented in Section 6, both the restructuring and re-
timing of a burst are achieved by delaying just the first
packet of the burst, and are not performed until the
packet gets to the head of its flow queue in the next
switch along the path.

Note that if the regulator, queue and VC server
within a switch are considered together as a system,
such system is not work-conserving, because the server
may be idle when there are packets being delayed by
regulators. It is noteworthy that neither burst restruc-
turing nor retiming affect the worst-case end-to-end
delay in Burst Scheduling networks, i.e., the end-to-
end delay upper bound presented in Section 7 is the
same in the absence of burst restructuring and retim-
ing. (The end-to-end delay lower bound and the burst
delay jitter bound would be different.)

6 Architecture and Algorithm

Packets arrive to a switch from sources and other
switches. FEach packet, depending upon its destina-
tion, is routed to one of the outgoing channels of the
switch. The architecture of a channel is illustrated in
Figure 1. For each channel, separate flow queues are
maintained for packets belonging to different flows;
each flow queue is allocated its own buffers. All of
the flow queues, except one, are for guaranteed flows.
There is a regulator for each flow queue. There is a
scheduler for each channel. Additionally, there is a
regulator at the network entry point of every guaran-
teed flow (not shown in Figure 1).

6.1 Source regulator

A source regulator is used to ensure that the packets
of a flow enter a network in accordance with the Flow

8a.1.5
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Specification. Specifically, the first packet of burst 1
has two fields,”

A;  rate of burst ¢ (in packets/second)
u;  time ahead (in seconds); initialized to zero
at source

The source regulator performs the following tasks:

o Store values in the \; and u; fields of the first
packet of burst ¢ (using value of \; supplied by
the encoder or lossless smoothing algorithm, and
zero for u;). For each burst, mark the first packet
as first and last packet as last.

o Ensure that the jitter and separation timing con-
straints are satisfied.

6.2 Flow regulator

Consider the bursts in a guaranteed flow. From timing
constraint (9), burst i+1 follows burst ¢, for all i. From
timing constraint (8), packet j in a burst, for j > 1,
cannot overtake the first packet in the burst. It is easy
to see that both of these properties are preserved by
point-to-point transmission channels. We require that
both properties are preserved by flow queues. (This
is easy to do. It is sufficient to implement each flow
queue as a FIFO queue.) As aresult, the restructuring
and retiming of packets in a burst are accomplished for
all j if they are performed for the first packet in the
burst [7].

When a new flow arrives at a switch (presumably
after an end-to-end session has been established), a
flow queue is created for the flow, as well as a flow
regulator for the queue. There are three variables as-
sociated with each flow queue: P, @, and E, defined
below.® There are four variables associated with burst
i: a; and ¢, defined below, and A; and u;, defined as
in Section 6.1. The flow regulator can read and write
all of these variables.

P virtual clock value of packet at head of flow
queue; initially 0

@  time when burst is eligible for selection by
scheduler; initially 0

E  boolean flag, indicating that flow queue has
an eligible burst; initially false

1 burst number; initially 1
a;  arrival time of first packet of burst ¢

"The burst size n; is not used in the algorithm to be pre-
sented.

8 The specifications can be rewritten without using the vari-
able Q. It is included here for clarity of exposition.

The regulator specification uses a function, now(),
and a procedure update(P, E). When called, now()
returns the current time from a local clock in the
packet switch. The update procedure is specified as
follows:

procedure update(P, E)
/* execute once per burst */
{ @Q:=max{a; +u,P};
/* compute time when burst i is eligible */
delay(Q — now());
Pi=Q+1/\;
E := true; }

where the procedure delay(z) introduces a delay equal
to z if x > 0; else, it is a null operation with no
delay. A flow regulator is specified by the following
two actions:

¢ Enabling condition: arrival of a burst ¢ packet to
flow queue

if ( packet is first in burst 7 ) then
{ record arrival time in a; and
values of u; and );;

if ( flow queue was empty before arrival )
then update(P, E); }

o Enabling condition: departure of a burst i packet
from flow queue (selected for service by scheduler)

if ( departed packet is not last in burst i ) then

P:=P+1/N;
else
{ E :=false;
1:=14+1;

if ( flow queue is not empty ) then
update(P, E); }

Note that the procedure update(P, E) is executed
only for the first packet of each burst. Specifically,
u; contains information on how much the first packet
should be delayed to achieve burst restructuring [7].
When the procedure is called, P contains the earli-
est time when the burst retiming constraint is satis-
fied. Thus both restructuring and retiming of burst
¢ are achieved by executing the second statement in
update(P, E); the updated value of ) is the time when
the first packet of burst 7 is eligible for selection by the
channel scheduler. Note that after the first packet in
a burst becomes eligible, all other packets in the burst
are eligible. The updated value of @ should be in-
terpreted as the arrival time of packet (i,1) at a VC
server, as used in Lemma 2.

8a.1.6
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6.3 Flow queue for other traffic

Burst Scheduling networks are designed to carry video,
audio, and data traffic. Some packet flows do not re-
quire delay and delay jitter bounds. In this paper, we
refer to them as other traffic.’ For clarity of expo-
sition, and without any loss of generality, we assume
that one flow queue is used for all other traffic. Modi-
fying the following specification to the case of multiple
flow queues for other traffic is straightforward.

Let o denote a fraction of the channel capacity that
has been reserved for guaranteed flows. Thus (1—«) of
the channel capacity is reserved for other traffic, and is
allocated using virtual clock values. Whenever there is
nothing to transmit from the guaranteed flow queues,
the entire channel capacity is available to other traffic.

The flow regulator for other traffic is specified dif-
ferently from the flow regulator in Section 6.2. The E
flag of the flow queue is true if and only if the queue is
nonempty; it is omitted from the regulator specifica-
tion below. The variable  is not needed. The variable
P is initially zero. The flow regulator for other traffic
is specified by the following actions:

¢ Enabling condition: packet arrival to flow queue

if ( flow queue was empty before arrival ) then
P := max{P,now()} +1/((1 — a)v);

e Enabling condition: packet departure from flow
queue (selected for service by scheduler)

if ( flow queue is not empty after departure )
then P:= P+ 1/((1 — a)v);
/* from applying (7) */

Note that if the flow regulator for other traffic can
detect the boolean condition,

G_empty = (for all guaranteed flow queue ::
queue is empty or its E flag is false)

it may reset the virtual clock of its flow queue to now()
whenever G_empty is true. Such aggressive behavior
would not affect the delay and delay jitter bounds pro-
vided to guaranteed flows, given that the reserved rate
ay is not exceeded by the aggregate rate of guaranteed
flows at every VC server in the network.

9In the literature, they are called available bit rate (ABR)
traffic.

6.4 Channel scheduler

The channel scheduler can read variables P and E of
every flow queue.!® We use S to denote the set of
nonempty flow queues where E is true, i.e., the set of
flow queues with eligible packets waiting. The channel
scheduler is specified by the following action:

e Enabling condition: end of a packet transmission
or wakeup

if ( S is not empty ) then
{ select from S the flow queue with smallest P;
remove packet at head of selected flow queue;
if ( packet is first in burst ¢ ) then
write value of ( P — now() )
into u; field of packet;
transmit packet; }

In the above specification, the current time re-
turned by now() is the time when the packet trans-
mission begins (assuming no intervening delay). The
value of P — now() written into u; is guaranteed by
(7) to be nonnegative.

6.5 Algorithm efficiency

Among service disciplines based upon the use of prior-
ity [1, 2, 8, 9], we believe that the Virtual Clock service
discipline will have the most efficient implementation.
By using the virtual clock value of a packet directly
as its priority, it is easy to see that Virtual Clock is
much more efficient than PGPS [1, 8]. Compared to
the EDD disciplines [2, 9], Virtual Clock requires no
schedulability test.

Furthermore, the Burst Scheduling algorithm has
been designed to exploit the jitter timing constraint
and the delay guarantee in (7) to compute virtual clock
values efficiently.

For guaranteed flows, a flow regulator executes the
procedure update(P, E) only once per burst, specifi-
cally, for the first packet in each burst. For any other
packet in a burst, the flow regulator simply increments
P by the value of 1/);, instead of executing the algo-
rithm in (6). This is made possible by Lemma 1, which
follows from the jitter timing constraint.

In computing virtual clock values for other traffic,
only the first packet of each busy period of the flow
queue requires the algorithm in (6). For any other

10The flow regulator can read and write both variables. If
the channel scheduler and flow regulators are to execute concur-
rently, some access constraints may be required for their actions
to be atomic.
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packet in a busy period, the flow regulator simply in-
crements P by the value of 1/((1 — a)y). This is a
consequence of the delay guarantee in (7) and the as-
sumption of a fixed packet size.

With the exception of the first packet of each burst
in guaranteed flows, there is no need to stamp packets
with their arrival times, or store the arrival times of
queued packets, as suggested in the original proposal
[12]. Furthermore, at any time, a switch stores only
one virtual clock value per flow queue (rather than one
per packet).

7 Delay
Bounds

and Delay Jitter

Consider a guaranteed flow traversing a path of K + 2
nodes in a Burst Scheduling network, where node 0
denotes the source, node K + 1 the destination, and
nodes 1,2,..., K packet switches. In the following
analysis, it is assumed that channels in the path de-
liver the flow’s packets reliably and in order. Also,
for every channel in the path, the channel capacity
reserved for guaranteed flows is not exceeded by the
aggregate rate of active guaranteed flows. Further-
more, processing times of the router, regulator, and
scheduler functions in packet switches do not increase
the delay of any packet.

This last assumption is reasonable because the
functions can be carried out in parallel with an on-
going transmission, i.e., the router, regulator, and
scheduler work on a packet that is waiting. We can
think of two exceptions: (1) when a packet arrives to a
channel where all flow queues are empty, and (2) when
the channel scheduler writes the value of P — now()
into the u; field of the first packet of a burst (this delay
can be accounted for by increasing 1/, slightly).

Consider an arbitrary packet (i, 5} of the flow. Let
D(i, j) denote its end-to-end delay, which is measured
from the time the packet leaves node 0 to the time it
arrives at node K + 1. Define

Ts  propagation time of channel from node s
to s+ 1, in seconds, s =0,1,..., K

vs capacity of channel from node s to s + 1,
in packets/second, s = 1,2,..., K

Since the flow satisfies the jitter timing constraint
when its packets become eligible at a node {except
possibly at node K + 1, the destination), the delay
Jitter over packets within the same burst, say burst
i, is bounded by the duration of the burst, namely:
ni/A;.

Theorem 2. The end-to-end delay of the first packet
of burst 7, for : = 1,2, ..., has the following lower and
upper bounds:

—+Z +ZT3

-1—+(K—1)max{ }+Z

1<h<i

D(i,1) >

D(i,1)

IA

+ er
(12)

A proof of Theorem 2 is given in [7]. The delay of
an arbitrary packet (7, j) is bounded by

DG.3) S DG, + L (13)

7.1 Assumptions, guarantees, and

fault-tolerance

The delay and delay jitter bounds provided to a guar-
anteed flow are independent of the behavior of other
traffic flows in the network. This firewall property
is inherited from virtual clock delay guarantees,!! un-
der the assumption that each flow queue is allocated
its own buffers. Furthermore, it is assumed that all
network components are reliable.

In what follows, we continue to assume that packet
switches are reliable. However, it is possible (albeit
infrequently) that channels lose packets and source
regulators malfunction (specifically, failing to enforce
the jitter and separation timing constraints). Burst
Scheduling networks should be designed to be toler-
ant of such faults. We provide here a brief discussion
on how to achieve fault tolerance.

A service provider is generally designed to provide
service guarantees that are conditional.'? Note that
the network layer offers service guarantees to a higher
layer (such as video flows) by making use of service
guarantees offered by a lower layer (in this case, re-
liable packet delivery by channels). In this case, the
network layer is obligated to provide its service guar-
antees to a flow only if

o the flow conforms to Flow Specification when it
enters the network, and

o channels deliver the flow’s packets reliably (i.e.
in-order delivery with no loss).

1A virtual clock delay guarantee, in general, is a deadline
measured from the virtual clock value of an arrival.

12For an in-depth treatment of assumptions and guarantees
between service providers and consumers, see [6].

8a.1.8
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Figure 2: Simulated network.

However, when a flow, say v, misbehaves (as a re-
sult of unreliable packet delivery or source regulator
malfunctioning), the network’s service guarantees to
other flows should be unaffected. To meet this re-
quirement, it is sufficient that flow regulators compute
correct virtual clock values. Recall from Section 2.1
that virtual clock delay guarantees to other flows are
independent of the behavior of flow v; it does not mat-
ter whether the actual rate of flow v is higher than its
reserved rate, whether some packets in flow v have
been lost or reordered, or how its packets are parti-
tioned into a sequence of bursts.

8 Experimental Results

Using discrete-event simulation, we studied the per-
formance of a Burst Scheduling network. We are
interested in comparing experimental end-to-end de-
lays and delay jitters with the theoretical bounds in
Section 7. Additionally, we would like to observe the
buffer requirements of video flows in a Burst Schedul-
ing switch.

8.1 Network configuration

The simulated network is illustrated in Figure 2.
There are four switches, labeled by SW. (For the same
reasons discussed in Section 7, we have omitted any
processing delay in a switch for routing, regulating,
and scheduling.) Each arrow in Figure 2 represents a

channel, labeled by its capacity in megabits per second
(Mbps) and its propagation delay in milliseconds (ms);
the propagation delay is the number shown in paren-
theses. Channels are assumed to be lossless. Channels
are shared by video flows and other traffic, with 20%
of each channel reserved for other traffic.

Six video sessions were active throughout the ex-
periment. The source of each video flow is labeled
by VS, the destination by VD. Every video flow is
routed through switches SW1, SW2, SW3, and SW4
in that order. Each video source generates bursts of
53-byte packets with the size and packet rate of each
burst obtained from a trace file. The trace files are
from MPEG sequences that have been smoothed by
the lossless algorithm in [5]. When packets were gen-
erated within a burst, the interpacket gap was fixed
and was computed from the size and rate of each burst
in the trace file. We used a fixed interpacket gap to
make the simulation run faster. Note that a fixed gap
is not required by Burst Scheduling. The gap can be
variable as long as bursts satisfy the jitter timing con-
straint.

There are also three active sessions of other types
of traffic in the network, routed as follows:

cross traffic session 1: CS1 —+ SW3 — SW4 — CD1
cross traffic session 2: CS2 - SW2 — SW3 — CD2
cross traffic session 3: CS3 — SW2 — SW3 — CD2

CS1 and CS2 are Poisson sources which generate
53-byte packets at rates of 15 packets/ms and 6 pack-
ets/ms respectively. CS3 is a packet train source [12]
with an average train gap of 0.8 ms and end-of-train
probability of 0.3.

8.2 Network performance

We ran an experiment for 10 seconds of simulated
time. About 300 pictures were transmitted for each
video session. (Some of the MPEG sequences were not
long enough, and the traces were wrapped around.)

The simulated end-to-end delay of the first packet
in each burst is plotted together with the analytical
upper and lower bounds in Figure 3 for sessions 1-
3. Note that the upper and lower bounds in (12) are
functions of the packet rate A; of burst ¢ which varies
from picture to picture. A uniform upper bound is
the upper bound obtained from the smallest A; in the
video sequence, and a uniform lower bound is the lower
bound obtained from the largest A;. (These are shown
as straight dotted lines in Figure 3.)

Since the channel capacity allocated to video flows
was not exceeded for every channel, all of the bounds
held for video flows during the experiment as predicted

8a.1.9
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Figure 3: End-to-end delay of first packet in a picture,
simulated value and bounds.

by theory. In fact, the simulated delay is generally
much closer to the lower bound than to the upper
bound. This is due to the small number of switches.
Over a short path, burst & with a large rate Ax does
not get delayed very much by burst ¢ (i < k) with a
small rate X;.
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Figure 5: Video queue lengths for channels L2 and L3.

The burst delay jitter bounds were also compared

with burst delay jitters obtained from the simulation,
and found to hold.
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To illustrate the buffer requirements of Burst
Scheduling, the utilizations of channels L2 and L3 and
their video queue lengths'® are plotted in Figures 4
and 5, respectively. Note that there was a period of
time (from 7500 ms to 8500 ms) when the channel uti-
lizations were 100% and the aggregate video flow rate
was very close to the 80% capacity allocated to video
traffic. During this period the video queue lengths
in both switches increase, then stabilize, and subse-
quently decrease quickly as the aggregate flow rate
comes down.  Such good performance is a conse-
quence of the delay guarantee of Virtual Clock, which
ensures that on-time packet arrivals to a switch stay
in the switch for a short, bounded duration of time.

9 Conclusions

Motivated by VBR video which has very large picture-
to-picture rate fluctuations, we propose a new traffic
model, called Flow Specification. In designing the
model, we retain the basic notion of a flow. Each flow,
however, is a sequence of bursts (each of which repre-
sents an encoded picture in the case of packet video).
A burst is a sequence of packets with the first packet
carrying information on the rate and size of the burst
(supplied by the video encoder or a lossless smoothing
algorithm). Though motivated by packet video, the
traffic model is also appropriate for specifying audio
and data traffic that require delay jitter bounds.

We have presented an algorithm for scheduling the
transmission of both guaranteed flows and available-
bit-rate traffic in a packet switch. The algorithm has
been designed to compute virtual clock values very
efficiently by making use of the new traffic model and
the delay guarantee proved in [10]. Such efficiency is
needed to enable use of small packets, such as ATM
cells, to carry video and audio traffic.

A Burst Scheduling network provides end-to-end
delay and delay jitter bounds to flows that satisfy
the Flow Specification when entering the network.
Bounds provided to a particular flow are independent
of the behavior of other traffic flows that share the
network, and are thus unaffected by the presence of
aggressive or misbehaving traffic sources.

Acknowledgements: We thank the anonymous ref-
erees of INFOCOM 95 for their constructive com-
ments.

13The video queue length is sum of all video flow queue sizes
for the channel.
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