PROTOCOL SPECIFICATION, TESTING, 215
AND VERIFICATION, C. Sunshine (ed.)

North-Holland Publishing Company

© IFIP, 1982

ON TIME-DEPENDENT COMMUNICATION PROTOCOLS
AND THEIR PROJECTIONS

A. Udaya Shankar and Simon S. Lam

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

Abstract

Time-dependent systems are distributed systems that cannot be
adequately modeled without measures of time. Communication protocols
offer numerous examples of such systems. To model time-dependent
systems, we introduce time variables, to measure elapsed times between
system events, and time events, to age the time variables. Time
variables in a distributed system model may correspond to timers that
are actually implemented in the system. Time variables may also be
auxiliary variables that are used for stating assertions about the
system”s behavior and for representing time constraints of system
modules. Two protocol examples exhibiting time-dependent behavior are
used to illustrate our model. The first is a simplex stop—and-wait
protocol. The second example is a protocol with the functions of
connection management and full-duplex data transfer. We also apply the
method of protocol projections to this second example, and show well-
formed image protocols for the functions of connection management and
one-way data transfer. With the help of the image protocols, we state
some logical correctness properties of the original protocol with
respect to the projected functions.

1. INTRODUCTION

We view a distributed system as a set of modules that interact by
exchanging messages [1, 2]. Each event in the system is either an internal event
of a module or a message transfer between two adjacent modules. The occurrence
of an internal event of a module depends on, and affects the state of that
module alone. A message transfer event transports a message from one module to
an adjacent module. Its occurrence depends only on the states of the two
modules. The message transfer is assumed to occur instantaneously. In this
model, a communication channel with non-zero delay is modeled as a module. Non-

adjacent modules may interact by exchanging messages via a path of intermediate

modules.

216 A.U. Shankar & S. Lam

We distinguish two categories of distributed systems: time-independent
systems and time-dependent systems. Time-independent systems can be
adequately modeled by using event counts instead of measures of time [3, 4].
Time-dependent systems, on the other hand, cannot be adequately modeled with
event counts only. Some measures of time are needed [5]. Communication

protocols offer numerous examples of time~dependent systems.

In a time-independent distributed system, nothing is assumed about the
execution speeds of the different modules (except that they are non-zero).
Consequently, i1f an event ey in one module is to precede an event e, in another
module, then the occurrence of ey is made to depend upon the reception of a
message stating that e; has occurred. This message reception would be the last
event in a chain of system events leading from e; to ej. (Recall that each
system event is either a message transfer between adjacent modules, or an event
i{nternal to a module.) Thus, in a time-independent system, the logical
correctness properties of interest can be verified without including measures of
time in the modeling. (Measures of time may be needed for its performance
analysis.) Many models of distributed systems reflect this time-independent

behavior.

In a time-dependent system, certain modules are obliged to satisfy some
time constraints. For example, given events e, and e, involving a module, the
module ensures that the elapsed time between the occurrences of ey and ey
satisfies certain bounds. Because (physical) time elapses at the same rate
everywhere, these time constraints satisfied locally by modules give rise to
precedence relations between remote events in different modules. Unlike time-
independent systems, such precedénce relations are not established through a
chain of system events. If such precedence relations are vital to the proper
functioning of the distributed system, then many logical correctness properties
of - importance cannot be verified without 1including measures of time in the
modeling. An example of a time-dependent system involving the synchronization of

physical clocks is shown in [3].

In section 2 we introduce our basic protocol model without time variables
and time events. A simple communication protocol example i1llustrates the model
and demonstrates the need to include measures of time in modeling. In section 3
we introduce time variables and time events. In section 4 we add time variables
and time events to our basic protocol model, and illustrate by modeling the

example protocol. In section 5 we consider the modeling of a larger example of

Time-Dependent Communication Protocols 217

a communication protocol with the functions of connection management and full-
duplex data transfer. Using this example, we shall also illustrate an

application of the method of protocol projections to time-dependent protocols.

2. A TIME~DEPENDENT PROTOCOL

In this paper, we will start with the basic protocol model described in
[6, 7). Later, we will add time variables and time events. Let P; and PZ be two
protocol entities that communicate with each other. P, sends messages to P2
through channel Cj, and P, sends messages to P; through channel Cy. (See Fig.
l.) Messages transmitted through a channel may be reordered, duplicated and/or
lost (due to corruption by noise). In addition, messages in the channels have a
bounded lifetime. A message that stays in channel C1 for longer than a specified
time constant, denoted by MaxDelayl, is lost. Similarly, the lifetime of every
message in channel C, 1s bounded by MaxDelay2.

A channel from one entity to another consists of all buffers and
communication media between the entities. We assume that a message can be sent
into the channel without any comstraint by the channel - i.e., unblocked sends.
(Note that most communication protocols have some measure of flow cémtrol. As a
result, their buffer requirements for messages in transit between entities are

bounded. Hence, the assumption of unblocked sends is equivalent to satisfying

those buffer requirements.)

At any time let the variable CHANNEL1 denote the sequence of messag;s in
channel Cl. When F1 sends a message into Cl, that message is appended to the
tail of the message sequence in CHANNELl. When P2 receives a message from Cys
the first message in CHANNEL] is removed and transferred to Py. When messages in
C, are reordered or duplicated, CHANNELl is appropriately updated. When a
message in C; is lost, that message 1s deleted from CHANNELL.

Similarly, the variable CHANNEL2 denotes the sequence of messages in
channel Cy, at any time.

Example

Consider the following simplex stop-and-wait protocol [8]. P; sends a POLL
message to Py and receives an ACK message as an acknowledgement. Py uses a
timer to measure the time elapsed since the POLL was sent. If the POLL remains

w

218 E A.U. Shankar & S. Lam

unacknowledged for 1longer than a specified time duration, denoted by
TimeoutValue, P; assumes that either the POLL or the ACK was lost and stops
waiting for an acknowledgement. This event is known as a timeout. Py can then
retransmit the POLL. We assume that Py satisfies the following time constraint:
the elapsed time between receiving a POLL and sending the ACK is always less
than a specified time constant, denoted by MaxReactionTime. TimeoutValue at Py
satisfies the following condition: TimeoutValue > MaxDelayl + MaxReactionTime +
MaxDelay2.

For this protocol, it is desirable to prove the following Timeout
Condition: when there is a timeout at Pl’ there is no POLL in Cl’ no ACK in Cz,
and Py is not about to send an ACK.

We will first attempt to model this protocol using only message transfer
and internal events. Let the timer used in Py be modeled as a variable TIMER
taking values from {0££,0,1,2,...}. The value of TIMER indicates how long the
timer has been running. TIMER=Off corresponds to the timer being stopped.

The events of P, are shown in Table 1. put(CHANNEL1, POLL) appends a POLL
message to. the tail of the sequence of messages in CHANNELL. TIMER TICK
represents the aging of the timer. first(CHANNEL2?) indicates the first message
in the sequence of messages in CHANNEL2. When the first message 1in CHANNEL2 is
ACK, get(CHANNEL2,ACK) removes that message.

Py has the Boolean variable ACK DUE which is true if (and only if) a POLL
has been received and the ACK has not been sent. The events of Py are shown in
Table 2.

By examining this model, we observe that it is possible for the TIMEOUT
event in P; to occur even though there is a POLL in Cl’ or an ACK in Cz, or
ACK DUE in Py ig true. Thus, we cannot decide from the above model whether or
not the simplex stop—and-wait protocol satisfies the Timeout Condition. This

model is an inadequate representation of the simplex stop—and-wait protocol.

We conclude that any adequate modeling of the above example has to relate
the elapsed times between events in Py with the elapsed times between events in
Cis Py and Cy. We cannot do this using only message transfer and internal

eventgy

Time-Dependent Communication Protocols 219

3. TIME VARIABLES AND TIME EVENTS

In the previous section, we observed that in order to model a time-
dependent system, the elapsed times at various locations in the distributed
system have to be related. In order to relate these elapsed times, we augment

our model with time variables and time events.

Time variables are variables that measure elapsed time in integer ticks.
Each time variable takes its values from {0ff,0,1,2,...}. A time variable is
termed inactive if its value is Off, else it is termed active. In modeling a
distributed system, whenever it becomes necessary to measure an elapsed time at

a module, we include a time variable in the module.

Each time variable has a time event associated with it. If a time variable
is active, the occurrence of its associated time event increments the value of
the time variable by 1 tick. If the time variable is inactive, the occurrence of
its associated time event has no effect on the time variable. The effect on a

time variable due to the occurrence of its time event is referred to as aging.

The value of a time variable in a module can also be changed due to the
occurrence of message transfer and internal events of that module. Such changes
to a time variable are referred to as resets. For an active time variable, the
difference between its current value and the value it was last reset to,

indicates the time elapsed since the last reset.

We distinguish between two types of time variables: global time variables

and local time variables.

In our model, all global time variables are aged by the same time event.

That time event is referred to as the global time event. Thus, we assume that

all active global time variables are coupled. For an active global time variable
the difference between its current value and the value it was last reset to,
indicates the global time elapsed since the last reset. The global time event
can be used to model physical time (or a clock that is accessible by all
modukus).

In general, a global time variable does not correspond to an actual timer
implemented in the distributed system. Global time variables are typically used
as auxiliary variables that are needed to model time constraints satisfied by

modules, or for stating assertions about the system”s behavior.

220 A.U. Shankar & S. Lam

Local time variables are used to model the timers and clocks that are
implemented in system modules. Every local time variable t is associated with a
unique time event, referred to as the local time event of t. t can be aged only
by its local time event, and the local time event of t can age only t. This

decouples the aging of t from the aging of any other time variable.

The error between the local time measured by t and the corresponding
elapsed global time is characterized by am accuracy axiom. For example, with a
local time variable t, we can associate a global time variable t*. t* is
affected by the global time event just like any other global time variable.
Whenever t is reset, t* is reset to the same value. Note that t is active if
(and only if) t* is active. Therefore, at any time, t* indicates the value that
t should have if t were aged by the global time event. The accuracy axiom of
local time variable t can be specified by a bound on t-t* at any time (Off-0ff
is treated as 0).

For example, the condition Je-t*| < 1 specifies a local time variable with
no accumulating error. The condition lt-t*| < max(a(t*-ty),1), where tg is the
value that t was last reset to, specifies a local time variable with maximum
relative error a in the clock tick. In this model, neither the local time event

' of t nor the global time event can occur, if such an occurrence would violate
the accuracy axiom. (The meaning of this will be made clear in the discussion on

time constraints below.)

The accuracy axiom for each local time variable t cannot be chosen
arbitrarily. For example, the accuracy axiom Jt-t*| < 0 would deadlock the local
time event of t and the global time event. In this paper, we insist that the
accuracy axiom for any local time variable t is an upper bound on |t-t*| which
is monotonically non-decreasing both in t and in t*, and whose minimum value is
1. This ensures that the time events do not get deadlocked due to unreasonable

accuracy axioms. (There are weaker sufficient conditions.)

Time constraints

One of the uses of time variables and time events is to model time
constraints in modules. Let e; and ep denote two message transfer or internal
events of a module. Let t be a time variable (local or global) that is reset to

0 by ey and reset to Off by ey. Let D denote a specified time period.

Time-Dependent Communication Protocols 221

In this situation, one example of a time constraint is that e, will not
occur until D time units have elapsed since the occurrence of ey This can be

modeled by including (t > D) as part of the enabling condition of ey.

Another example of a time constraint is that ey will occur not later than D
time units after the occurrence of e;. This cannot be modeled by including
(t < D) in the enabling condition of ege (This is because in our model an
enabled event does not have to occur.) However, it can be modeled by including
(t <D) in the enabling condition of the time event for t. This particular
interpretation does not mean that in the distributed system, time comes to a
halt whenever t equals D. Rather, it models the guarantee that the module will
execute the event e, before (or as soon as) t reaches D. Such guarantees by a
module are modeled by enabling conditions for time events, and will be referred

to as the module”s local time axioms.

Note that in the above situation, the module cannot guarantee the local
time axiom if e, is not enabled some time before t reaches D, or if e, is a
receive event, or if ey is a send event which may be blocked. In short, a local
time axiom, like the accuracy axioms, cannot be any arbitrary time constraint.
It must be a constraint that the module can guarantee without any cooperation
from its environment. If that is the case, then in the modeling of the
distributed system, the time events will never be deadlocked.

Note that the accuracy axiom for a local time variable t, considered
earlier, is a special case of a local time axiom; the module guarantees that the
variable t 1is incremented at (more or less) the same rate as the global time
event occurs. We shall only consider systems whose modules satisfy their local

time axioms.

4. P&OTOCOL MODEL WITH TIME VARIABLES

We now expand the original protocol model by allowing entities Py and PZ to
have both global and local time variables. For notational convenience, define
the successor function next on {0£ff,0,1,2,...} as follows: next(Off)=0ff, and
next(i)=i+l. Then, the aging of time variable t can be concisely stated by
t := next(t).

We now model the bounded lifetimes of messages in channel Ci. With every

message in channel C;, we associate a time variable that indicates the time

222 A.U. Shankar & S. Lam

spent by the message in the channel. At any time, let the variable $CHANNELL
denote the sequence of these time variable values in channel C,. Recall that
variable CHANNEL1 denotes the sequence of messages in Cj. Initially, both
CHANNEL1 and $CHANNELL are empty sequences. When Py sends 'a message into Cl,
that message is appended to the tail of CHANNEL1, and the time value 0 is
appended to the tail of $CHANNELL. When P, receives a message from C,, the first
message in CHANNELL is removed and transferred to P,, and the first time value
in S$CHANNEL! is deleted. When CHANNEL!L undergoes a transformation due to a
reordering, duplication or loss channel event, $CHANNEL1 undergoes an identical
transformation. The state of channel C, is given by the values of CHANNELl and
$CHANNEL1 .

The bounded lifetime of messages in channel C; is modeled by the following
local time axiom: no time value in $CHANNELL exceeds MaxDelayl. We abbreviate
this as: $CHANNELl < MaxDelayl. Finally, for notational counvenlence, we assume
that all the time variables in the channels are global time variables. Then, the
action of the global time event would be to increment every value in $CHANNELL
by 1 tick. This is abbreviated as $CHANNEL1 := next($CHANNELL).

Similarly, in channel C,, we have the variable sequence of time values in
$CHANNEL2, and the local time axiom $CHANNEL2 < MaxDelay2. The action of the
global time event is $CHANNEL2 := next ($CHANNEL2) .

Example

We now illustrate this model by modeling the simplex stop-and-wait protocol
example discussed earlier. Let global time variable SREACTIONTIME in P, indicate
The elapsed time between reception of a POLL and transmission of the ACK. The
time constraint satisfied by P, is modeled by the local time axiom
($REACTIONTIME < MaxReactionTime). Let local time variable TIMER model the timer
used in P) to measure the time elapsed since sending a POLL. Let $TIMER denote
the global time variable associated with TIMER. We assume that TIMER satisfies
the accuracy axiom |TIMER-$TIMER| < max(a($TIMER),1), where a is the relative
error in each tick of TIMER.

The events of entity P1 and entity P2 are shown in Table 3 and Table 4
respectively. The time events are shown in Table 5. TIMER TICK is the local
time event for TIMER. GLOBAL TICK is the global time event for the protocol
system. ($CHANNELL < MaxDelayl) and (SCHANNEL2 < MaxDelay2) are from the local

Time-Dependent Communication Protocols 223

time axioms of the channels. ($REACTIONTIME < MaxReactionTime) is from the local
time axiom of PZ’

In this model, we <can prove the following: If TimeoutValue >
(1+a).(MaxDelayl + MaxReactionTime + MaxDelay2), then when there is a timeout at
Py, there is mno POLL in CHANNELl, there is no ACK in CHANNEL2, and
ACK DUE = False. Thus, this model of the simplex stop-and-wait protocol is
adequate in that it allows us to verify the Timeout Condition, and enables us to

calculate the proper timeout value.

5. A PROTOCOL WITH CONNECTION MANAGEMENT AND FULL-DUPLEX DATA TRANSFER
FUNCTIONS

In this section, we illustrate the application of protocol projections to a
time-dependent protocol. The method of protocol projections has been described
elsewhere [6, 7] and will not be repeated here. The protocol to be considered
performs connection management and full-duplex data transfer between entities Py
and P,. The protocol has the following three distinguishable functions:
connection management between P1 and PZ’ one~way data transfer from I’1 to PZ’
and one-way data transfer from P, to P;. We will show faithful image protocols
for the first two functions. We emphasize that this protocol is provided here to
illustrate the usefulness of projections, and not as an example of a "good”

communication protocol.

The connection management function of the protocol is responsible for
opening/closing the data link between Py and P,. Data transfer is possible only
when the data link is open. The link is initially closed. P; can open the link
by sending the connect command message (CONN) to P,, and receiving the response
message (RESP). The data transfer variables (to be described later) at Py and Py
are initialized each time “¢he link is opened. P; can close the link by sending
the disconnect command message (DISC) to Py, and recelving the response message
(RESP). In both cases P, guarantees to respond within a specified time, denoted
by MaxReactionTime. Because the channels can lose messages, a command message
that 1is unacknowledged for 1longer than a specified time, denoted by

TimeoutValue, is retransmited.

When the data link between P; and P, is open, P) sends data blocks to P,
and receives acknowledgements, and Py sends data blocks to Py and recelves

acknowledgements. Each entity has at most one data block unacknowledged at any

224 A.U. Shankar & S. Lam

time. A data block that has not been acknowledged within a time duration equal
to TimeoutValue is retransmited. To avoid duplicate delivery, each data block
sent 1is accompanied by a sequence number which is either 0 or 1. The
acknowledgement for a received data block can be sent alone as an (ACK) message,
or it can be piggy-backed with a data block. Each entity guarantees to

acknowledge a received data block within MaxReactionTime.

A data block d accompanied by sequence number ns can be sent as either the
message (DATA,ns,d) or as the message (DATA&ACK,ns,d). Here, DATA is a
(character string) constant identifying the message as a sequenced data block;
DATASACK is a (character string) constant identifying the message as a sequenced
data block with a piggy-backed acknowledgement for a data block received in the
opposite direction. Let DATASET denote the set of data blocks that can be sent

in the protocol. The set of messages that can be sent by Py is given by

Ml = {(CONN), (DISC)} U {(ACK) }
U {(DATA,ns,d) : nse {0,1}, deDATASET}
U {(DATASACK,ns,d) : nse {0,1}, d e DATASET}

The set of messages that can be sent by P, is given by

My = {(RESP)} U {(ACK)}

U {(DATA,ns,d) : nse {0,1}, d e DATASET}
U {(DATA&ACK,ns,d) : nse {0,1}, decDATASET}

We now examinzithe variables in entity P;. Py has an infinite array of data
blocks, SOURCE[i] for i = 0,1,2,..., destined for Pj, and an infinite array
SINK[i] for i = 0,1,2,..., to store data blocks received from P,. Additiomally,
P; has the following variables: MODE which takes values from {Open, Closed,
Opening, Closing}, a local time variable TIMER, VS and VR which are nonnegative
integers, ACK DUE which is a Boolean variable, and global time variable
S$REACTIONTIME. MODE indicates the status of the data link as perceived by Py.
TIMER is active if (and only if) either a CONN, DISC, DATA or DATA&ACK message
has been sent but not yet acknowledged. It indicates the time duration for which
the message sent has been outstanding. We denote its associated global timer by
$TIMER, and assume an accuracy axiom | TIMER-$TIMER| < max(a($TIMER),1). VS
points to the data block in SOURCE to be sent next. VR points to the position in
SINK to be next filled. ACK DUE is true if (and only if) a received data block
has to be acknowledged. $REACTIONTIME is active if (and only if) ACK DUE is True
and indicates the time elapsed since reception of the data block. The events of

entity P; are shown in Table 6.

Time-Dependent Communication Protocols 225

The variables of entity Py are similar to those of Py That is, Py has the
variables SOURCE, SINK, MODE, TIMER, $TIMER, VS, VR, ACK DUE and $REACTIONTIME.
For convenience, we have omitted qualifiers (1 or 2) for these variables and we
shall omit them as long as it is clear whether we are referring to P1 or P,.
The meaning of MODE, SOURCE, SINK, VS, VR and ACK DUE in P, are similar to that
in Pj. TIMER is used to measure the time for which a sent data block 1is
unacknowledged. $REACTIONTIME is used to measure the time between reception of
either a (CONN), (DISC) or data block, and the transmission of the appropriate

acknowledgement. The events of P, are shown in Table 7.

Initially, in both P; and P,, MODE = Closed. At Py, when the link is
opened (i.e., a (RESP) acknowledgement is received for an outstanding (CONN)
command), the data transfer variables are initialized as follows: VS=VR=0,
ACK DUE=Off, S$REACTIONTIME=Off. A corresponding initialization is done at P,
when a (RESY) acknowledgement to a received (CONN) is sent. At this time, in
each entity, SINK is empty and SOURCE equals some infinite array of data blocks.
SOURCE does not change its value while the link is open.

The time events of the protocol are shown in Table 8. The qualifiers (1 or
2) for the time variables in Table 8 identify the entity to which they belong.

The example protocol has three functions corresponding to connection
management between Py and Py, one-way data transfer from P; to Py, and one-way
data transfer from P, to P;. We shall show image protocols for the first two

functions.

Image protocol for one-way data transfer from Py to Py

For one-way data transfer from Pl to P2, observe that the variables VR,
ACK DUE, S$REACTIONTIME and SINK in Py, and the variables VS, TIMER (and its
associated $TIMER), and SOURCE in P2 are not needed. The variable MODE in Pl and
the variable MODE in P; are required since they are involved in the
initialization of data transfer. Thus, the variables of the projected function
(referred to as function variables) are MODE, TIMER (and its associated $TIMER),
VS and SOURCE in Pl and MODE, ACK DUE, $REACTIONTIME, VR and SINK in Py At aﬁy

time, the imagé state (i.e. state of the projected function) of Py is given by
the values of MODE, TIMER, $TIMER, VS and SOURCE. Let Si denote the image state
space of Py Similarly, the image state of Py is given by the values of MODE,
ACK DUE, $REACTIONTIME, VR and SINK. Let Si denote the image state space of P2.

226 A.U. Shankar & S. Lam

By examining the state changes in the image spaces ${ and 835 due to send
and receive events in Tables 6 and 7, the following can be shown about messages
in M. The message (ACK) has a null image. The messages (DATA,ns,d) and
(DATA&ACK,ns,d) are equivalent; let (DATA”,ns,d) denote their image. No other
messages in M; are equivalent. Let (CONN") and (DISC”) denote the images of
(CONN) and (:}SC). Thus, ‘

M = {(CONN"),(DISC")} U {(DATA”,ns,d) : nse {0,1}, d ¢ DATASET}.

Similarly, the following can be shown about messages in M,. All (DATA,ns,d)
messages have the null image. All (DATASACK,ns,d) messages are equivalent to the
ACK message; denote their image by (ACK”). Let (RESP”) denote the image of
(RESP). Thus M5 = {(RESP"), (ACK”)}.

The system events of the image protocol for the projected function are
shown in Tables 9 and 10. The time events for the image protocol are shown in
Table 11.

For this image protocol, if we assume that the channels do not duplicate
messages, and (TimeoutValue > (l+a) (MaxDelayl +
MaxReactionTime + MaxDelay2)) then the following logical correctness properties

can be shown to hold.

If MODE = Open in P; then the following assertions hold:

1. SINK{i] = SOURCE[i] for 0 < i < VR
2, VR> VS > VR - 1

3. (DATA”,ns,d) in CHANNELl => (TIMER # Off)
and (TIMER {1 + (1+a) (MaxDelayl))
and (d = SOURCE[VS]) and (ns = VS mod 2)
and (exactly one DATA” message in CHANNEL1)
and (not ACK DUE) and (VS = VR or yS = VR - 1)
and (no ACK” message in CHANNEL2)

4. ACK DUE => (TIMER # Off)
and (TIMER < 1
+ (1+a)(MaxDelayl + MaxReactionTime))
and (no DATA” message in CHANNELL)
and (VS = VR-1) and (no ACK™ message in CHANNEL2)

5. (ACK”) in CHANNEL2 => (TIMER # Off)
and (TIMER < 1
+ (1+a)(MaxDelayl + MaxReactionTime + MaxDelay2))
and (no DATA” message in CHANNEL1)
and (VS = VR - 1)
and (exactly one ACK™ message in CHANNEL2)

Time-Dependent Communication Protocols 227

It can also be shown that the image protocol is well-formed. As a result,
under the same conditions stated on channels and timeout value, these assertions
are also valid for the original protocol with respect to the function of one-way

data transfer.

Image protocol for connection establishment

For the function of connection management between P, and P,, we are
interested in assertions involving the variables MODE, TIMER and $TIMER in P,,
and MODE and $REACTIONTIME in PZ' However, an image protocol involving only
thef} function variables would not be well-formed. In order to make it well-
formed, ACK DUE in P, has to be included as a function variable. Thus the
function variables are MODE, TIMER and $TIMER in P; and MODE, $REACTIONTIME and
ACK DUE in P,. These variables define the image state spaces of P; and Py.

By examining the state changes in the image state spaces due to send and
receive events, the following can be shown about messages in M;. The message
(ACK) has a null image. A1l DATA and DATA&ACK messages are eqhivalent; let
(DATA”) denote their image. Note that DATA messages do not leave a null image
because they affect TIMER. Let the image of (CONN) be (CONN") and the image of
(DISC) be (DISC”). Thus, My = {(CONN"), (DISC"), (DATA")}.

Similarly, the following can be shown about the messages in M. All DATA
messages have a null image. All DATA&ACK messages are equivalent to the ACK
message; let (ACK”) denote their image. Note that DATA&ACK messages and the ACK
message do not have a null image because they affect ACK DUE. Let the image of
(RESP) be (RESP”). Thus Mi = {(RESP"), (ACK")}.

The events of the image protocol for the projected function are shown in
Tables 12 and 13. The time events for the image protocol are identical to those
shown in Table 11.

For this image protocol, if we assume that the channels do not duplicate
messages, and (TimeoutValue > (1+a) (MaxDelayl + ’
MaxReactionTime + MaxDelay2)), then the following logical correctness properties
can be shown' to hold.

1. If MODE in P; is Open then MODE in P, is Open
2, If MODE in Py is -Closed

then (MODE in Pp is Closed)
and (both CHANNEL1 and CHANNEL2 are empty)
and (ACK DUE in P, is False)

228 A.U. Shankar & S. Lam

The image protocol can also be shown to be well-formed. Hence, under the
same conditions stated on chamnnels and timeout value, these assertions are also
valid for the original protocol with respect to the function of connection

management.

6. CONCLUSIONS

Time-dependent systems are distributed systems that cannot be adequately
modeled without measures of time; in particular, system event counts cannot be
substituted for measures of elapsed time. Communication protocols offer
numerous examples of time-~dependent protocols. To model time—dependent systems,
we have introduced time variables, to measure elapsed times between system
events, and time events to age the time variables. Using time variables and
time ‘events, we can model modules that satisfy time constraints and state
assertions about the time-related behavior of a system of modules. Two types of
time variables have been distinguished: global time variables and local time
variables. Global time variables are coupled and aged under the action of a
single global time event. They are typically used as auxiliary variables for
stating assertions and time constraints. On the other hand, local time variables
correspond to timers that are actually implemented in the distributed system
being modeled. Local time variables are not coupled, and each is aged by its own
local time event. The elapsed time measured by a local time variable can differ
from the elapsed time measured by the global time event. The difference is
guaranteed to be within certain bounds that are specified formally by an

accuracy axiom.

We have incorporated time variables and time events into a protocol model
where protocol entities are connected by channels. Messages travelling within a
channel have a bounded lifetime. The channels can also lose, reorder and
duplicate messages in transit. Two protocol examples exhibiting time—-dependent
behavior were employed to illustrate the model. The first example is a simplex
stop—énd—wait protocol. The second example is a protocol with the functions of
connection management and full-duplex data transfer. We have also applied the
method of protocol projections to this second example, and found well-formed
image protocols for the functions of connection management and one-way data
transfer. With the help of the image protocols, we stated some logical
correctness properties of the original protocol with respect to the projected

functions.

Time-Dependent Communication Protocols 229

REFERENCES

ot

(1]

[2]

[3]

(4]

[5]

CH

[71

[8]

Hoare, C. A. R., "Communicating Sequential Processes,” Comm. ACM,
August 1978.

Keller, R. M., "Formal Verification of Parallel Programs,” Comm. ACM,
July 1976.

Lamport, L., "Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, July 1978.

Ricart, G. and A. K. Agrawala, "An Optimal Algorithm for Mutual
Exclusion in Computer Networks,"” Comm. ACM, January 1981.

Wirth, N., "Toward a Discipline of Real-Time Programming,” Comm. ACM,
August 1977.

Lam, S. S. and A. U. Shankar, "Verification of communication

protocols via protocol projections,” Proc. INFOCOM “82, Las Vegas,
April 1982.

lam, S. S. and A. U. Shankar, "An illustration of protocol
projections,”™ Proc. Second International Workshop on Protocol
Specification, Testing, and Verificationm, Idyllwild, May 1982.

Tanenbaum, A. S., Computer Networks, Prentice-Hall, New Jersey, 1981,
(pp. 143-144).

ACKNOWLEDGEMENT

The research in this paper was supported by National Science Foundation

Grant No. ECS78-01803.

Event Name Enabling Conditibn Action

1. SEND POLL TIMER = Off put (CHANNEL1, POLL);
TIMER := 0

2. TIMER TICK TIMER # Off TIMER := TIMER + 1

3. TIMEOUT TIMER > TimeoutValue TIMER := Off

4. REC_ACK first (CHANNEL2) = ACK get (CHANNEL2, ACK);
TIMER := Off

TABLE 1. Events of P, for simplex stop-and-wait protocol

1. REC POLL first(CHANNEL1) = POLL get (CHANNEL1, POLL);
ACK DUE := True

2. SEND ACK ACK_DUE = True put (CHANNEL2, ACK);
ACK_DUE := False

TABLE 2. Events of P2 for simplex stop-and-wait protocol

230 A.U. Shankar & S. Lam

C2

T |-~ =~ —~|> T
L T -~ -~ - — |- [T

Fig. 1. Components of the protocol model.

Event Name Enabling Condition

1. SEND POLL TIMER = Off

2. TIMEOUT TIMER > TimeoutValue

3. REC ACK first (CHANNEL2) = ACK

Action

put (CHANNEL1, POLL);
TIMER := O {$TIMER := 0}

TIMER := Off {$TIMER := Off}

get(CHANNEL2, ACK);
TIMER := Off {S$TIMER := Off}

 TABLE 3. Events of -P; for simplex stop-and-wait protocol

1. REC_POLL first (CHANNEL1) = POLL

2. SEND_ACK ACK_DUE

get (CHANNEL1, POLL);
ACK DUE := True
{$SKEACTIONTIME := 0}

put (CHANNEL2, ACK);
ACK DUE := False
{SREACTIONTIME := Off}

TABLE 4. Events of P, for simplex stop-and-wait protocol

1. TIMER TICK (TIMER-$TIMER) < max(a($TIMER),1)

2. GLOBAL TICK (TIMER-$TIMER)> -max(a(S$TIMER),1)
- and ($CHANNEL1 < MaxDelayl)
and ($CHANNEL2 < MaxDelay2) and
(SREACTIONTIME < MaxReactionTime)

TIMER := next(TIMER)

STIMER := next($TIMER);
SCHANNEL1 := next($CHANNEL1);
SCHANNEL2 := next ($CHANNEL2);
SREACTIONTIME := next($REAC-
TIONTIME)

TABLE 5. Time events for simplex stop-and-wait protocol

Time-Dependent Communication Protocols 231

Event Name Enabling Condition Action
1. SEND_CONN TIMER = Off put (CHANNEL1, (CONN));
o MODE := Opening;

TIMER := O {$TIMER := 0}

2. SEND DISC TIMER = Off put(CHANNEL1, (DISC));
MODE := Closing;
TIMER := O {$TIMER := O}

3. REC RESP first(CHANNEL2) = RESP get (CHANNELZ, (RESP));
TIMER := Off {$TIMER := Off};
If MODE = Closing
then MODE := Closed;
If MODE = Opening
then begin MODE := Open;
VS := 0; VR := 0;
ACK DUE := False
{SREACTIONTIME := Off}

end
4. TIMEOUT TIMER > TimeoutValue TIMER := Off {$TIMER := Off}
5. SEND DATA MODE = Open SDATA := SOURCE[VS];
and TIMER = Off NS := VS MOD 2;

put (CHANNEL1, (DATA, NS, SDATA));:
TIMER := 0 {$TIMER := 0}

6. SEND DATA&ACK MODE = Open SDATA := SOURCE[VS}];
and TIMER = Off NS := VS MOD 2;
and ACK DUE put (CHANNEL1, (DATA&ACK, NS, SDATA));

TIMER := O {$TIMER := 0};
ACK _DUE := False
{SREACTIONTIME -:= Off}

7. SEND_ACK MODE = Open and ACK DUE put(CHANNEL1, (ACK));
ACK DUE := False {$REACTIONTIME := Off}
8. REC DATA -~ MODE = Open get(CHANNEL2, (DATA, NR, RDATA));
and first(CHANNEL2)=DATA ACK DUE := True {$REACTIONTIME := 0};

If NR = VR MOD 2
then begin SINK[VR] := RDATA;

VR := VR + 1
end
9. REC DATA&ACK MODE = Open and get (CHANNEL2, (DATASACK, NR, RDATA));
first (CHANNEL2)=DATA&ACK ACK DUE := True {$REACTIONTIME := 0}

1f NR = VR MOD 2
then begin SINK[VR] := RDATA;
VR (= VR + 1
end;
VS := VS + 1;
TIMER := Off {$TIMER := Off}

10. REC_ACK MODE = Open get(CHANNEL2, (ACK));
and first(CHANNEL2)=ACK VS := VS + 1;
TIMER := Off {$TIMER

Off}

TABLE 6. Events of P; in the connection management

and data transfer protocol

232

Event Name

A.U. Shankar & S. Lam

Enabling Condition Action

1. REC_CONN
o

2. REC_DISC

3. SEND_RESP

4-10.

[

first(CHANNELL) CONN

MODE :=

get (CHANNELL,

(CONN));

Opening

{$REACTIONTIME := O}

first (CHANNELL)

DISC
MODE :=

get (CHANNELL,

(DISC));

Closing

{$REACTIONTIME := 0}

MODE = Opening
or MODE = Closing
If MODE =

If MODE =

end

REC] DATAGACK, REC ACK and TIMEOUT are as

described in Table 6 (with CHANNEL1 and CHANNEL2
interchanged).

put (CHANNEL2, (RESP))
{$REACTIONTIME :=
Closing
then MODE :=

Off}

Closed;

Opening
then begin MODE :=

Open;

VS := 0; VR := 0;
ACK DUE := False;
TIMER := Off
{$STIMER := Off}

Events SEND DATA, SEN DATA&ACK, SEND ACK, REC DATA,

TABLE 7. Events of entity P2 in the connection management

Event Name

and data transfer protocol

Enabling Condition

1. TIMERL_TICK
2. TIMER2 TICK

3. GLOBAL TICK

TIMER1-$TIMERL < max(a($TIMER1),1)
TIMER2-$TIMER2 < max(a($TIMER2),1)
(TIMER1-$TIMER] > -max(a($TIMER1),1)
and (TIMER2-$TIMER2 > -max(a($TIMER2),1)
and ($REACTIONTIMEl<MaxReactionTime)

and ($REACTIONTIME2<MaxReactionTime)

and ($CHANNEL1 < MaxDelayl)
and ($CHANNEL2 < MaxDelay2)

Action

TIMER] := next(TIMERL)

TIMER2

next (TIMER2)

$TIMER] next ($TIMERL);
$TIMER2 := next($TIMER2);
SREACTIONTIMEL := next($REAC-
TIONTIMEL);
$REACTIONTIME2 := next($REAC-
TIONTIME2);
SCHANNELL := next($CHANNEL1);
$CHANNEL2 := next (SCHANNEL2)

TABLE 8. Time events for the comnection management

and data transfer protocol

Event Name

1. SEND_CONN~

2. SEND DISC”

3. REG_RESP~

4. TIMEOUT”

5. SEND DATA"

6. REC_ACK~

Time-Dependent Communication Protocols

Enabling Condition

TIMER = Off

TIMER = Off

first(CHANNEL2) = RESP~

TIMER > TimeoutValue

MODE = Open
and TIMER = Off

MODE = Open
and first(CHANNEL2)=ACK”

TABLE 9. Events of Py

Action

put(CHANNELL, (CONN"));
MODE := Opening;
TIMER := O {$TIMER := O}

Put(CHANNELL, (DISC”));
MODE := Closing;
TIMER := 0 {$TIMER := 0}

get(CHANNEL2, (RESP”));
TIMER := Off {$TIMER := Off};
If MODE = Closing
then MODE := Closed;
If MODE = Opening
then begin MODE := Open;
VS := 0
end
TIMER := Off {$TIMER := Off}

SDATA := SOURCE[VS];
NS := VS MOD 2;

Put(CHANNELL, (DATA", NS, SDATA));

TIMER := 0 {$TIMER := 0}

get (CHANNEL2, (ACK"));
VS = VS + 1;
TIMER := Off {$TIMER := Off}

in image protocol for

one-way data transfer

233

234 A.U. Shankar & S. Lam

Event Name Enabling Condition Action

1. REC_CONN~ first (CHANNEL1) = CONN~ get (CHANNEL1, (CONN7));
MODE := Opening
{$REACTIONTIME := O}

2. REC DISG” first(CHANNEL1) = DISC” get(CHANNEL1, (DISC”));
MODE := Closing
{SREACTIONTIME := 0O}

3. SEND RESP” MODE = Opening put(CHANNEL2, (RESP7))
- or MODE = Closing (SREACTIONTIME := Off}
If MODE = Closing
then MODE := Closed;
If MODE = Opening
then begin MODE := Open;
VR := 0;
ACK DUE := False
end -

4. REC DATA” MODE = Open get (CHANNEL1, (DATA”, NR, RDATA));
and first(CHANNEL1)=DATA” ACK DUE := True {$REACTIONTIME := 0};
If NR = VR MOD 2
then begin SINK[VR] := RDATA;
VR := VR + 1
end

5. SEND ACK~ MODE = Open and ACK DUE put(CHANNEL2, (ACK”));
ACK DUE := False {$REACTIONTIME := Off}

TABLE 10. Events of P; in image protocol for

one-way data transfer

Event Name Enabling Condition Action
1. TIMERL_TICK TIMERI-$TIMER] < ﬁax(a(STIMERl),l) TIMERl := next(TIMERL)
2. GLOBAL TICK (TIMER1-$TIMERI > -max(a($STIMER]),1) $TIMERL := next($TIMERL);
and ($REACTIONTIME2<{MaxReactionTime) $REACTIONTIME2 := next($REAC-
TIONTIME2);
and ($CHANNEL1 < MaxDelayl) $CHANNEL]1 := next($CHANNELL);
and ($CHANNEL2 < MaxDelay2?) $CHANNEL2 := next($CHANNEL2)

TABLE 11. Time events for image protocol of
one~way data transfer

Time-Dependent Communication Protocols 235

Event Name Enabling Condition Action

1. SEND CONN” TIMER = Off put (CHANNELL, (CONN"));
MODE := Opening;
TIMER := 0 {$TIMER := O}

2. SEND DISC” TIMER

Off put (CHANNELL, (DISC”));
MODE := Closing;
TIMER := 0 {$TIMER := O}

3. REC_RESP” first(CHANNEL2) = RESP~ get(CHANNEL2, (RESP”));
TIMER := Off {$TIMER := Off}
If MODE = Closing
then MODE := Closed;
If MODE = Opening
then MODE := Open

4, TIMEOUT” TIMER > TimeoutValue TIMER := Off {$TIMER := Off}
5. SEND DATA~ MODE = Open put(CHANNEL1, (DATA"));

and TIMER = Off TIMER := O {$TIMER := O}
6. REC_ACK~ MODE = Open get (CHANNEL2, (ACK”));

and first(CHANNEL2)=ACK~ TIMER := Off {$TIMER := Off}

TABLE 12. Events of P{ in image protocol for

connection management function

Event Name Enabling Condition Action

1. REC_CONN" first(CHANNELL)

CONN~ get (CHANNEL1, (CONN7));
MODE := Opening
{$REACTIONTIME := O}

2, REC DISC” first(CHANNEL1)

DISC” get (CHANNEL1, (DISC7));
MODE := Closing
{SREACTIONTIME := O}

3. SEND RESP~ MODE = Opening put (CHANNEL2, (RESP”))
or MODE = Closing {$REACTIONTIME := O}
If MODE = Closing
then MODE := Closed;
If MODE = Opening
then MODE := Open

4. REC_DATA” MODE = Open get (CHANNEL1, (DATA"))
and first(CHANNEL1)=DATA” {$REACTIONTIME := O}}
ACK DUE := True

5. SEND ACK~ MODE = Open put (CHANNEL2, (ACK”))
and ACK DUE {$REACTIONTIME := Off}
ACR DUE := False

TABLE 13, Events of Pi in image protocol for

connection management function

