SPECIFICATION AND VERIFICATION OF AN HDLC PROTOCOL
WITH ARM CONNECTION MANAGEMENT AND FULL-DUPLEX DATA TRANSFER*

A. Udaya Shankar and Simon S. Lam

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

ABSTRACT

We wuse an event-driven process model to
specify a version of the High-level Data Link Con-
trol (HDLC) protocol between two communicating
protocol entities. The HDLC protocol is based upon
the Asynchronous Response Mode (ARM) of operation,
and uses the basic repertoire of HDLC commands and
responses (with the exception of the CMDR
response). It includes the features of poll/final
cycles for connection management and checkpointing,
sliding windows for data transfer, and ready/not
ready messages for flow control. HDLC has three
distinguishable functions: connection management,
and one-way data transfers in opposite directions
between the protocol entities. Various logical
safety properties of the HDLC protocol concerning
these functions have been verified using the method
of projections.

1. INTRODUCTION

The High-Level Data Link Control (HDLC)
protocol corresponds to a layer 2 protocol within
the O0SI reference model [ISO 79a, ISO 79b, ISO
80, ZIMM 80]. It is intended to provide reliable
full-duplex data transfer between layer 3 protocol
entities, using error-prone physical communication
channels of layer 1. The specification of HDLC in
the 1ISO documents defines precisely low-level
protocol functions, such as error detection and
frame synchronization. Formats of three types of
frames specifying the encoding of control and data
messages are also clearly defined. Aside from
these basic definitions, however, the HDLC docu-
ments leave many options to be decided by the
protocol implementor. In particular, one can choose
from a variety of data 1link configurations and
three operational modes that specify balanced or
unequal relationships between the communicating

*This work was supported by National Science Foun-
dation Grant No. ECS78-01803

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given }hat copying is by
permission of the Association for Computing Machm.cry. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-089-3/83/0300-0038 $00.75

38

entities. Also, various subsets of the messages can
be used, instead of the entire set defined. Fur-
ther, some aspects of HDLC are described informally
in English and are not rigorously specified.

In this paper, we use an event-driven process
model [SHAN 82a] to specify a version of the HDLC
protocol. (Refer to Figure 1.)

Figure 1. The protocol system model

Let P, denote the primary HDLC entity and P, the
secondary HDLC entity operating in the Asynchronous
Response Mode (ARM). C; and Co are (unreliable)
communication channels. Our protocol uses the basic
repertoire of HDLC commands and responses (with the
exception of the CMDR response). It includes the
use of poll/final cycles for checkpointing and con-
nection management, timers for timeouts, sliding
windows of size N for data transfers, and ready/not
ready messages for flow control [ISO 79b]. Our
protocol incorporates all of the principal HDLC
functions.

HDLC has at 1least three distinguishable
functions: connection management, and one-way data
transfers in opposite directions. We state asser-~
tions that specify logical safety properties of the
HDLC protocol concerning each function. These
assertions have been verified to hold for the HDLC
protocol specified herein [SHAN 82a, SHAN 82b].

1.1 The Method of Projections

A multi-function protocol such as HDLC is very
complex and cannot be easily analyzed. Our
analysis of the HDLC protocol has been achieved
through an application of the method of
projections [LAM 81, LAM 82a, LAM 82b, SHAN 82a]
which breaks up the protocol analysis problem into
smaller problems. The method of projections is
described in detail in [LAM 82b, SHAN 82a].
Briefly, it constructs from a given multi-function
protocol an image protocol for each of the func-
tions that are of interest to us. An image
protocol is specified just like any real protocol,
and is obtained by retaining only those aspects of
the multi-function protocol that are "relevant” to

the function being projected. Single—function
image protocols are smaller than the original
multi-function protocol and are thus easier to

analyze. For example, the image protocol for HDLC
connection management is similar to a handshake
protocol [BOCH 78]. The image protocol for HDLC
one-way data transfer is similar to other one-way
data transfer protocols based on a sliding window
mechanism [STEN 76}, but augmented with initializa-

tion and checkpointing features.

An image protocol obtained by our comnstruction
procedure satisfies the following: any safety
property that holds for the image protocol also
holds for the original protocol. Additionally, if
an image protocol satisfies a well-formed property
then it is faithful. Informally, an image protocol
is faithful if the following is true: any logical
property, safety or liveness, concerning the
projected function holds in the image protocol if
and only if it also holds in the original protocol
(see [LAM 82b, SHAN 82a] for a precise definition).
The construction of well-formed image protocols in-
volves an examination of protocol entities
individually. There is no need to examine the
global reachability space of the protocol inter-
action. Herein lies a significant advantage of the
method of projections.

1.2 Summary of our Results

In Section 2 of this paper, we first describe
an event-driven process model of a protocol system.
Each component (entity or channel) of the protocol
system is modeled as an event-driven process that
manipulates a set of variables local to itself and
interacts with adjacent components by message pass-—
ing. The model includes several realistic protocol
features such as as multi-field messages and the
use of timers. This model is then used to specify
the HDLC protocol.

In Section 3 of this paper, we state invariant
safety assertions concerning the logical behavior
of each of the functions. These assertions have
been verified to hold for the HDLC protocol
specified herein [SHAN 82a, SHAN 82b]. Due to lack
of space, we have not included their proofs in this
paper.

Proofs of the assertions as well as an exposi-
tion of the work presented in this paper can be
found in [SHAN 82b]. Image protocols for the three
HDLC functions are also presented there. In ad-
dition, inductively complete assertions stating the
logical safety properties are shown and proved for
each of the image protocols. (Assertions are in-
ductively complete if (a) they are true at in-
itialization of the protocol system, and (b) for
each event in the protocol system, given that the
assertions hold before the event occurrence, the
specification of the event is sufficient to show
that the assertions hold after the event
occurrence.) From the properties of 1image
protocols, it follows that these safety properties
proved for the image protocols are also satisfied
by the HDLC protocol.

0f the three image protocols presented

39

in [SHAN 82b], only the image protocol for connec-
tion management is well-formed (hence faithful to
the HDLC protocol for all safety and liveness
properties concerning connection management), while
the image protocols for the one-way data transfers
are not well-formed (hence may not be faithful to
the HDLC protocol for all safety and liveness
properties concerning data transfer). In order for
the data transfer image protocols to be well-
formed, they have to be made substantially larger
to account for dependencies in the HDLC protocol
between the two one-way data transfer functions.
For this reason, the HDLC protocol cannot be con-
sidered as well-structured. We then suggest a
minor modification to HDLC that makes it well-
structured, i.e., small well-formed image protocols
can be constructed for each of its three functions.

The reader is referred to [LAM 82b, SHAN 82a]
for a detailed treatment of the theory of projec-
tions and the method to comstruct image protocols.

2. AN HDLC/ARM PROTOCOL

In this section, we describe the HDLC/ARM
protocol for two protocol entities. ARM denotes the
Asynchronous Response Mode of operation. Let Py be
the primary HDLC entity, and let P, be the secon-
dary HDLC entity. P; sends messages to P, using
channel Gy, and P, sends messages to P; using chan-
nel C, (see Figure 1). There is a user at entity
Py and a user at entity P,. The HDLC protocol sys—
tem offers to the users a reliable connection that
(a) can be opened/closed by the user at Py, and (b)
when open, allows each user to send data blocks to
the other user in sequence (without loss, duplica-
tion or reordering). The HDLC protocol system of-

fers three functions to the wusers: connection
management, and one-way data transfers in two
directions.

2.1 Assumptions about the Environment

To obtain assertions about the logical be-
havior of the protocol system, a few assumptions
are needed about the environment in which HDLC
operates. At any time, channel Cj contains a
(possibly empty) sequence of messages sent by Py,
for i=1 and 2. Messages in the channels may be cor-
rupted by noise, but not reordered or duplicated.
When Py sends a message, that message is appended
to the tail of the message sequence in C;. When the
channel C; is not empty, the first message (at the
head of the message sequence) can be removed and
passed on to P. (j#i), provided that the message is
not corrupted.” If the message is corrupted, it is
deleted and not passed on to P; (we assume a per—
fect error-detection mechanism}. The frame-level
functions of HDLC [IS0 79a} such as the frame for-
matting of HDLC messages, bit insertion/deletion to
make flags unique, error detection, etc., are not
considered as part of the entities P; and Py, but
have been included in the channel model. Finally,
messages in the channels have a bounded lifetime.
The first message in channel C; is deleted if it
has been in the channel for a specified time,
denoted by MaxDelayj.

2.2 Event—-driven Process Model

Each component of the protocol system (i.e.,
protocol entity or channel) is modeled as an event-—
driven process that manipulates a set of variables
local to itself and interacts with adjacent com~
ponents by message passing. An event-driven
process consists of events. The events of an en-
tity consist of message sends, message receptions
and changes internal to the entity. The events of
a channel correspond to transformations on the
channel message sequence. An event can occur only
if variables of the protocol system satisfy certain
conditions, referred to as the enabling condition

of the event. When an enabled event occurs, vari-
ables of the protocol system are affected. When-
ever an event-driven process has enabled events,
any one of them can occur. We assume fairness in
the choice of the event to occur.

2.2.1 Time variables and time events

For HDLC to function correctly, it is necces-—
sary that each HDLC protocol entity guarantees cer-
tain constraints on the time intervals between oc-

currences of events involving that entity. Also,
recall that messages in channels have bounded
lifetimes. Because (physical) time elapses at the

same rate everywhere, these time constraints give
rise to precedence relations between remote events
in different components. Furthermore, these
precedence relations are wvital to the proper
functioning of the HDLC protocol. We cannot ade-
quately model such a time-dependent system by using
only entity and channel events [SHAN 82c, SHAN
82a]. It is neccessary to relate the elapsed times
measured at different components. We do this by
introducing time variables in the components to
measure elapsed time in integer ticks, and time
events to age the time variables.

Each time variable takes its values from Ny =
{0f£,0,1,2,...}. A time variable is termed 1nact1ve

local time event that ages t (and t alone). Thus,
t is not directly coupled to any other time vari-
able. To specify its accuracy, we associate with t
a global time variable t* and a reset value to.
Whenever t is reset, both t* and t, are reset to
the same value. t* is affected by the global time
event just like any other global time wvariable.
The accuracy of local time variable t is specified
by its accuracy axiom which bounds t-t* at any
time. For exampie, the accuracy axiom
t-t*] < 1 + a(t*-ty) can specify a timer with max—
imum relative error a in its clock frequency (Off-
Off is treated as 0).

In this model, neither the local time event of
t nor the global time event can occur, if such an
occurrence would violate the accuracy axiom. By
placing additional constraints on the set of al-
lowed values for time variables, other types of
time constraints satisfied by a component can be
modeled. For example, let t be a time variable
that is reset to O by event e, and reset to Off by
event e Let D be a specified delay. Then, to
model the time constraint that e, occurs no later
than D time units since the occurrence of e we
include (t<D) in the enabling condition of the time
event of t. Such constraints on time events are
known as time axioms. (For a more detailed presen-
tation, the reader is referred to [SHAN 82c, SHAN
82al.)

2.2.2 Messages of the protocol model

The messages of the protocol system have mul-
tiple fields, and are specified in terms of message
types. A message type M is specified by a tuple of
the form (M’FI’FZ""’Fn)’ where n>0. The first
component contains the name of the message type and
is a constant. The other components (if any) are
the fields of the message type. Each field is a
parameter that can take values from a specified
set. We shall refer to (M,F,Fj,...,F;) as the
format of message type M. The messages sent by each

if its value is Off, else it is termed active. The
value of a time variable can be changed in only two
ways. First, it can be aged by a time event. When
an active time variable. is aged, its value is in-
cremented by 1; when an inactive time variable is
aged, its value is not affected. Second, a time
variable in a component can be reset to any value
in N. by a system event involving that component.
Thus, for an active time variable, the difference
between its current value and the value it was last
reset to, indicates the time elapsed since the last
reset.

We will use two types of time variables in our
model: global time variables and local time

variables. All global time variables in a system
model are aged by the same time event, referred to
as the global time event. Thus, all active global
time variables are coupled. The global time event
models the elapse of physical time in the protocol
system model. Global time variables are typically
used to model time constraints that are satisfied
by components without the use of timers.

Local time variables are used to model the

timers that are implemented in system components.
To each local time variable t there is a unique

40

entity are specified by a 1list of such message
types.

2.2.3 Variables of the entities and channels

Each protocol entity has a set of variables,
each with a specified domain of values. Some of
these variables can be auxiliary variables that are
not implemented, but which - are wuseful in the
specification/verification of the protocol system.
Also, some of these variables can be time variables
used in modeling time constraints satisfied by the
entity.

In channel Ci’ we associate with every message
in transit a global time value that indicates the
time spent by that message in the channel. This
time value is referred to as the age of the mes-
sage. For channel Cj, we define Channel; as the
variable that represents, at any time, the sequence
of (message,age) pairs in Cyie

2.2.4 Events of the protocol model

The events of the protocol system model can be
categorized into entity events, channel events, and

time events. We will describe them in that order.

There are three types of entity events. We
describe these events for entity Pi.

1. For each message type M with format
(M’Fl""’Fn) sent by P., there is a Send M
event. This event is enatled if the values of
the variables of Py satisfy a specified ena-
bling condition predicate. Its occurrence ap—
pends an M-type message (M,f;,...,f) to the
tail of Channel;, and updates the values of
variables of Pi (fk/is an allowed value of

Fi)e
2. For each message type M with format
(M,Fy,...,F) sent by Pj(j#i), there is a
Rec M event. This event iS enabled if the en-
tity variables of P; satisfy a specified
predicate, and the first message in Channel.
is any M—-type message (M,fl,...,fn). Its oc=
currence removes the message (M,f},...,f)
from Channel., and updates the values of
variables of ﬂi’

3. An internal event of Py involves no mes-
sages. It is enabled if the entity variables
of P; satisfy a specified predicate. Its oc—
currence updates the values of the entity
variables. Internal events are used to model
interactions of the entity with its local
user, channel controller, as well as timeouts
and other internal transitions of the entity.

Note that both send and receive events affect the
state of a channel, as well as the state of the en-
tity.

We now describe the channel events. For i=1l

and 2, the channel loss event for channel C; is en-

i
abled whenever Channel; is not empty. Its occur-
rence deletes the first (message,age) pair in
Channeli. (Recall that the channel behavior in

Section 2.1 assumes that only the first message in
each channel may be lost.)

We now define the local time events and the
global time event for the protocol model. For each
local time variable t in Pi’ there is a local time
event whose occurrence ages t; this event is en-
abled if its occurrence does not cause t to violate
its accuracy axiom or any time axiom involving
t. There is one global time event whose occurrence
ages all global time variables, including the age
values in Channel; and Channel,. This time event
is enabled if its action does not cause any of the
time or accuracy axioms to be violated, or result

in an age value in Channel; that exceeds MaxDelayy
for i=1 and 2.

For each entity, it is assumed that its im-—
plementation enforces mutual exclusion between the
occurrences of events of that entity. Furthermore,
we assume that simultaneous occurrences of events
in different components of the protocol system can
be represented as an arbitrary sequence of occur-
rences of the same events. This latter assumption
is reasonable because events in communication
protocol systems can usually be defined in such a
way that their occurrences are instantaneous.

yal

2.3 HDLC Messages

We shall now describe the HDLC messages that
are sent by P; and Py. Recall that messages are
specified in terms of message types, and that the
format of each message type is a tuple in which the
first component is the name, and the other com-
ponents are the fields. The interested reader
should compare our message types with the three
HDLC frame formats in [ISO 79] and note the
similarities.

Messages sent by P,

We now list the message types sent by P,. Each
of these message types has a Poll bit field
(abbreviated as P field) that can take the value 0
or 1. Any message with the P field set to 1 is
referred to as a Poll.

1. (U,P,Command) This U message type represents
the Unnumbered frames sent by P; for connec-
tion management. The Command field can take
the value SARM or DISC. SARM stands for Set
Asynchronous Response Mode, and requests Py
to go on-line. DISC stands for Disconnect,
and requests 25 to go off-line.

2. (1,P,Data,NS,NR) This I message type
represents the Information frames sent by Py
for transporting data blocks to P,. Let
DATABLOCKS denote the set of data blocks that
can be transported by the HDLC protocol. The
Data field contains a user data block, and
can take any value from DATABLOCKS. NS and NR
are sequence numbers that take values from
{0,1,...,N-1}. (N is 8 for normal HDLC opera-
tion and 128 for extended HDLC operation.)
NS is referred to as the send sequence
number, and is used to identify the position
of the data block in the sequence of user
data blocks. Successive user data blocks are
sent with increasing send sequence numbers
(modulo N). NR is referred to as the receive
sequence number, and indicates the send se-
quence number of the I frame from P, next ex-
pected at P;. NR is an acknowledgement for
data flowing in the reverse direction (i.e.,
from P, to Pl)’ and acknowledges all data
blocks with send sequence numbers up to NR-1.
Finally, an I frame with P field set to 1 in-
dicates that Py is ready to receive data from

Py

3. (S,P,RStatus,NR) This S message type
represents the Supervisory frames sent by P;
for flow control and acknowledgement. The
RStatus field can take the value RR or RNR,
indicating that P) is respectively Ready or
Not Ready to receive data from P,. The NR
field is the receive sequence number and has
been described above.

Messages sent by P2

We now list the message types sent by Py. Each
of these message types has a Final-bit field
(abbreviated as F field) that can take the value 0

or 1. Any message with the F field set to 1 is
referred to as a Final. P, responds to a received
Poll by sending a Final at the earliest oppor-
tunity.

1. (U,F,Response) This U message type
represents the Unnumbered frames sent by Pj.
The Response field can take the value UA or
DM. UA stands for Unnumbered Acknowledgement,
and is sent to acknowledge reception of, and
compliance with a U command received from P,.
DM stands for Disconnected Mode, and is sent
when Py is off-line as a response to any mes-—
sage (except for SARM) received from P;.

2. (I,F,Data,NS,NR) This I message type
represents Information frames sent by P,. The
Data, NS and NR fields are similar to those
in the I frames sent by P; (except that the
roles of P; and P, are interchanged). Also,
an I frame with the F field set to 1 in-
dicates that P, is ready to receive data from
Pl'

3. (S,F,RStatus,NR) This S message type
represents Supervisory frames sent by P2. The
RStatus and NR fields are similar to those in
the S frames sent by Py (except that the

roles of P; and P, are interchanged).

Note that message types sent by Py and P, have
similar names. This should however cause no
confusion. (The P and F fields actually occupy the

same bit position in HDLC frames. That bit is
referred to as the P/F bit [ISO 79a].)

2.4 Variables of the HDLC Protocol Entities

We now list the variables of the protocol en-
tities.

Variables of P1

Py, the primary HDLC entity, has the following
variables (the domain of each variable is also
listed using a Pascal-like notation):

{The following variables are primarily used
in the Poll/Final cycle}

Poll bit
Poll Timer

(0,1);
(0£f£,0,1,2,...,PollTimeoutValue);
{local time variable}
(OF£,0,1,2,....);

{global time variable
associated with Poll Timer}
(0,1, ...,MaxRetryCount);

$Poll Timer

Poll Retry Count :

{The following variable is primarily used

in connection management}
Mode (Open, Opening, Closed,
Closing, LinkFailure);

{The following variables are primarily used
in sending data blocks to Py}
Source : array[O..] of DATABLOCKS;
{history variable of data blocks}
User in, S, A, : O.. ; {pointers to Source}
VS, VA, VCS : 0..N-1;
{pointer variables modulo N}

a2

Checkpoint Cycle : Boolean;
Remote RStatus : (RR,RNR);

{The following variables are primarily used
in receiving data blocks from P2}

Sink : array[0O..] of DATABLOCKS;

{history variable of data blocks}
User out, R : 0.. ; {pointers to Sink}
VR : 0..N-1; {pointer variable modulo N}
Local RStatus : (RR,RNR);

Variables of P,

Py, the secondary HDLC entity, has the follow-
ing variables (along with their domains):

{The following variables are primarily used
in the Poll/Final cycle}

Final bit : (0,1);
$Response Time (0£f£,0,1,2,...,MaxResponseTime);
{auxiliary global time variable}

{The following variables are primarily used
in connection management}

Mode
U _Response :

(Open, Opening, Closed, Closing);
(UA, DM, None);

{The following variables are primarily used
in sending data blocks to Py}
Source : array([0O..] of DATABLOCKS;
{history variable of data blocks}
User in, S, A : 0.. ; {pointers to Source}
VS, VA, VCS : 0..N-1;

{pointer variables modulo N}
Checkpoint Cycle : Boolean;
Remote RStatus : (RR,RNR);

{The following variables are primarily used in
receiving data blocks from Py}

Sink : array[0..] of DATABLOCKS;

{history variable of data blocks}

User out, R : 0.. ; {pointers to sink}

VR : {pointer variable modulo N}

0..N-1;
Local RStatus : (RR,RNR);

(Note that many variables in Py and P, have
the same names. Whenever this can cause ambiguity,
we will qualify the variable names with 1 or 2;
e.g., Modey, Modez.)

2.5 Events of the HDLC Protocol

The events of the HDLC protocol system are
formally specified in Tables 1-4. An informal
description follows in the succeeding subsections.
The events of the entities are shown in Tables 1
and 2. The program statements in upper case
(POLL SENT, FINAL RECEIVED,
INITIALIZE SEND VARIABLES, etc.) stand for code
segments that are shown in Table 3. When used in an
entity event, the variables they refer to are the
variables of that entity. We use the notation & and
8 to refer to addition modulo N and subtraction
modulo N respectively. The time events of the HDLC
protocol are specified in Table 4. The initial

state of this protocol is given by the following
value assignments to the protocol system variables:

Poll bit=0, Poll_Iimer=$Poll‘Timer=Off,
Poll Retry Count=0 and Mode=Closed in P
Final bit=0, $Response_Time=0ff, Mode=Closed and

U Response=None in P,; both Channel, and Channel,
are empty. We now describe the operation of the
HDLC protocol informally.

2.5.1 Poll/Final cycle events

We first describe the P/F cycle involving the
Poll and Final messages. Recall that P, responds to
a received Poll by sending a Final at the earliest
opportunity. A Poll is said to be outstanding (at
P;) if it has been sent and its acknowledging Final
is being awaited. At any time, at most one Poll may
be outstanding. Poll bit set to 1 indicates that
the next message sent by Py must be a Poll message.
Final bit set to 1 indicates that the next message
sent by P, must be a Final message. Poll Timer is
used to measure the time elapsed since the last
Poll was sent. When Poll Timer is Off, there is no
Poll that is outstanding and P; can send a Poll.
Poll Timer is started (reset to 0) when the Poll is
sent. Poll Timer is stopped (reset to Off) either
when the acknowledging Final is received, or when a
time duration PollTimeoutValue has elapsed. In the
latter case, referred to as a Timeout event (see
Table 1), P} presumes that either the Poll or the
Final was lost.

Poll Timer is treated as a local time vari-
able, and_$Poll_Iimer is its associated global time
variable. We shall consider its accuracy axiom to
be [Poll Timer - $Poll Timer| < 1 + a($Poll Timer),
where a is the maximum relative error in
Poll Timer”s clock frequency. (Since any reset to
Poll:Timer leaves it either Off or O, there is no
need to specify an associated reset value for
Poll_Iimer.)

$Response Time is an auxiliary global time
variable that is active if (and only if) a Poll has
been received and its Final has not yet been sent;
it then indicates the (global) time elapsed since
the reception of the Poll. MaxResponseTime denotes
the maximum time needed by P, to respond to a Poll.
This time constraint is modeled by assuming that Py
satisfies the following local time axiom:
$Response Time < MaxResponseTime. By having
PollTimeoutValue > (l+a)(MaxDelay; + PollRespon-—
seTime + MaxDelay;), P; ensures that the following
P/F cycle properties hold:

(1) A Final received at P; is the response to
the last Poll sent by Pj.

(ii) A Poll received at P, was sent after the
last Final sent by P, left channel C, (the
Final may not have been received by Pp).

Poll Retry Count indicates the number of Timeouts
that have occurred since the last Final was
received. If this exceeds MaxRetryCount, P; assumes
that the data link (either Cy, Py or C2) has broken
down, and enters a LinkFailure mode, which can be
exited only by user intervention.

43

2.5.2 Connection management events

Mode in entity P; indicates the status of the
data link as perceived by Pj. Open/Closed are st-
able states indicating that P is on-line/off-line.
The user sets Mode to Opening/Closing to request P;
to open/close the data link with the remote user.
P; then polls P, with appropriate U commands
(SARM/DISC), and wupon receiving acknowledgement
sets Mode to Open/Closed. LinkFailure indicates
that P; perceives the data link to have broken down
(in our model, this is due to Poll Retry Count ex-
ceeding MaxRetryCount).

Mode in entity P, is similar to that in Py,
except that LinkFailure is not one of its allowed
values. Open/Closed are stable states.
Opening/Closing indicate that Py has received a
SARM/DISC command and has not yet sent the UA ack-
nowledgement. Once the acknowledgement is sent,
Mode is set to Open/Closed. U Response indicates
the kind of U message to be sent by P,.

2.5.3 Data transfer and flow control events

Next we describe the data transfer variables
at P,. Source is a history variable that records
the &ata blocks given by the local user to P, to
send to the remote user. User in, S and A are three
pointers to Source. User_in points to the location
in Source into which the local user places his next
data block. S points to the data block in Source to
be next sent to Pj. A points to the data block in
Source to be next acknowledged by P,. (See Figure
2(a)). VS is referred to as the send state
variable, and indicates the send sequence number of
the next data block to be sent. VA is referred to
as the acknowledgement state variable, and in-
dicates the send sequence number of the data block
to be next acknowledged. VS (VA) points to the same
data block in Source as S (A). Checkpoint Cycle and
VCS are explained later. Remote RStatus is RR (RNR)
if the latest flow control information from P, in-
dicates that P, is Ready (not Ready) to receive
data. Note that data blocks Source[A], Source[A+l],
««., Source[User_in-1] have to be saved in a local
send buffer of P,. Let SBuffSize be the size of
this buffer.

Sink is a history variable that records the
data blocks received from P, and accepted for
delivery to the local user. R and User out are
pointers to Sink. R points to the location in Sink
in which to place the next data block received in
sequence from P,. User out points to the data block
in Sink to be next delivered to the local user. VR
is referred to as the receive state variable, and
indicates the sequence number of the data block
next expected. (See Figure 2(b).) VR points to the
same data block as R. Local RStatus is RR (RNR) if
P; is Ready (Not Ready) to receive data blocks from
Py. Note that data blocks Sink[User_out],
Sink[User out+l],...,Sink[R-1] have to be saved in
a local receive buffer. Let RBuffSize denote the
size of this buffer. Local RStatus reflects whether
this buffer is full or not.

The data transfer variables of P, are similar
to those of Py (except that the roles of Py and Py
are interchanged).

At each entity, data can be sent and received
only when Mode is Open. At each entity, each time
that Mode is set to Open, the data transfer vari-
ables are initialized as follows: User in=S=A=0,
VS8=VA=VCS=0, R Checkpoint Cycle=False,
Remote RStatus=RR, User‘put=R=O, _VR=O, and
LocaléﬁStatus=RR.

We will now describe informally the data
transfer from P; to Py. (Let Figure 2(a) represent
the Source in Py, and Figure 2(b) represent the
Sink in P,.) When the user at P; wants to send a
data block, he places it in Source[User in], and
increments User in by 1. When P; sends an I frame,
the Data field contains Source[S], the NS and NR
fields contain the current values of VS and VR. S
is incremented by 1 and VS by 1 (modulo N). When an
I frame arrives at P,, if its NS equals the current
value of VR, and Local RStatus equals RR, then P,
accepts the data block in the data field and places
it in Sink[R]. R is then incremented by 1, and VR
by 1 (modulo N). When the user at P, extracts the
data block from Sink[User out], User out is incre-
mented by 1. When P; receives an NR, that NR points
to some data block in Source[A}],
Source[A+1],...,Source[S]. VA is updated to equal
NR, and A is updated to point to the data block now
outstanding.

Because the sequence numbers are cyclic, the
number of outstanding blocks must never exceed N-1
(i.e., S-A should always equal (VS-VA) mod N);
otherwise, a received sequence number will not
point to a unique outstanding data block. Whenever
a Poll is sent when data blocks are outstanding,
Checkpoint Cycle is set to True, and VCS is set to
(VS-1 mod N) the NS of the most recently sent data
block. Checkpoint Cycle is set to False either when
an NR equalling or exceeding VCS is received, or
when a Final is received. In the latter case, if
the NR with the Final does not acknowledge VCS, Py
concludes that I frames were lost (because of the
P/F cycle properties). VS and VA are then set to
equal the received NR. S and A are adjusted accord-
ingly. This method of checking data transfer
progress (and initiating retransmission if
necessary) is referred to as checkpointing.

In addition, P, sends flow control information
indicating its current Local RStatus to P;. This
information is sent in S frames, as well as in I
frames that have their P field set to 1.

The data transfer from P, to P;, and its flow
control is similar, except that the roles of the
Polls and Finals are interchanged in checkpointing.
However, note that P can initiate a
Checkpoint_Cycle whereas P, cannot.

2.5.4 Time events

The time events of the protocol system are
Shown in Table 4. Poll Timer Tick is the local
time event for Poll Timer. Global Tick is the
global time event of the system. The procedure Age
(in the actions of the time events) ages all its
argument time variables by one tick. Note that the
global time event cannot age $Response Time beyond
MaxResponseTime, nor can it cause a meégage to stay

in Channel; for longer than MaxDelay;, nor can it
cause Poll Timer to be more inaccurate than as
specified by its accuracy axiom. Similarly
Poll Timer Tick cannot cause Poll Timer to be more
inaccurate than as specified by its accuracy axiom.

3. SAFETY PROPERTIES OF THE HDLC PROTOCOL

The HDLC protocol described has three distin-
guishable functions offered to its users: connec—
tion management, and one-way data transfers in op-
posite directions. We will now state assertions
that specify logical safety behavior of the HDLC
protocol concerning each of these functions. Our
analysis of the HDLC protocol was done through the
use of protocol projections. An image protocol was
constructed from the HDLC protocol for each of the
three functions of interest. These image protocols
were then verified to satisfy the safety properties
described below. From the properties of image
protocols, these assertions also hold for the HDLC
protocol [LAM 82b, SHAN 82a). It was easier to ob-
tain the assertions from the image protocols than
from the HDLC protocol, because each image protocol
is smaller, both in the number of variables and in
the complexity of event descriptions. The image
protocols and proofs are given in [SHAN 82a, SHAN
82b]j.

We note that the Poll/Final cycle displays a
time-dependent behavior. The essence of this time-—
dependent behavior is captured by the following
assertion:

Poll Timer = 0ff => No Poll in Channel1
and Final bit = 0
and no Final in Channelz

This says that when Poll Timer is Off (e.g., im—
mediately after a Poll_T{meout occurrence), suf-
ficient time has elapsed since the last Poll was
sent so that the following hold: (a) the Poll is
no longer in Channel;, (b) if the Poll was received
by P,, then the acknowledging Final has already
been sent, and (c) the acknowledging Final is no
longer in Channel,. This assertion allows us to
deduce the P/F cycle properties described in Sec-
tion 2.5.1. The HDLC protocol has been verified to
satisfy the above assertion [SHAN 82b}. (We note
that our event-driven process model includes
measures of time which have been incorporated ex-
pressly for verifying assertions of time-dependent
behavior.)

We will now state the logical safety
properties satisfied by the HDLC protocol concern-
ing each of the three functions.

3.1 Safety Properties for Connection Management

For this HDLC protocol, the following asser-
tions concerning connection management is invariant
(proof in [SHAN 82b]):

1. Mode; = Open => Mode, = Open
and no U frame in Channel;
and no U frame in Channel,
and U Response = None

2. Modej = Closed => Modey = Closed
and Channel; is empty
and Channel, is empty
and U Response = None

These assertions specify that the offline/online
states of Py and P, are synchronized, and that the
channels are not utilized when the two entities are
offlinme.

3.2 Safety Properties for P; to P, Data Transfer

For the function of one-way data transfer from
P; to P,, the following two desirable properties
have been verified to hold for the HDLC protocol
(proof in [SHAN 82b]):

If Model = Modez = Open then
1. Sink,[i] = Source;[i] for 0 <i < User out,
2. 0 <4y <8, <A +N

The first says that while the data link is open,
data is transferred in sequence from Py to Py. The
second says that the maximum number of outstanding
data blocks (hence the minimum storage requirement)
at Py is N-1.

3.3 Safety Properties for Py to P; Data Transfer

For the function of one-way data transfer from
P, to P; the following two desirable properties
have been verified for the HDLC protocol (proof
in [SHAN 82b]):

If Mode2 = Mode, = Open then
1. Sink;[i] = Sourcey[i] for QSi(User_outl
2. 0< 4, <8, <A +N

The first says that while the data link is open,
data is transferred in sequence from Py to Py. The
second says that the maximum number of outstanding
data blocks (hence the minimum storage requirement)
at P, is N-1.

4. CONCLUSION

We have used an event-driven process model to
specify and verify a version of the HDLC protocol
between two communicating protocol entities. The
HDLC protocol specified 1is based upon the
Asynchronous Response Mode (ARM) of operation, and
includes all of its important features. It uses the
basic repertoire of HDLC commands and responses
(with the exception of the CMDR response), and in-
cludes the use of poll/final messages for check-
pointing and connection management, timers for
timeouts, sliding windows of size N for data
transfers, and ready/not ready messages for flow
control.

The HDLC protocol 'has three distinguishable
functions: connection management, and one~way data
transfers between the two protocol entities. We
stated assertions that specify desired logical
safety properties of the HDLC protocol concerning
the three functions. These assertions have been
verified to hold for the HDLC protocol specified.
The verification was done through an application of

45

the method of projections. The image protocols of
HDLC and proofs of the assertions can be found
in [SHAN 82b]. The theory of projections and the
method to construct image protocols are presented
in [LAM 82b, SHAN 82a].

REFERENCES

[BOCH 78] Bochmann, G. V., "Finite State Descrip-
tion of Communication Protocols,”
Computer Networks, Vol. 2, 1978.
International Standards Organization,
"Data Communications—-HDLC Procedures—-—
Frame Structure,” Ref. No. ISO 3309,
1979.

International Standards Organization,
"Data Communications—-HDLC Procedures—-—
Elements of Procedures,” Ref. No. ISO
4335, 1979.

International Standards Organization,
"Data Communications--HDLC Unbalanced
Classes of Procedures,” Ref. No. IS0
6159, 1980.

Lam, S. S. and A. U. Shankar, "Protocol
Projections: A Method for Analyzing
Communication Protocols,” Conf. Rec.
Nat. Telecomm. Conf., November 1981,
New Orleans.

Lam, S. S. and A. U.
"Verification of Communication
Protocols via Protocol Projections,”
Proc INFOCOM™ 82, April 1982, Las Vegas.

[ISO 79a]

[ISO 79b]

[1S0 80]

[LAM 81]

[LAM 82a]} Shankar,

[LAM 82b] Lam, S. S. and A. U. Shankar,
Verification via Projections,™ Tech.
Rep. 207, Dept. of Computer Sciences,

Univ. of Texas at Austin, August 1982.

"Protocol

[SHAN 82a]) Shankar, A. U., "Analysis of Communica-
tion Protocols via Protocol
Projections,” PhD thesis, Dept. of
Elec. Eng., Univ. of Texas at Austin,
December 1982.

Shankar, A. U. and S. S. Lam, "An HDLC
Protocol Specification and its
Verification using Image Protocols,"”
Tech. Rep. 212, Dept. of Computer
Sciences, Univ. of Texas at Austin,
September 1982.

Shankar, A. U. and S. S. Lam, "On Time-
Dependent Communication Protocols and
their Projections,” Proc. 2nd Int.
Workshop on Protocol Spec., Test. and
Verif., May 1982, Idyllwild, CA.

[SHAN 82b]

[SHAN 82c]

[STEN 76] Stenning, N. V., "A Data Transfer
Protocol,™ Computer Networks, September
1976.

[ZIMM 80] Zimmermann, H., "OSI Reference Model--

The IS0 Model of Architecture for Open
Systems Interconnection,” IEEE Trams.
on Commun. COM-28(4), April 1980.

Event Name

1.

o
.

10.

11.

12.

User req_conn
User req_disc

User puts_data

User gets data

Send U

Rec U

Poll Timeout

Request Poll

Send I

Send S

Rec I

Rec S

TABLE 1. EVENTS OF PRIMARY HDLC ENTITY Py

Enabling Condition Action

Mode # Opening or Closing Mode := Opening

Mode = Open Mode := Closing

Mode = Open {User places data in Source[User in]}

and (User in-A<SbuffSize) User in := User in + 1

Mode = Open {User extracts data block from Sink[User out]}
and (R-User out > 0) User out := User_out + 1;
if Local RStatus = RNR then Local RStatus := RR

Mode = Opening if Mode = Opening then Command:=SARM;

or Mode = Closing if Mode = Closing then Command:= DISC;

and Poll bit =1 put(Channely, (U,1,Command));
POLL_SENT

first(Channely) = U get(Channel,, (U,F,Response));

if Response = DM then Mode := Closed;
if (Response = UA) and (Mode = Closing)
then Mode := Closed;
if (Response = UA) and (Mode = Opening)
then begin Mode := Open;
INITIALIZE SEND VARIABLES;
INITIALIZE:REC.VARIABLES
end;
if F =1 then FINAL_RECEIVED

Poll_IimepZPollTimeoutValue Reset(Poll Timer, Off);
if Poll Retry Count < MaxRetryCount

then Poll_ﬁétry_pount := Poll Retry Count + 1
else Mode := LinkFailure
Poll Timer = Off Poll bit :=1
Mode = Open put(Channelq, (I,Poll bit,Source[S],VS,VR));
and VS®VA < N-1 VS := VS e 1l; S :=5 + 1;
and § < User in if Poll bit =1
and Remote RStatus = RR then begin CHECKPOINT SENT;
and not(Poll bit =1 POLL SENT
and Local RStatus = RNR) end
Mode = Open put(Channely, (S,Poll_bit,Local_RStatus,VR));

if Poll bit = 1
then begin CHECKPOINT SENT; POLL SENT end

Mode = Open get(Channel,, (I,F,Data,NS,NR));
and first(Channelz) =1 DATA NS RECEIVED; NR RECEIVED;

if F = 1 then begin CHECKPOINT RECEIVED;
FINAL RECEIVED;

Remote RStatus := RR
end
Mode = Open get(Channe12,(S,F,RStatus,NR));
and first(Channel,) = S Remote RStatus := RStatus; NR RECEIVED;

if F = 1 then begin CHECKPOINT RECEIVED;
FINAL_RECEIVED;
end

46

TABLE 2.

Event Name

Enabling Condition

1. User puts data Mode = Open

and (User_in-A<SbuffSize)
2. User gets data Mode = Open
and (R - User out > 0)

3. Rec U first(Channely) = U
and U Response # UA
4. Send U U Response # None
5. Send I Mode = Open
and VS6VA < N-1
and S < User in
and Remote RStatus = RR
and not(Final bit =1
and Local_RSTATUS = RNR)
6. Send S Mode = Open
7. Rec I first(Channel;) = I
and U Response # UA
8. Rec_S first(Channell) =S

and U Response # UA

EVENTS OF SECONDARY HDLC ENTITY P,

Action

{User places data block in Source[User in]}
User_in := User in + 1

{User extracts data block from Sink[User out]}
User out := User out + 1;
if Local RStatus = RNR then Local RStatus :

RR

get(Channel;, (U,P,Command));
if command = SARM begin Mode Opening;
U Response := UA

end;
if (Command = DISC) and (Mode
then begin Mode := Closing;
U Response := UA

Open)

end;
if (Command = DISC) and (Mode = Closed)
then U Response := DM;
if P = 1 then POLL_RECEIVED

put(Channel,, (U,Final bit,U Response));

U Response := None;
if Mode = Closing then Mode := Closed;
if Mode = Opening

then begin Mode := Open;
INITIALIZE SEND VARIABLES;
INITIALIZE REC VARIABLES
end -7
if Final bit

1 then FINAL SENT

put(Channel,, (I,Final bit,Source[S],VS,VR));
VS := VS ©1; S :=8 + 1;
if Final bit =1
then begin CHECKPOINT SENT;
FINAL SENT;
end -

put(Channely, (S,Final bit,Local RStatus,VR));
if Final bit =1
then begin CHECKPOINT SENT; FINAL SENT end

get(Channel;, (I,P,Data,NS,NR));

if Mode = Closed then U Response := DM;
if Mode = Open
then begin
DATA NS RECEIVED; NR RECEIVED;
ifP=T1 -

then begin CHECKPOINT RECEIVED;
POLL_RECEIVED;
end
end

get(Channely, (S,P,RStatus, NR));
if Mode = Closed then U Response := DM;
if Mode Open then begin
Remote RStatus
NR RECEIVED;
if P =1
then begin
CHECKPOINT RECEIVED;
POLL RECEIVED
end

:= RStatus;

end

47

TABLE 3. DETAILS OF

POLL_SENT::

CODE SEGMENTS USED IN TABLES 1-2

DATA NS_RECEIVED::

Reset(Poll Timer, 0); -Poll bit := 0; if VR = VS and Local RStatus = RR
then begin Sink[R] := Data;
FINAL RECEIVED:: R:=R+ 1; VR := VR 8 1;
Reset(Poll Timer, Off); Poll Retry Count := 0; if (R - User_out) = Rbuffsize
then Local RStatus := RNR;
POLL RECEIVED:: end;
Final bit := 1; Reset($Response Time, 0);
CHECKPOINT SENT::
FINAL SENT:: if VS # AS
Final_bit := 0; Reset($Response Time, Off); then begin Checkpoint Cycle := True;
VCS := Vs &1
INITIALIZE SEND VARIABLES:: end;
User_in := 0; S := 0; A := 0; VS := 0; VA := O3
Checkpoint Cycle := False; NR RECEIVED::
Remote RStatus := RRj if Checkpoint_Cycle and NR & VA > VCS & VA
then Checkpoint Cycle := False;
INITIALIZE REC VARIABLES:: A := A+ (NR & VA); VA := NR;
User out := 0; R := 0; VR := 0;
Local RStatus := RR; CHECKPOINT RECEIVED::
if Checkpoint Cycle
then begin Checkpoint Cycle := False;
VS := VA; S := A
end;
TABLE 4. TIME EVENTS FOR THE PROTOCOL SYSTEM
Event Name Enabling Condition Action

1. Poll Timer Tick (Poll_Timer - $Poll Timer) < a($Poll Timer)

2. Global Tick ($Poll Timer - Poll Timer) < a($Poll Timer)
and ($Response Time < MaxResponseTime)
and (all ages in Channely < MaxDelayl)
and (all ages in Channel, < MaxDelayz)

empty
User_in —
data blocks empt
awaiting Pty
transmission
i data blocks
in send
—>
(vs) 8 buffer
data blocks received data
sent but not yet blocks await-
acknowledged ing delivery
(VA) A —> to user
E data blocks received data
2 sent and blocks deliv-
1 acknowledged ered to user
0

(a) source array

Figure 2. Pictorial representation of pointer positions

source and sink history arrays

48

Age(Poll Timer)

Age($Poll Timer);
Age(SResponse Time) ;

Age(all ages in Channel;);
Age(all ages in Channelz);

<— R (VR)

<—User_out

-

(b) sink array

for

