SPECIFICATION AND VERIFICATION OF TIME-DEPENDENT COMMUNICATION PROTOCOLS

A. Udaya Shankar
Department of Computer Science
University of Maryland
College Park, Maryland 20742

Simon S. Lam
Department of Computer Sciences
University of Texas
Austin, Texas 78712

ABSTRACT

Real-life communication protocol systems are invariably large time-dependent distributed systems whose correct functioning depends upon time relationships between system event occurrences. We present a model for specifying and verifying such time-dependent systems. Each component (protocol entity or channel) of the protocol system is specified by a set of state variables and a set of events. Each event is described by a predicate that relates the values of the system state variables immediately before to their values immediately after the event occurrence. The predicate embodies specifications of both the event's enabling condition and action. Measures of time are explicitly included in our model. Furthermore, clocks are not coupled and they can tick at any rate within some specified error bounds. Inference rules for both safety and liveness properties are presented. We have applied our methodology to the verification of several large communication protocols including a version of the High-level Data Link Control (HDLC) protocol. A relatively small data transfer protocol is modeled herein for illustration. This protocol can reliably transfer data over bounded-delay channels that can lose, reorder and duplicate messages in transit. We have specified and verified the protocol's safety, liveness and real-time properties.

1. INTRODUCTION

Real-life protocol systems are typically large time-dependent systems. By time-dependent, we mean that they display real-time behavior (in the form of time constraints between system event occurrences) that is crucial to their logical correctness as well as their performance [16, 17]. For example, an entity must send an acknowledgement to a message within a specified response time of receiving that message; the time duration that a message resides in a channel is less than a specified maximum channel delay and/or larger than a specified minimum delay, the time between an entity crashing and its re-entry into the protocol system must satisfy certain bounds, etc. Examples of such protocols include the High-level Data Link Control (HDLC) protocol, the Transmission Control Protocol (TCP), Carrier Sense Multiple Access (CSMA), etc. [8, 15, 7, 3]. (In each of these cases, we are
We describe an event-driven process model that is suitable for specifying and verifying such distributed systems, both time-dependent and time-independent. In this model, clocks are not coupled and they can tick at any rate within some specified error bounds. This real-time modeling is an extension of results initially presented in [16]. We have applied this model to the analysis of several nontrivial protocol examples: a version of the High-level Data Link Control (HDLC) protocol [17], the physical clock synchronization protocol of Lamport [18], and a transport-level protocol for reliable data transfer over bounded-delay channels that can lose, reorder, and duplicate messages in transit (using cyclic sequence numbers, timers, and timeouts). Only the last example appears in this paper.

Summary of the protocol model features

Our protocol system model differs significantly from other models in regards to both specification and verification aspects. Each component (protocol entity or channel) is specified by a set of state variables and a set of events. The events of a component manipulate the values of state variables local to the component and transfer messages to adjacent components. Each event is specified by a predicate that relates the values of the system state variables immediately before to their values immediately after the event occurrence. The predicate embodies specifications of both the event’s enabling condition and action. There is no algorithmic code in our model.

What we have is a compromise between implementation-dependent features (the state variables) and implementation-independent features (the use of predicates to specify events). It provides a very convenient and uniform specification of the safety, liveness, and even performance properties of the system. It allows for very simple inference rules for safety and liveness properties, system specifications that can be directly substituted into assertions used within proofs, and it simplifies our modeling of time measures and the application of projections. For example, we do not use any special notation (such as temporal logic [14]) to express liveness properties of unbounded-length paths in a system’s reachability graph. Instead, we describe such liveness properties in terms of inductive properties of bounded-length paths. Real-time system properties can usually be expressed as safety assertions.

Summary of the real-time modeling

We model the real-time behavior of systems by using discrete-valued time variables to measure the elapse of physical (real) time, and time events to age the time variables. By imposing certain conditions, referred to as accuracy axioms, on the occurrence of time events, we are able to model clocks realistically: our clocks are uncoupled and can tick at any rate within specified error bounds of a given rate. Additional conditions on the time events, referred to as time axioms, allow us to model all types of time constraints between system events. With accuracy and time axioms we can specify and verify the time-dependent behavior of distributed systems. We also formalize the notion of feasible time constraints; i.e., time constraints that can be realistically guaranteed by a component without any cooperation from the rest of the system.

One consequence of the time-dependent behavior of real-life communication network protocols is that if a protocol does not achieve progress (transfer of data, establishment of a connection, etc.) within a bounded time duration T, then the protocol resets or aborts. Hence, a liveness assertion such as “eventually (i.e., within a finite but unbounded time duration) a data block will be transferred” is not realistic. More appropriate is a real-time specification such as “if within a time duration T the data block is not transferred, then at least n retransmissions of the data block have occurred.” The model of real-time behavior, such real-time assertions. We model both types of progress example. In each case, there is a compact ver.

Summary of the rest of this paper

In Section 2, we present more details on our protocol system model. In Section 3, we state the conditions for the protocol model, and present the properties. In Section 4, a time-dependent data transfer protocol, Section 5, present safety, liveness and real-time properties.

2. MODELING MEASURES OF TIME

The elapse of physical time in any distributed system, such as clock oscillators, that issue some event, refer to such devices as local tickers. System ticks are any events that accumulate the number of elapsed time occurrences of some system event. We refer to these as system ticks.

For each local ticker i, there is a local occurrence age (increment) $\eta_i(t)$, that i is affected, this tick is effectively decoupled from the others, and would insist that all the time variables drive a unique component of the distributed system. In addition, there is an i-local constant η_i that is used to accumulate the number of local ticks since the system was initialized. The i-local ticks correspond to implemented clocks or timers.

The local and global time events are constrained by the accuracy axioms (below), the notation η_i.

Accuracy Axiom (below), the notation η_i. Let $\eta_i(t)$ be the local occurrence age (increment) $\eta_i(t)$. For all instants $a < b$, we have:

$$|\eta_i(b) - \eta_i(a)| \leq \max(1, \delta_i)$$

(This is a discrete analog of $|\eta_i - \eta(a)| \leq \delta_i$ in continuous time)

Recall that time variables can measure the elapse of physical time. Thus, by including time variables, we can model time constraints of the form “Global time variables have elapsed.” To model time constraints, we define elapsing time intervals,” we impose conditions on the values of time variables.

Time events will be allowed to occur only at the occurrence of time intervals. This modeling of real-time events does not get deadlocked. We show how to design events and to design ticks if the accuracy and time axioms correspond.
at least \(n \) retransmissions of the data block have occurred, all of which failed." With our model of real-time behavior, such real-time specifications can usually be stated as safety assertions. We model both types of progress specifications in our data transfer protocol example. In each case, there is a compact verification of the specification [18].

Summary of the rest of this paper

In Section 2, we present more details of our real-time modeling. In Section 3, we specify our protocol system model. In Section 4, we characterize safety and liveness properties for the protocol model, and present the inference rules used to establish these properties. In Section 5, a time-dependent data transfer protocol example is specified. In Section 6, we present safety, liveness and real-time properties for the example protocol.

2. MODELING MEASURES OF TIME

The elapsed physical time in any distributed system component is indicated by devices, such as crystal oscillators, that issue "ticks" at (almost) regular time intervals. We refer to such devices as *local tickers*. Systems typically employ counters (i.e., clocks and timers) to accumulate the number of elapsed ticks generated by a local ticker since the occurrence of some system event. We refer to such counters as *time variables*.

For each local ticker, there is a local *time event* (corresponding to a tick) whose occurrence ages (increments) all time variables driven by the ticker. Since no other ticker is affected, this ticker is effectively decoupled from other tickers. In a distributed system, we would insist that all the time variables driven by a local ticker must lie within a single component of the distributed system. In addition to being aged, a time variable can be *reset* to some value by an event of its component, thereby indicating the time elapsed since that event occurrence.

In order to keep local tickers within specified drifts, we include in our model a hypothetical ticker, referred to as the *global ticker*, that is assumed to tick at an absolutely constant rate. For each local ticker \(i \), let \(\eta_i \) denote the number of ticks issued since system initialization, and let \(\epsilon_i \) denote the maximum error in the tick rate. Let \(\eta \) denote the number of global ticks since initialization. The \(\eta \)'s (auxiliary) time variables that do not correspond to implemented clocks or timers, and can never be reset by any system event. The local and global time events are constrained so that each local ticker \(i \) satisfies the following *accuracy axiom* (below, the notation \(\eta(a) \) refers to the value of \(\eta \) at instant \(a \)):

\[
\text{AccuracyAxiom}(\eta_i, \eta) : \text{For all instants } a \text{ and } b \text{ where } b \text{ is later than } a, \\]
\[
| (\eta_i(b) - \eta_i(a)) - (\eta(b) - \eta(a)) | \leq \max(1, \epsilon_i(\eta(b) - \eta(a))).
\]

(This is a discrete analog of \(|1 - \frac{d\eta_i}{d\eta} | \leq \epsilon_i \) in [13].)

Recall that time variables can measure the time elapsed since a system event occurrence. Thus, by including time variables in the enabling condition of a system event \(e \), we can model time constraints of the form "event \(e \) will occur within certain elapsed time intervals," we impose conditions, referred to as *time axioms* on the allowed values of time variables.

Time events will be allowed to occur only if their occurrence will not violate any accuracy or time axioms. This modeling of real-time behavior is valid provided that the time events do not get deadlocked. We have shown that the tickers will continue to accumulate ticks if the accuracy and time axioms correspond to *feasible constraints* [18].
3. DISTRIBUTED SYSTEM MODEL

For the sake of brevity, the special configuration and channel behavior of the protocol example in Section 5 are considered. (See Fig. 1.) P1 and P2 are two protocol entities connected by bounded-delay channels C1 and C2. For i = 1 and 2, any message attempting to stay in channel Ci for longer than a specified time MaxDelay, is lost (e.g., removed by some intermediate network node [15, 10]). (For arbitrary network configurations with various types of channels, see [18].)

Messages and state variables

For i = 1 and 2, the messages sent by Pi are categorized into message types. Each message type q specifies multi-field messages of the form (q, f1,...,fj) where n ≥ 0 and fi is a parameter ranging over a specified set of values. (Henceforth, each variable and parameter used in our model is assumed to take values from a specified domain of values.) Let Qi be the set of message types sent by Pi and received by Pi (j ≠ i).

Let vi be the set of state variables of Pi. vi can have auxiliary variables used for verification only and time variables used for modeling time constraints. Assume that all time variables in vi (if any) are driven by a local ticker with count ti and maximum error εi. A time variable v in vi may be constrained by a time axiom.

For each message in channel Ci, we associate with the message a time variable age that indicates the age of the message (time spent in the channel). Let (z, e) be the sequence of (message, age) pairs in Ci. We let the age time variable be driven by the global ticker. The channel's bounded-delay behavior is modeled by the time axiom.

TimeAxiom(z, e): For every (m, f) in z, i ≤ MaxDelay.

The global state vector is defined as υ = (υ1, υ2, z1, z2). The initial conditions of the protocol system are given by a predicate named Initial(υ).

Events

Before we describe how events are specified, we first describe our use of predicates to specify relations between sets of input and output parameters. Let x and y be sets of parameters with no parameters in common. The notation e(x, y) denotes a predicate named e which involves parameters in x and y. The parameters before the semicolon (i.e., x) are referred to as input parameters; the parameters after the semicolon (i.e., y) are output parameters. e(x, y) specifies the set of input-output relations {(x, y): e(x, y)} = True. The predicate e(x, y) is said to be enabled for any value of x such that there is a value of y for which e(x, y) = True; Note that within the body of the predicate e(x, y) there is no distinction between the input and output parameters, either. There is no requirement that e(x, y) be a function. If a parameter y in y is not explicit, we take the convention that y can assume any value.

To form an analogy with the program, we model a (perhaps non-deterministic) procedure whose output parameters y follows: procedure e such that e(x,, y) is enabled; then, the execution e assigns to y the value e(x, y). A non-deterministic procedure e that assigns to y the value e(x, y) is represented by e(x, y) = (y = z1 ∨ y = z2). (We use the symbol ⊕ to denote logical disjunction.)

We now describe how events are specified in the global state space. Each parameter v denotes the value of the global state after the event occurrence and the parameter v* denotes the value of the global state after the event occurrence. Typically, an event is specified by its parameter list.

For each channel Ci, the channel behavior of the global state is specified by a predicate to be called ChannelError(z, e) such that Sendi(m) and Reci(m), where m is any message, and (z, e) = (m, 0) i.e., append m with an initial state (z, e) = (m, 0) i.e., if z, e has m at its head, then it is not included.

Entity Pi has the following events:

1. For each message type (q, f) sent by Pi:
 - Sendi.q(v1, v2, z1, z2) = e(v1, v2);

2. For each message type (q, f) received by Pi:
 - Reci.q(v1, v2, z1, z2) = e(v1, v2);

3. Internal events of the form (e(v1, v2);

The time events are completely specified in a straightforward manner. (See the protocol model.)

4. PROOF RULES FOR SAFETY

The state variables and events of the protocol model. The reachability graph captures all transitions in the state space in terms of sequences of global states. We now present liveness properties for a system specified in this manner because of our use of predicates to define these properties.

An assertion A(υ) is invariant if it holds
distinction between the input and output parameters; there are no assignment statements either. There is no requirement that each parameter in x and y be used in the body of e(x,y). If a parameter y is in y is not explicitly equated to a value in the body of e(x,y), then we take the convention that y can assume any value in its domain.

To form an analogy with programming language concepts, we can consider e(x,y) to model a (perhaps non-deterministic) procedure e with formal input parameters x and formal output parameters y as follows: procedure e can be executed only when the value of x is such that e(x,y) is enabled; then, the execution of procedure e causes the output parameters y to be assigned a value such that e(x,y) = True. For example, given integers x and y, a procedure e that assigns to y the value x+1, can be modeled by e(x,y) = (y = x+1), or by e(x,y) = (y = x+1). A non-deterministic procedure e that assigns to y either the value x+1 or the value x+2 provided that y is positive, can be modeled by e(x,y) = (y > 0 & (y = x+1 ∨ y = x+2)). (We use the symbols & and ∨ to denote logical conjunction and disjunction respectively.)

We now describe how events are specified. A system event e corresponds to a set of transitions in the global state space, and is specified by a predicate e(v,v'), where the parameter v denotes the value of the global state vector immediately before the event occurrence and the parameter v' denotes the value of the global state vector immediately after the event occurrence. Typically, an event e involves only a few components of the global state vector; when specifying the event e, we will include only those components in its parameter list.

For each channel C, the channel behavior (loss, reordering etc.) can be specified by a predicate to be called ChannelError (x, x'). In addition, there are two service primitives Send(m) and Rec(m), where m is a message parameter. Formally, Send(m) is (x' = (((m, 0), x),) i.e., append m with an age of 0 to the tail of x. Similarly, Rec(m) is ((x', (m,)), x) i.e., if x has m at its head then, irrespective of m's age, remove it and pass it out.

Entity P has the following events:

1. for each message type (q,f) sent by P,
 Send(q, v, v', x) = e(q, v, v', f) & Send(q, f);

2. for each message type (q,f) received by P from Channel C,
 Rec(q, v, v', x) = e(q, v, v', f) & Rec(q, f);

3. internal events of the form e(v, v') used to model timeouts, etc.

The time events are completely specified by the accuracy and time axioms in a straightforward manner. (See the protocol example in Section 5 for an illustration.)

4. PROOF RULES FOR SAFETY AND LIVENESS

The state variables and events of the system model define the reachability graph of the model. The reachability graph captures all the system properties. Specifically, safety assertions are predicates on the set of global states, and liveness assertions are predicates on sequences of global states. We now present the inference rules used to establish safety and liveness properties for a system specified in our model. The inference rules are quite simple because of our use of predicates to define the events.

An assertion A(v) is invariant if it holds at every reachable global state.
Inference rule for safety. If $H(v)$ is invariant and $A(v)$ satisfies
\[(\forall v (v, v') : H(v) \land A(v) \land c(v, v') \Rightarrow A(v'))\]
\[\land (A(v) \Rightarrow A_0(v))\],
then $A_0(v)$ is invariant.

If in the above rule, $H(v) = \text{True}$, then $A(v)$ is said to be inductively complete. Generating $A(v)$ given $A_0(v)$ and $H(v)$ can be done using the method of weakest preconditions [4] or symbolic execution. The time events have been defined so that every time and accuracy axiom is invariant.

We state liveness properties by specifying inductive properties of bounded-length paths in the system’s reachability graph (space), or more generally, in a graph obtained by aggregating nodes of the reachability graph. Given assertions $A(v)$ and $H(v)$, we say that $A(v)$ leads-next-to $H(v)$ if for every reachable global state v where $A(v) = \text{True}$, the following holds: for every enabled event its occurrence takes the system to a state v^* where either $A(v^*) = \text{True}$ or $H(v^*) = \text{True}$, and at least one event $c(v, v^*)$ is enabled whose occurrence can take the system to a state v^* where $H(v^*) = \text{True}$.

This definition guarantees that in any implementation that is fair, on any outgoing path from a reachable state v where $A(v) = \text{True}$, we will eventually reach a state v^* where $H(v^*) = \text{True}$. A fair implementation is one in which events are scheduled so that any event that is enabled infinitely often is not indefinitely delayed.

Inference rule for liveness. If $H(v)$ is invariant, and $A(v)$ and $H(v)$ satisfy
\[(\forall c(v, v') : (H(v) \land A(v) \land c(v, v')) \Rightarrow (H(v^*) \lor A(v^*)))\]
\[\land (H(v) \land A(v) \Rightarrow \exists c(v, v^*) : (H(v) \land A(v) \land c(v, v^*)) \Rightarrow H(v^*))\],
then $A(v)$ leads-next-to $H(v)$.

Given assertions $A(v)$ and $H(v)$, we say that $A(v)$ leads-to $H(v)$ if for some specified integer $n \geq 1$ the following holds: $(A(v) \land C_1(v)) \land (C_1(v) \land C_2(v)) \land \ldots \land (C_{n-1}(v) \land C_n(v)) \land \ldots$ & $(C_n(v) \land C_1(v)) \land (C_1(v) \land C_2(v)) \land \ldots$ where $A(v)$ is invariant.

As an illustration of how the leads-to relation can be used to specify liveness properties of unbounded-length paths, observe that the temporal logic specification $(\forall n : (v \Rightarrow n) \Rightarrow v)$ can be simplified as $(\forall n, m : (v \Rightarrow n) \Rightarrow (v \Rightarrow n + m))$ where all variables are non-negative integers. For a more interesting example, see the live-ness property in Section 6.

5. A TIME-DEPENDENT DATA TRANSFER PROTOCOL

We present herein a data transfer protocol that reliably transfers data blocks from entity P_1 to P_2 using channels C_1 and C_2 (see Fig. 1), where we allow the bounded-delay channels to lose, duplicate and reorder messages in transit.

Let DataSet be the set of data blocks that can be sent in this protocol. P_1 sends messages of type Data, where D identifies the name of the message type, data is a data block from DataSet, and n is a send sequence number that is 0 or 1. Successive data blocks are sent with cyclically increasing sequence numbers. P_2 sends messages of type ACK, where n is a receive sequence number. When P_2 receives a Data message, if n equals the next expected sequence number then the data block is passed on to the destination, else it is ignored. In either case, P_2 sends an ACK.

In order that the data transfer be reliable in spite of the channel behavior, P_1 must ensure before sending a new data block that MaxDelay$_1$ time has elapsed since the last data block was sent and MaxDelay$_2$ time has elapsed since receiving the last ACK that acknowledged previously unacknowledged data or any transmission of a previously sent but before retransmitting a previously sent block the basis of performance goals and the protocol, etc. Here we see a system with two concerns for logical correctness and one concerned separation is not always so clear.

We now list the state variables:

MDelay$_1$: $(1 + e_1) \times \text{MaxDelay}_1$ for $i = 1$ and 2

Variables of P_1

Source: $\text{array}[0..\infty]$ of DataSet; [history variable of data block]

$S: 0..\infty$; [Source[s] is the data block in the queue]

$vs: 0..1$; [sequence number to be used in the last data]

$ws: 0..1$; [sequence number used in the last ACK]

$\text{DTimer}: (0, 1, 2,...)$; [time elapsed since last event]

$\text{ACKTimer}: (0, 1, 2,...)$; [time elapsed since reception of an ACK that caused progress]

Initial values: $\text{MDelay}_1 = 0$ & $\text{ws} = 1$ & $\text{DTimer} > 0$

Events of P_1

1. $\text{Send}_D (v_1, x_1; v_1, x_1)$

 $= (\text{发送} = \text{vs}) \land (\text{MDelay}_1 \land (\text{DTimer} > \text{MDelay}_1))$

 & $\land \text{Send}_D (\text{Source}[s], \text{vs})$

 & $\land s' = \text{vs}$ & $\land v_1' = v_1$ & $\land w_1' = w_1$ & $\land \text{DTimer}' = 0$

 & $\land \text{ACKTimer}' = \text{ACKTimer}$

2. $\text{Rec}_A (v_1, x_2; v_1, x_2)$

 $= \text{Rec}_A ((\text{ACK}, n))$

 & $\land (n = v_1') \land v_2' = v_1$

 & $\land s'' = w_1 \land w_2'' = v_1 \land \text{ACKTimer}' = \text{ACKTimer}$

 & $\land \text{DTimer}' = \text{DTimer}$ & $\land \text{MDelay}_2 = \text{MDelay}_2$

In the above, \oplus denotes addition modulo 2

Variables of P_2

Sink: $\text{array}[0..\infty]$ of DataSet; [history variables of data block]
Acknowledged previously unacknowledged data. Neither of these time constraints apply for any retransmission of a previously sent unacknowledged data block. The time to wait before retransmitting a previously sent unacknowledged data block must be chosen on the basis of performance goals and the probability distributions of channel delays, channel loss, etc. Here we see a system with two different types of time constraints: one necessary for logical correctness and one concerned only with performance. In other examples, the separation is not always so clear.

We now list the state variables and events of the entities. (Below, $\text{MDelay}_i = (1 + r_i) \times \text{MaxDelay}_i$ for $i = 1$ and 2.)

Variables of P_1

- **Source**: array $[0..\infty]$ of DataSet; \{history variable initialized to the sequence of data blocks to be sent to P_2\}
- s: $0..\infty$; \{Source[s] is the data block in the next D message to be sent\}
- v_s: $0..1$; \{sequence number to be used in the next D message to be sent\}
- w_s: $0..1$; \{sequence number used in the last D message sent\}
- DTimer: $0,1,2,..$; \{time elapsed since last D message sent\}
- ACKTimer: $0,1,2,..$; \{time elapsed since reception of last ACK message that caused progress\}

Initial P_1:

$s = v_s = 0 & w_s = 1 & \text{DTimer} > \text{MDelay}1 & \text{ACKTimer} > \text{MDelay}2$

Events of P_1

1. **Send$_D(v_1,z_1; v_1^*,z_1^*)$**
 - $((w_s = v_s) \lor \text{DTimer} > \text{MDelay}1 \& \text{ACKTimer} > \text{MDelay}2)$ \{Retransmit old data\}
 - $v_s = v_s \land \text{DTimer} > \text{MDelay}1 \& \text{ACKTimer} > \text{MDelay}2$ \{Transmit new data\}
 - $\text{Send}_D(D,\text{Source}[s],v_s)$
 - $s^* = s \land v_s^* = v_s \land w_s^* = w_s$
 - $\text{DTimer}^* = 0 \& \text{ACKTimer}^* = \text{ACKTimer} \& \text{Source}^* = \text{Source}$

2. **Rec$_{\text{ACK}}(v_1,z_2; v_1^*,z_2^*)$**
 - $\text{Rec}_2 ((\text{ACK},nr))$
 - $((1 = v_s \land v_s = 0)$ \{Outstanding data acknowledged\}
 - $nr = v_s \land v_s = \text{ACKTimer}^* = 0$
 - $s^* = s + 1 \land v_s^* = nr \land \text{ACKTimer}^* = 0$
 - $w_s^* = w_s \land \text{DTimer}^* = \text{DTimer} \& \text{Source}^* = \text{Source}$

In the above, \oplus denotes addition modulo 2.

Variables of P_2

- **Sink**: array $[0..\infty]$ of DataSet; \{history variable that records the sequence of data blocks passed on to the destination\}
r: 0..∞; {the next data block received in sequence will be saved in Sink[r]}
vr: 0..1; {sequence number of next expected data block}

SendACK: Boolean; {True iff a received D message has not been acknowledged}

Initial:\ \[\psi = (r=v=r=0 & SendACK=False) \]

Events of \(P_2 \)

1. \(\text{Send_ACK}(v_2^*, v_2; v_2^*, v_2^*) \)
 \[= (\text{Send_ACK} = \text{True}) & \text{Send_2}(\{ACK,vr\}) \]
 & Sink"=Sink \& r"=r \& vr"=vr \& Send_ACK"=False \]

2. \(\text{Rec_D}(v_2^*, x_1; v_2^*, x_1^*) \)
 \[= \text{Rec_D}(\{D,\text{data},n\}) \&
 \begin{cases}
 \text{in-sequence data} & (ns=vr \& Sink\"=data \& r"=r+1 \& vr"=vr+1) \\
 \text{out-of-sequence data} & (ns\neq vr \& Sink"=Sink \& r"=r \& vr"=vr)
 \end{cases} \]
 & Send_ACK" = True \]

Other events

The channel events of \(C_i \) are specified by the predicate ChannelError \((x_i; x_i^*)\) that allows all possible losses, duplications and reorderings.

The local time event for the local ticker at \(P_1 \) is specified by

\[\text{AccuracyAxio}_i(\eta_i+1, \eta_i) \]
& \[\eta_i"=\eta_i+1 \& \text{DTimer"}=\text{DTimer}+1 \& \text{ACKTimer"}=\text{ACKTimer}+1 \] (then age \(\eta_i \)
and all time variables driven by local ticker)

The global time event is specified by

\[\text{AccuracyAxio}_1(\eta_1, \eta+1) \& \text{TimeAxio}_1(\text{next}(x_1)) \& \text{TimeAxio}_2(\text{next}(x_2)) \]
& \[\eta"=\eta+1 \& \left(x_1^* = \text{next}(x_1) \right) \& \left(x_2^* = \text{next}(x_2) \right) \]

where \(\text{next}(x_i) \) is \(x_i \) with all ages in it incremented by 1.

6. SAFETY, LIVENESS AND REAL-TIME PROPERTIES OF PROTOCOL EXAMPLE

Safety specification and verification

For this example protocol, we would like to prove that the following safety property is invariant:

A1. (a) \(\text{Source}[i] = \text{Sink}[i] \) for \(0 \leq i < r \);
 (b) \(0 \leq s \leq r \leq s+1 \).

A1 is invariant because A1 & A2 & A3 & A4 & A5 can easily be seen to be inductively complete, where

A2. \((vs = s \mod 2) \& (vr = r \mod 2) \)

A3. \(\forall (m,t) \in x_i; m = (\text{D,Source}[s],vs) \& vs = ws \& (r=s \vee r=s+1) \& t > \text{DTimer} \)
 \[\forall (m,t) \in x_i; m = (\text{D,Source}[s],vs,t) \& vs = ws \& r = s \& t > \text{DTimer} \]

\[(\forall (m,t) \in x_i; m = (\text{D,Source}[s],x_i,vr) \& vs = ws \& r = s \& t > \text{DTimer}) \]

A4. \(\text{Send_ACK} = \text{True} \Rightarrow r = s \lor (vs = ws + 1) \)

A5. \(\forall (m,t) \in x_i; m = (\text{ACK},vr) \& r = s \lor (m = (\text{ACK},vr) \)

where \(\oplus \) denotes subtraction modulo 2. A proof can be found in [18].

Liveness specification and verification

For this protocol, we would like to prove that if we only lose messages, then \(s \) and \(r \) will grow without bound. To specify and verify this formally, we use \(\text{LCount1} \) and \(\text{LCount2} \). \(\text{LCount1} \) counts the number of messages \(m \mod 2 \) message in \(C_1 \) has been lost since the start. Formally, \(\text{LCount1}=0 \) initially. \(\text{LCount2} \) is a counter that counts the number of messages \(m \mod 2 \) message in \(C_2 \) has been received at \(P_2 \). \(\text{LCount1} \) is reset to 0. \(\text{D,Source}[n] \mod 2 \), \(C_1 \) and \(P_2 \) are respectively.

The desired liveness property is then

L1. \((s=r=n \& LCount1=m1) \) leads to

\[(s=r=n+1) \lor ((s=r=n+1) \lor (s=r=n+1)) \]

L1 assures us that from any state where \(r=n+1 \), provided that \(\text{LCount1} \) does not go below \(n \), the system will then get to a state where \(s=r=n \) grows without bound. Thus, assuming the system behaves as intended, we can say that \(s \) and \(r \) will grow without bound.

The above liveness (leads-to) property is proven in Section 5. The verification is very short.

Real-time specification and verification

To make our data transfer protocol implementable into its model.

First, entity \(P_2 \) will send an ACK at \(\text{ResponseTime} \) of receiving a D message. If \(\text{Source}[n] \) at most \(\text{MaxRetryCount} \) times \(\text{MaxDelay} + \text{MaxResponseTime} + (t \oplus 1) \) times, \(P_2 \) does not receive an (ACK, (s+1), send), it assumes that the channels \(C_1 \) and \(C_2 \) are in a state called \(\text{RESET} \).

For this more realistic model, we assume\(T = \text{MaxRoundTripTime} \), \(\text{Count} \) messages sent by \(P_1 \) and \(P_2 \) have
A4. SendACK = True => r=s ∨ (vs=ws & r=s+1)

A5. ∀ (m,t) in z: (m=(ACK,vy) & (r=s ∨ (vs=ws & r=s+1)))
 ∨ (m=(ACK,vy∈l) & ((r=s & t ≥ ACKTimer & vs ≠ ws)
 ∨ (r=s+1 & vs=ws)))

where θ denotes subtraction modulo 2. A proof that the above is inductively complete may be found in [18].

Liveness specification and verification

For this protocol, we would like to prove the following: if the channels do not continuously lose messages, then s and r will grow without bound.

To specify and verify this formally in our model, we define the auxiliary variables LCount1 and LCount2. LCount1 counts the number of times that the last (D,Source[n],n mod 2) message in C1 has been lost since the previous reception of such a message at P2. Formally, LCount1=0 initially; whenever a loss event of C1 deletes the last (D,Source[n],n mod 2) message in C1, LCount1 is incremented by 1; whenever a (D,Source[n],n mod 2) is received at P2, LCount1 is reset to 0. LCount2 is similarly specified, except that (D,Source[n],n mod 2), C1 and P2 are replaced by (ACK, (n+1) mod 2), C2 and P1 respectively.

The desired liveness property is then stated as follows: For any non-negative integer n
L1. (s=n & LCount1=m1) leads-to ((s=n & r=n+1)
 ∨ (s=n & LCount1 > m1))

L2. (s=n & r=n+1 & LCount1=m1 & LCount2=m2) leads-to
 ((s=n+1) ∨ (s=n & r=n+1) & (LCount2 > m2)
 ∨ (LCount2 ≥ m2 & LCount1 > m1))).

L1 assures us that from any state where s=r=n, we will get to a state where s=n and r=n+1, provided that LCount1 does not grow without bound. L2 assures us that the system will then get to a state where s=r=n+1, provided that neither LCount1 nor LCount2 grows without bound. Thus, assuming the desired channel behavior, L1 and L2 allow us to say that s and r will grow without bound.

The above liveness (leads-to) property has been verified for the data transfer protocol in Section 5. The verification is very short and may be found in [18].

Real-time specification and verification

To make our data transfer protocol more realistic, we include the following real-time behavior into its model.

First, entity P2 will send an ACK message within a specified time interval (MaxResponseTime) of receiving a D message. Second, entity P1 will retransmit a given data block Source[n] at most MaxRetryCount times. Let MaxRoundTripDelay = MaxDelay1 + MaxDelay2 + MaxResponseTime (1+ η1+η2). If after sending Source[n] for MaxRetryCount times, P1 does not receive an (ACK, (n+1) mod 2) within MaxRoundTripDelay of the last send, it assumes that the channels C1 and C2 are bad and aborts the connection (enters a state called RESET).

For this more realistic model, we would like to prove that if P1 has reset, then indeed over a time period T (=MaxRoundTripDelay × MaxRetryCount), more than MaxRetryCount messages sent by P1 and P2 have been lost by C1 and C2 collectively.
To formally state this real-time specification, define the following auxiliary variables:

MessagesSent1: sequence of (m, t) pairs where m is a message sent by P_1 and t denotes the time at which m was sent; updated whenever P_1 does a send.

MessagesSent2: as above but for P_2.

LCount1: Number of times (D, Source[n], n mod 2) was sent into C_1 but did not get received at P_2 within MaxDelay1 of sending. LCount1 is incremented by 1 whenever a global tick occurs and ((D, Source[n], n mod 2), t) is in MessagesSent1 and r=n and q = t + MaxDelay1. (Recall that q is the global tick’s count.) LCount1 is set to 0 whenever P_1 gets an ACK that causes progress.

LCount2: Same as LCount1, except that (D, Source[n], n mod 2), C_1 and P_2 are replaced by (ACK, n+1 mod 2), C_2 and P_1.

ReferenceTime: Value of q when P_1 last got an ACK that caused progress.

ResetTime: Value of q when P_1 last reset.

With all these auxiliary variables, the real-time specification can be stated as

P_1 at RESET => (ResetTime - ReferenceTime) \leq T & LCount1 + LCount2 \leq MaxRetryCount.

Notice that this real-time specification is a safety assertion and not a liveness assertion requiring the leads-to operator. Its verification may be found in [18].

7. CONCLUSION

We have presented an event-driven process model suitable for specifying and verifying large time-dependent protocol systems. Measures of time are explicitly included in our model. Furthermore, clocks are not coupled and they can tick at any rate within some specified error bounds. Real-time properties are expressed as safety assertions in our model.

The model specification consists entirely of state variables and predicates. There is no algorithmic code in our model. This compromise between implementation-dependent and implementation-independent features provides us with a uniform characterization of safety, liveness and performance properties, and with simple inference rules for safety and liveness properties.

We have applied this model to the analysis of several nontrivial protocol examples: a version of the High-level Data Link Control (HDLC) protocol, the physical clock synchronization protocol of Lamport, and a transport-level protocol for reliable data transfer over bounded-delay channels that can lose, reorder and duplicate messages in transit (using cyclic sequence numbers, timers and timeouts).

REFERENCES

A. U. Shankar and S.S. Lam

A specific transport protocol

Ed Brinksma
Twente University of Technology
The Netherlands

In this paper we present the OSI transport service in the Draft Proposal 8872. LOTOS, a language relevantly being developed in ISO/TC97/SC16/SGI project on FDT. In transport service are presented of the given specifications

0. Introduction

One of the most important events in the last ten years has undoubtedly been the development of the Open Systems Interconnection (OSI) [10]. The network is crucial to the realisation of the layered RM for the benefit of the OSI specification is needed. Moreover, the maintenance of the RM that is still in a formalised state, and the various tools that have been designed for it, allows the development of the RM to be supported.

To be able to pay attention to these tools, the FDT (Formal Description Technique) is developing and/or selecting suitable FDT. In the ad hoc group FDT the draft (Extended Temporal Ordering Specification), respectively. The work has been done in the European COST216 project (Temporal Ordering Specification).

The development of LOTOS has been a result of the analysis of the OSI specification and the more important issues here:

- power of expression: an FDT should support flows of relevant information;
- well-definedness: the FDT must be well-defined and valid;
- abstraction: the FDT should offer abstraction;
- modularity: the FDT should support structured systems.