Protoco! Specification, Testing, and Verification, IV

Y. Yemini, R. Strom, and S. Yemini (Editors)

Elsevier Science Publishers B.V. (North-Holland) 215
©IFIP, 1985

SPECIFICATION AND VERIFICATION OF
TIME-DEPENDENT COMMUNICATION PROTOCOLS

A. Udaya Shankar
Department of Computer Science
University of Maryland
College Park, Maryland 20742

Simon S. Lam
Department of Computer Sciences
University of Texas
Austin, Texas 78712

ABSTRACT

Real-life communication protocol systems are invariably large
time-dependent distributed systems whose correct functioning depends
upon time relationships between system event occurrences. We present
a model for specifying and verifying such time-dependent systems.
Each component {protocol entity or channel) of the protocol system is
specified by a set of state variables and a set of events. Each event is
described by a predicate that relates the values of the system state
variables immediately before to their values immediately after the
event occurrence. The predicate embodies specifications of both the
event's enabling condition and action. Measures of time are explicitly
included in our model. Furthermore, clocks are not coupled and they
can tick at any rate within some specified error bounds. Inference rules
for both safety and liveness properties are presented. We have applied
our methodology to the verification of several large communication
protocols including a version of the High-level Data Link Control
(HDLC) protocol. A relatively small data transfer protocol is modeled
herein for illustration. This protocol can reliably transfer data over
bounded-delay channels that can lose, reorder and duplicate messages
in transit. We have specified and verified the protocol’s safety, liveness

and real-time properties.

1. INTRODUCTION

Real-life protocol systems are typically large time-dependent systems. By time-
dependent, we mean that they display real-time behavior (in the form of time constraints
between system event occurrences) that is crucial to their logical correctness as well as their
performance {16, 17]. For example, an entity must send an acknowledgement to a message
within a specified response time of receiving that message; the time duration that a message
resides in a channel is less than a specified maximum channel delay and/or larger than a
specified minimum delay, the time between an entity crashing and its re-entry into the pro-
tocol system must satisfy certain bounds, etc. Examples of such protocols include the
High-level Data Link Control (HDLC) protocol, the Transmission Control Protocol {(TCP),
Carrier Sense Multiple Access (CSMA), etc. [8, 15, 7, 3]. (In each of these cases, we are

216 A.U. Shankar and S.S. Lam

referring to the protocol as defined in its reference manuals.)

We describe an event-driven process model that is suitable for specifying and verifying
such distributed systems, both time-dependent and time-independent. In this model, clocks
are not coupled and they can tick at any rate within some specified error bounds. This
real-time modeling is an extension of results initially presented in [16]. We have applied
this model to the analysis of several nontrivial protocol examples: a version of the High-
level Data Link Control (HDLC) protocol [17], the physical clock synchronization protocol
of Lamport [13], and a transport-level protocol for reliable data transfer over bounded-delay
channels that can lose, reorder and duplicate messages in transit (using cyclic sequence
numbers, timers and timeouts). Only the last example appears in this paper.

Summary of the protocol model features

Our protocol system model differs significantly from other models in regards to both
specification and verification aspects. Each component (protocol entity or channel) is
specified by a set of sfate variables and a set of events. The events of a component mani-
pulate the values of state variables local to the component and transfer messages to adja-
cent components. Each event is specified by a predicate that relates the values of the sys-
tem state variables immediately before to their values immediately after the event
occurrence. The predicate embodies specifications of both the event’s enabling condition
and action. There is no algorithmic code in our model.

What we have is a compromise between implementation-dependent features (the state
variables) and implementation-independent features (the use of predicates to specify
events). It provides a very convenient and uniform specification of the safety, liveness, and
even performance properties of the system. It allows for very simple inference rules for
safety and liveness properties, system specifications that can be directly substituted into
assertions used within proofs, and it simplifies our modeling of time measures and the appli-
cation of projections. For example, we do not use any special notation (such as temporal
logic [14]) to express liveness properties of unbounded-length paths in a system’s reachability
graph. Instead, we describe such liveness properties in terms of inductive properties of
bounded-length paths. Real-time system properties can usually be expressed as safety
assertions.

Summary of the real-time modeling

We model the real-time behavior of systems by using discrete-valued time variables to
measure the elapse of physical (real) time, and time events to age the time variables. By
imposing certain conditions, referred to as accuracy azioms, on the occurrence of time
events, we are able to model clocks realistically: our clocks are uncoupled and can tick at
any rate within specified error bounds of a given rate. Additional conditions on the time
events, referred to as time azioms, allow us to model all types of time constraints between
system events. With accuracy and time axioms we can specify and verify the time-
dependent behavior of distributed systems. We also formalize the notion of feasible time
constraints; i.e., time constraints that can be realistically guaranteed by a component
without any cooperation from the rest of the system.

One consequence of the time-dependent behavior of real-life communication network
protocols is that if a protocol does not achieve progress (transfer of data, establishment of a
connection, etc.) within a bounded time duration T, then the protocol resets or aborts.
Hence, a liveness assertion such as “eventually (i.e., within a finite but unbounded time
duration) a data block will be transferred” is not realistic. More appropriate is a real-time
specification such as “if within a time duration T the data block is not transferred, then at

Time-Dependent Communication Protocols 217

least n retransmissions of the data block have occurred, all of which failed.”” With our
model of real-time behavior, such real-time specifications can usually be stated as safety
assertions. We model both types of progress specifications in our data transfer protocol
example. In each case, there is a compact verification of the specification [18].

Summary of the rest of this paper

In Section 2, we present more details of our real-time modeling. In Section 3, we
specify our protocol system model. In Section 4, we characterize safety and liveness proper-
ties for the protocol model, and present the inference rules used to establish these proper-
ties. In Section 5, a time-dependent data transfer protocol example is specified. In Section
6, we present safety, liveness and real-time properties for the example protocol.

2. MODELING MEASURES OF TIME

The elapse of physical time in any distributed system component is indicated by dev-
ices, such as crystal oscillators, that issue ‘“ticks” at (almost) regular time intervals. We
refer to such devices as local tickers. Systems typically employ counters (i.e., clocks and
timers) to accumulate the number of elapsed ticks generated by a local ticker since the
occurrence of some system event. We refer to such counters as time variables.

For each local ticker i, there is a local time event (corresponding to a tick) whose
occurrence ages (increments) all time variables driven by the ticker. Since no other ticker is
affected, this ticker is effectively decoupled from other tickers. In a distributed system, we
would insist that all the time variables driven by a local ticker must lie within a single com-
ponent of the distributed system. In addition to being aged, a time variable can be reset to
some value by an event of its component, thereby indicating the time elapsed since that
event occurrence.

In order to keep local tickers within specified drifts, we include in our model a
hypothetical ticker, referred to as the global ticker, that is assumed to tick at an absolutely
constant rate. For each local ticker i, let ; denote the number of ticks issued since system
initialization, and let ¢; denote the maximum error in the tick rate. Let n denote the
number of global ticks since initialization. The #’s are (auxiliary) time variables that do not
correspond to implemented clocks or timers, and can never be reset by any system event.
The local and global time events are constrained so that each local ticker i satisfies the fol-
lowing accuracy axtom (below, the notation 5(a) refers to the value of 5 at instant a):

AccuracyAxiom{n,n) : For all instants ¢ and b where b is later than a,

| (ndb) - nda) — (n(6) - n(a))| < max(1, efn(b}-n(a)).
(This is a discrete analog of |1 - -‘—Z—'| < ¢ in [13})

Recall that time variables can measure the time elapsed since a system event
occurrence. Thus, by including time variables in the enabling condition of a system event e,
we can model time constraints of the form ‘“‘event e will not occur unless certain time inter-
vals have elapsed.” To model time constraints of the form ‘“‘event e will occur within certain
elapsed time intervals,” we impose conditions, referred to as t{fme azioms on the allowed
values of time variables.

Time events will be allowed to occur only if their occurrence will not violate any accu-
racy or time axioms. This modeling of real-time behavior is valid provided that the time
events do not get deadlocked. We have shown that the tickers will continue to accumulate
ticks if the accuracy and time axioms correspond to feasible constraints [18].

218 A.U. Shankar and S.S. Lam

3. DISTRIBUTED SYSTEM MODEL

C

C.

Fig. 1. Network configuration of protocol example in Section 5.

For the sake of brevity, the special configuration and channel behavior of the protocol
example in Section 5 are considered. {See Fig. 1.) P; and P, are two protocol entities con-
nected by bounded-delay channels C; and C,. For i=1 and 2, any message attempting to
stay in channel C; for longer than a specified time MaxDelay, is lost {e.g., removed by some
intermediate network node {15, 19]). (For arbitrary network configurations with various
types of channels, see [18].)

Messages and state variables

For i=1 and 2, the messages sent by P; are categorized into message types. Each mes-
sage type ¢ specifies multi-field messages of the form (g, f;,.-..f,) where n>0 and f; is a
parameter ranging over a specified set of values. (Henceforth, each variable and parameter
used in our model is assumed to take values from a specified domain of values.) Let Q; be
the set of message types sent by P; and received by P; (j%4). '

Let v; be the set of state variables of P;. v; can have auxiliary variables used for
verification only and time variables used for modeling time constraints. Assume that all
time variables in v; (if any) are driven by a local ticker with count »; and maximum error
€; A time variable v in v; may be constrained by a time axiom.

For each message in channel C;, we associate with the message a time variable age that
indicates the age of the message (time spent in the channel). Let z; be the sequence of
(message, age) pairs in C; We let the age time variable be driven by the global ticker. The
channel’s bounded-delay behavior is modeled by the time aziom

TimeAxiom{z;) : For every (m,t) in 3;, { < MaxDelay,.

The global state vector is defined as v = (v,,v3,2),2,). The initial conditions of the
protocol system are given by a predicate named Initial(v).

Events

Before we describe how events are specified, we first describe our use of predicates to
specify relations between sets of input and output parameters. Let x and y be sets of
parameters with no parameters in common. The notation ¢(x;y) denotes a predicate named
e which involves parameters in x and y. The parameters before the semicolon (i.e., x) are
referred to as input parameters; the parameters after the semicolon (i.e., y) are output
parameters. e(x;y) specifies the set of input-output relations {(s,r):e(s;r)==True}. The
predicate e(x;y) is said to enabled for any value of x such that there is a value of y for
which e(x;y)=True; Note that within the body of the predicate e(x;y) there is no

Time-Dependent Communication Protocols 219

distinction between the input and output parameters; there are no assignment statements
either. There is no requirement that each parameter in x and y be used in the body of
¢(x;y). If a parameter yin y is not explicitly equated to a value in the body of e(x;y), then
we take the convention that y can assume any value in its domain.

To form an analogy with programming language concepts, we can consider e(x;y) to
model a (perhaps non-deterministic) procedure e with formal input parameters x and formal
output parameters y as follows: procedure e can be executed only when the value of x is
such that e(x;y) is enabled; then, the execution of procedure e causes the output parameters
y to be assigned a value such that e(x;y)=True. For example, given integers z and g, a
procedure e that assigns to y the value z+1, can be modeled by e(z;y)=(y=2+1), or by
¢(z;y)=(y-z=1). A non-deterministic procedure e that assigns to y either the value z+1 or
the value z+2 provided that y is positive, can be modeled by e(z;y)=(y>0 &
(y=2+1 v y=2+42)). (We use the symbols & and v/ to denote logical conjunction and dis-
junction respectively.)

We now describe how events are specified. A system event e corresponds to a set of
transitions in the global state space, and is specified by a predicate e¢(v;v”), where the
parameter v denotes the value of the global state vector immediately before the event
occurrence and the parameter v denotes the value of the global state vector immediately
after the event occurrence. Typically, an event e involves only a few components of the
global state vector; when specifying the event e, we will include only those components in
its parameter list.

For each channel C;, the channel behavior (loss, reordering etc.) can be specified by a
predicate to be called ChannelError (z;; ;). In addition, there are two service primitives
Send{m) and Rec{m), where m is a message parameter. Formally, Send{m) is
(2,”°=((m,0),2,)) i.e., append m with an age of 0 to the tail of z; Similarly, Rec(m) is
(27 ,(m,f))=z,) i.e., if 2, has m at its head then, irrespective of m’s age, remove it and pass
it out.

Entity P; has the following events:

(1) for each message type (¢,f) sent by P,
Send_q (vi)zi) vi”,zi”) - enq(vi) vi”rf) & Send,((q,f));

(2) for each message type (¢,f) received by P; from Channel C,,
Rec—q(vhzj) vi”rzj”) = erq(virf) vi”) & Rec]((qrf))v
(3) internal events of the form e(v; ; v;”) used to model timeouts, etc.

The time events are completely specified by the accuracy and time axioms in a
straightforward manner. (See the protocol example in Section 5 for an illustration.)

4. PROOF RULES FOR SAFETY AND LIVENESS

The state variables and events of the system model define the reachability graph of the
model. The reachability graph captures all the system properties. Specifically, safety asser-
tions are predicates on the set of global states, and liveness assertions are predicates on
sequences of global states. We now present the inference rules used to establish safety and
liveness properties for a system specified in our model. The inference rules are quite simple
because of our use of predicates to define the events.

An assertion A(v) is fnvariant if it holds at every reachable global state.

220 A.U. Shankar and S.S. Lam

Inference rule for safety. If B(v) is invariant and A(v) satisfies
{(Initial(v) => A(v))
& (f e(v;v"): Bv) & A(V) & e{v;v") => A(v”))
& (A(v) => A(v)),

then Ag(v)) is invariant.

If in the above rule, B(v) = True, then A(v) is said to be inductively complete. Generating
A(v) given Ag(v) and B(v) can be done using the method of weakest preconditions [4} or
symbolic execution. The time events have been defined so that every time and accuracy
axiom is invariant.

We state liveness properties by specifying inductive properties of bounded-length paths
in the system’s reachability graph {space), or more generally, in a graph obtained by aggre-
gating nodes of the reachability graph. Given assertions A{v) and B(v), we say that A(v)
leads-nezt-to B(v) if for every reachable global state v where A{v) = True, the following
holds: for every enabled event its occurrence takes the system to a state v” where either
A(v”) = True or B(v”) = True, and at least one event e(v;v”) is enabled whose occurrence
can take the system to a state v” where B(v”) = True.

This definition guarantees that in any implementation that is fair, on any outgoing
path from a reachable state v where A(v) == True, we will eventually reach a state v”
where B(v”) = True. A fair implementation is one in which events are scheduled so that
any event that is enabled infinitely often is not indefinitely delayed.

Inference rule for liveness. If {v) is invariant, and A(v) and B(v) satisfy
(V e(viv"): ([v) & A(v) & e(v;v”)) => B(v”) v A(v”))
& ((A(v) & Kv)) =>] enabled e(v;v"): ({v) & A(v) & e(v;v")) => B(v”)),

then A(V) leads-next-to B(v).

Given assertions A(v) and B(v), we say that A(v) leads-to B(v) if for some specified
integer n>1 the following holds: (A(v) leads-next-to (B(v) v Ci(v))) & (Cy(v)) leads-next-
to (Bv) v Colv))) & ... & (C, 4(¥) leads-next-to (B{v) v C,(v)) & (Cu(v) leads-next-to
B(v)).

As an illustration of how the leads-to relation can be used to specify liveness properties
of unbounded-length paths, observe that the temporal logic specification MV n 0 z>n)
=> (Ym: O y>m)) can be specified by (V n,m: (z=n & y=m) leads-to (z>n v y>m))
where all variables are non-negative integers. For a more interesting example, see the live-
ness property in Section 6.

5. A TIME-'SPENDENT DATA TRANSFER PROTOCOL

We present herein a data transfer protocol that reliably transfers data blocks from
entity P, to P, using channels C; and C, (see Fig. 1), where we allow the bounded-delay
channels to lose, duplicate and reorder messages in transit.

Let DataSet be the set of data blocks that can be sent in this protocol. Py sends mes-
sages of type (D,data,ns) where D identifies the name of the message type, data is a data
block from DataSet, and ns is a send sequence number that is 0 or 1. Successive data blocks
are sent with cyclically increasing sequence numbers. P, sends messages of type (ACK,nr)
where nr is a receive sequence number. When P, receives a (D,data,ns) message, if ns equals
the next expected sequence number then the data block is passed on to the destination, else
it is ignored. In either case, P, sends an (ACK,nr).

In order that the data transfer be reliable in spite of the channel behavior, P, must
ensure before sending a new data block that MaxDelay, time has elapsed since the last data
block was sent and MaxDelay, time has elapsed since receiving the last ACK that

Time-Dependent Communication Protocols 221

acknowledged previously unacknowledged data. Neither of these time constraints apply for
any retransmission of a previously sent but unacknowledged data block. The time to wait
before retransmitting a previously sent but unacknowledged data block must be chosen on
the basis of performance goals and the probability distributions of channel delays, channel
loss, ete. Here we see a system with two different types of time constraints: one necessary
for logical correctness and one concerned only with performance. In other examples, the
separation is not always so clear.

We now list the state variables and events of the entities. (Below,
MDelay, = (1+¢;) X MaxDelay; for i=1 and 2.)

Variables of P,

Source: array|0..00] of DataSet; {history variable initialized to the sequence
of data blocks to be sent to Py}

s: 0..00; {Sourcels] is the data block in the next D message to be sent}
vs: 0..1; {sequence number to be used in the next D message to be sent}
ws: 0..1; {sequence number used in the last D message sent}

DTimer: (0,1,2,..); {time elapsed since last D message sent}

ACKTimer: (0,1,2,..); {time elapsed since reception of last ACK message
that caused progress}

Initialp Z(s=vs=0 & ws=1 & DTimer > MDelayl & ACKTimer > MDelay?2)

Events of P,

1. Send_D (v,z; ; v,",2;”)

= ((ws==vs) {Retransmit old data}
v (ws5£vs & Dtimer > MDelayl & ACKTimer > MDelay2)) {Transmit new data}
& Send,{(D,Sourcels],vs)) {Send message}
& s"=s & vs"=vs & ws"=vs {update state vector}

& DTimer”=0 & ACKTimer”=ACKTimer & Source”=Source

2. Rec_ACK(vy,25 ; v,”,257)
= Rec, ((ACK,nr})) {Receive nr}
& ((nr=vs@® 1 & vs=ws {Outstanding data acknowledged}
& s”=s+1 & vs"=nr & ACKTimer”=0)
v (nr=vs & s"=s & vs"=vs & ACKTimer”=ACKTimer)) {O}ld acknowledgement}
& ws”=ws & DTimer”=DTimer & Source”==S8ource

In the above, @ denotes addition modulo 2.

Variables of P,

Sink: array [0..00] of DataSet; {history variable that records the sequence
of data blocks passed on to the destination}

222 A.U. Shankar and S.S. Lam

r: 0..00; {the next data block received in sequence will be saved in Sink[r]}
vr: 0..1; {sequence number of next expected data block}
SendACK: Boolean; {True iff a received D message has not been acknowledged}

Initialp, = (r=vr=0 & Send ACK=False)

Events of P,

1. Send_ACK (vy,29 ; v5”,257)
== (SendACK = True) & Send, ((ACK,vr))
& Sink”=Sink & r”=r & vr’==vr & SendACK”=False

2. Rec_D(vq,2, ; v5°,2,”)
= Rec,((D,data,ns))
& ((ns=vr & Sink”[r|=data & r"=r+1 & vi"=vr@l) {in-sequence data}
Vv (ns%vr & Sink”=Sink & r"=r & vr”=vr)) {out-of-sequence data}
& SendACK” = True

Other events

The channel events of C; are specified by the predicate ChannelError (z; ; z;”) that
allows all possible losses, duplications and reorderings.

The local time event for the local ticker at P, is specified by

AccuracyAxiom,(n;+1,1)} {if local tick will not violate accuracy axiom}
& n,"=m+1 & DTimer”=DTimer+1 & ACKTimer’=ACKTimer+1 {then age n;
and all time variables driven by local ticker}
The global time event is specified by
AccuracyAxiom (n,,n+1) & TimeAxiom,(nezt(z,)) & TimeAxiomy(nezt(z,))
& ’=n+1 & z,"=nezl(z|) & z,°=nezt(z,)

where nezt(z,) is ; with all ages in it incremented by 1.

6. SAFETY, LIVENESS AND REAL-TIME PROPERTIES OF
PROTOCOL EXAMPLE

Safety specification and verification

For this example protocol, we would like to prove that the following safety property is
invariant:

Al (a) Sourceli] = Sink[ij for 0 < i< 1;

bo<s<r<s+ 1

Al is invariant because Al & A2 & A3 & A4 & A5 can easily be seen to be inductively
complete, where

A2. (vs = s mod 2} & (vr = r mod 2)

A3. (/ (m,t) in z;: m = (D,Source[s},vs) & vs=ws & (r==s \/ r=s+1) & t > DTimer)
Vv (V (m,t) in z;: m = (D,Source[s-1],vsol) & vs=wsel & r=s & t > DTimer)

Time-Dependent Communication Protocols 223

A4. SendACK = True => r=s v (vs=ws & r=s+1)

A5. Y/ (m,t) in zg: (m=(ACK,v1) & (r=s v (vs=ws & r=s+1)))
v (m=(ACK,vrel) & ((r==s & t > ACKTimer & vs 7 ws)
Vv (r=s+1 & vs=ws)))

where @ denotes subtraction modulo 2. A proof that the above is inductively complete may
be found in [18].

Liveness specification and verification

For this protocol, we would like to prove the following: if the channels do not continu-
ously lose messages, then s and r will grow without bound.

To specify and verify this formally in our model, we define the auxiliary variables
LCountl and LCount2. LCountl counts the number of times that the last (D,Source[n],n
mod 2) message in C; has been lost since the previous reception of such a message at P,.
Formally, LCount1==0 initially; whenever a loss event of C; deletes the last (D,Source[n],n
mod 2) message in C;, LCountl is incremented by 1; whenever a (D,Source|n],n mod 2) is
received at P, LCountl is reset to 0. LCount2 is similarly specified, except that
(D,Source([n],n mod 2), Cy and P, are replaced by (ACK, (n+1) mod 2), C; and P respec-
tively.

The desired liveness property is then stated as follows: For any non-negative integer n

L1. (s=r=n & LCountl=ml} leads-to ({s=n & r=n+1)
v (s==r=n & LCountl > ml))

L2. (s=n & r=n+1 & LCountl=m1l & LCount2=m?2) leads-to
{(s=r=n+1) v ((5=n & r=n+1) & ((LCount2 > m2)
v (LCount2 > m2 & LCountl > ml)})).

L1 assures us that from any state where s=r—=n, we will get to a state where s=n and
r=n+1, provided that LCountl does not grow without bound. L2 assures us that the sys-
tem will then get to a state where s==r=n+1, provided that neither LCount1 nor LCount2
grows without bound. Thus, assuming the desired channel behavior, L1 and L2 allow us to
say that s and r will grow without bound.

The above liveness (leads-to) property has been verified for the data transfer protocol
in Section 5. The verification is very short and may be found in [18].

Real-time specification and verification

To make our data transfer protocol more realistic, we include the following real-time
behavior into its model.

First, entity P, will send an ACK message within a specified time interval (Max-
ResponseTime) of receiving a D message. Second, entity P; will retransmit a given data
block Source|[n] at most MaxRetryCount times. Let MaxRoundTripDelay = MaxDelayl +
MaxDelay2 + MaxResponseTime (1+ 5;+7,). If after sending Source[n] for MaxRetryCount
times, P; does not receive an (ACK, (n+1) mod 2) within MaxRoundTripDelay of the last
send, it assumes that the channels C; and C, are bad and aborts the connection (enters a
state called RESET).

For this more realistic model, we would like to prove that if P, has reset, then indeed

over a time period T (=MaxRoundTripDelay X MaxRetryCount), more than MaxRe-
tryCount messages sent by Py and P, have been lost by C; and C, collectively.

224 A.U. Shankar and S.S. Lam

To formally state this real-time specification, define the following auxiliary variables:

MessagesSent1: sequence of (m,t) pairs where m is a message sent by P; and t denotes
the time at which m was sent; updated whenever P; does a send.

MessagesSent2: as above but for P,.

LCount1: Number of times (D,Source[n], n mod 2) was sent into C; but did not get
received at P, within MaxDelayl of sending. LCountl is incremented by 1
whenever a global tick occurs and ((D,Sourcen}, n mod 2), t) is in Mes-
sagesSentl and r=n and » = t + MaxDelayl. (Recall that 5 is the global
ticker’s count.) LCount1 is set to 0 whenever P, gets an ACK that causes pro-
gress.

LCount2: Same as LCountl, except that (D,Source[n], n mod 2), C,; and P, are replaced
by (ACK, n+1 meod 2), C; and P,.

ReferenceTime: Value of # when Py last got an ACK that caused progress.

ResetTime: Value of 5 when P, last reset.

With all these auxiliary variables, the real-time specification can be stated as

P; at RESET => (ResetTime - ReferenceTime) < T
& 1.Countl + LCount2 > MaxRetryCount.

Notice that this real-time specification is a safety assertion and not a liveness assertion
requiring the leads-to operator. Its verification may be found in [18].

7. CONCLUSION

We have presented an event-driven process model suitable for specifying and verifying
large time-dependent protocol systems. Measures of time are explicitly included in our
model. Furthermore, clocks are not coupled and they can tick at any rate within some
specified error bounds. Real-time properties are expressed as safety assertions in our model.

The model specification consists entirely of state variables and predicates. There is no
algorithmic code in our model. This compromise between implementation-dependent and
implementation-independent features provides us with a uniform characterization of safety,
liveness and performance properties, and with simple inference rules for safety and liveness
properties.

We have applied this model to the analysis of several nontrivial protocol examples: a
version of the High-level Data Link Control (HDLC) protocol, the physical clock synchroni-
zation protocol of Lamport, and a transport-level protocol for reliable data transfer over
bounded-delay channels that can lose, reorder and duplicate messages in transit (using
cyclic sequence numbers, timers and timeouts).

REFERENCES

[1] Bochmann, G. V. and Chung, R. J., “A Formalized Specification of HDLC Classes of
Procedures,” Conf. Rec. Nat. Telecommun. Conf., Los Angeles, December 1977.

[2] Bochmann, G. V., “Finite State Description of Communication Protocols,” Computer
Networks, Vol. 2, 1978.

Time-Dependent Communication Protocols 225

[3] Clark, D. D. “Protocol Implementation: Practical Considerations,” ACM SIGCOMM'83
Tutorial, University of Texas at Austin, March 7, 1983.

{4] Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ,
1976.

[5] DiVito, B. L., “Mechanical Verification of a Data Transport Protocol,” Proc. ACM
SIGCOMM ’83, Austin, Texas, March 1983.

[6] Hailpern, B. T. and Owicki, S. S., “Verifying Network Protocols using Temporal

Logic,” Tech. Rep. 192, Computer Systems Laboratories, Stanford University, June

1980.

IEEE Project 802 Local Area Network Standards. “CSMA/CD Access Method and
Physical Layer Specifications.” Draft IEEE Standard 802.3, Revision D, December
1982.

7

[8] “Data Communication--High-level Data Link Control Procedures--Frame Structure.”
Ref. No. ISO 3309, Second Edition, 1979. “Data Communications--HDLC Procedures--
Elements of Procedures.” Ref. No. ISO 4335, First Edition, 1979. International Stan-
dards Organization, Geneva, Switzerland.

[9] Kurose, J., “The Specification and Verification of a Connection Establishment Protocol
using Temporal Logic,” Proc. 2nd Int. Workshop on Protocol Specification, Testing
and Verification, Idyllwild, California, May 1982.

[10] Lam, S. S. and Shankar, A. U., “An Illustration of Protocol Projections,” Proc. 2nd
Int. Workshop on Protocol Specification, Testing and Verification, Idyllwild, Califor-
nia, May 1982.

[11] Lam, S. S. and Shankar, A. U., “Verification of Communication Protocols via Protocol
Projections,” Proc. INFOCOM'82, Las Vegas, April 1982.

[12] Lam, S. S. and Shankar, A. U., “‘Protocol Verification via Projections,” Tech. Rep. 207,
Dept. of Computer Sciences, Univ. of Texas at Austin, August 1982 {revised September
1983). To appear in IEEE Trans. on Software Eng., July 1984.

[13] Lamport, L. “Time, Clocks, and the Ordering of Events in a Distributed System,”
Comm. ACM, Vol. 21, No. 7, July 1978, pp. 558-565.

[14] Owicki, S. and L. Lamport. “Proving Liveness Properties of Concurrent Programs,”
ACM TOPLAS, Vol. 4, No. 3, July 1982, pp. 455-495.

[15] Postel, J. (ed.) “DOD Standard Transmission Control Protocol.”” Defense Advanced
Research Projects Agency, Information Processing Techniques Office, RFC 761, IEN
129, January 1980; in ACM Computer Communication Review, Vol. 10, No. 4, October
1980, pp. 52-132.

226 A.U. Shankar and S.S. Lam

[16] Shankar, A. U. and Lam, S. 8., “On Time-Dependent Communication Protocols and
their Projections,” Proc. 2nd Int. Workshop on Protocol Specification, Testing and
Verification, Idyllwild, California, May 1982.

[17] Shankar, A. U. and S. S. Lam. ““An HDLC Protocol Specification and its Verification
Using Image Protocols,” ACM Trans. on Computer Systems, Vol. 1, No. 4, November
1983, pp. 331-368.

(18] Shankar, A. U. and Lam, S. S., “Specification and Verification of Communieation Net-
works; Part 1: safety, liveness and real-time properties; Part 2: method of projections,”
Tech. Rep. 214, Dept. of Computer Sciences, Univ. of Texas at Austin, 1984 (In
preparation).

[19] Sloan, L. “Mechanisms that Enforce Bounds on Packet Lifetimes,” ACM Trans. Com-
put. Syst., Vol. 1, No. 4, Nov. 1983, pp. 311-330.

[20] Stenning, N. V., “A Data Transfer Protocol,” Computer Networks, Vol. 1, September
1976.

